
i

SQL Command and Function Reference

DBMaker

CASEMaker Inc./Corporate Headquarters

1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.

www.casemaker.com

www.casemaker.com/support

©Copyright 1995-2024 by CASEMaker Inc.

Document No. 645049-244017/DBM546-M08232024-SQLR

Publication Date: 2024-08-23

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any

form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README.TXT

after installing the CASEMaker DBMaker software.

Trademarks

CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-

DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark

of The Open Group. ANSI is a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only

form information purposes. SQL is an industry language and is not the property of any company or group of

companies, or of any organization or group of organizations.

Notices

The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the

merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for

any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or

humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for

inaccuracies. This manual is subject to change without notice.

file:///C:/Users/nancy/AppData/Roaming/Microsoft/Word/www.casemaker.com
file:///C:/Users/nancy/AppData/Roaming/Microsoft/Word/www.casemaker.com/support

Contents

@Copyright 1995-2024 CASEMaker Inc. i

Contents

1 Introduction ... 1-1

1.1 Additional Resources ... 1-2

1.2 Technical Support .. 1-3

1.3 Document Conventions .. 1-4

2 SQL Basics .. 2-1

2.1 Syntax Diagrams .. 2-2

2.2 Data Types ... 2-3

BIGINT .. 2-3

BIGSERIAL(start) ... 2-3

BINARY (size) .. 2-4

CHAR (size) ... 2-5

DATE .. 2-6

DECIMAL (NUMERIC) .. 2-6

DOUBLE ... 2-7

FILE .. 2-8

FLOAT ... 2-9

INTEGER .. 2-9

JSONCOLS ... 2-10

LONG VARBINARY (BLOB) ... 2-15

LONG VARCHAR (CLOB) .. 2-15

NCHAR (size) .. 2-16

NVARCHAR (size) ... 2-17

OID ... 2-18

REAL ... 2-18

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. ii

SERIAL (start) .. 2-19

SMALLINT .. 2-20

TIME ... 2-20

TIMESTAMP ... 2-21

VARCHAR (size) .. 2-22

Media Types ... 2-22

2.3 Data Conversion .. 2-24

Explicit Data Conversion ... 2-24

Implicit Data Conversion ... 2-25

2.4 RESERVED WORDS .. 2-29

3 SQL Commands .. 3-1

3.1 ABORT BACKUP ... 3-2

3.2 ABORT CONNECTION ... 3-4

3.3 ADD TO GROUP ... 3-5

3.4 ADD TRACE ... 3-7

3.5 ALTER DATAFILE ... 3-8

3.6 ALTER INDEX RENAME ... 3-10

3.7 ALTER PASSWORD ... 3-11

3.8 ALTER REPLICATION ADD REPLICATE 3-13

3.9 ALTER REPLICATION DROP REPLICATE 3-18

3.10 ALTER SCHEDULE ... 3-21

3.11 ALTER TABLE ADD COLUMN 3-26

Column Definition .. 3-26

3.12 ALTER TABLE ADD DYNAMIC COLUMN 3-33

3.13 ALTER TABLE DROP COLUMN 3-35

3.14 ALTER TABLE DROP DYNAMIC COLUMN 3-37

3.15 ALTER TABLE DROP FOREIGN KEY 3-39

3.16 ALTER TABLE DROP PRIMARY KEY 3-41

3.17 ALTER TABLE FOREIGN KEY 3-43

Contents

@Copyright 1995-2024 CASEMaker Inc. iii

3.18 ALTER TABLE MODIFY COLUMN 3-47

Modify Column Definitions ... 3-47

3.19 ALTER TABLE MODIFY DYNAMIC COLUMN 3-55

3.20 ALTER TABLE PRIMARY KEY 3-57

3.21 ALTER TABLE RENAME ... 3-60

3.22 ALTER TABLE SET OPTIONS 3-61

3.23 ALTER TABLE SET DYNAMIC MAX 3-64

3.24 ALTER TABLE TO ANOTHER TABLESPACE 3-66

3.25 ALTER TABLESPACE ... 3-68

3.26 ALTER TABLESPACE DROP DATAFILE 3-73

3.27 ALTER TRIGGER ENABLE 3-74

3.28 ALTER TRIGGER REPLACE 3-76

For Each Row Clause ... 3-77

For Each Statement Clause ... 3-79

3.29 BEGIN BACKUP .. 3-82

3.30 BEGIN WORK .. 3-88

3.31 CHECK ... 3-89

3.32 CHECKPOINT .. 3-92

3.33 CLOSE DATABASE LINK .. 3-94

3.34 COMMIT WORK .. 3-96

3.35 CREATE COMMAND ... 3-98

3.36 CREATE DATABASE LINK 3-101

3.37 CREATE DOMAIN ... 3-105

3.38 CREATE GROUP .. 3-109

3.39 CREATE HASH INDEX .. 3-111

3.40 CREATE INDEX ... 3-113

3.41 CREATE PROCEDURE ... 3-120

FROM FILE .. 3-120

ESQL SP ... 3-121

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. iv

JAVA SP .. 3-122

SQL SP .. 3-125

3.42 CREATE REPLICATION ... 3-127

3.43 CREATE SCHEDULE .. 3-132

3.44 CREATE SCHEMA .. 3-139

3.45 CREATE SYNONYM ... 3-142

3.46 CREATE TABLE .. 3-144

Column Definitions .. 3-147

Primary Key and Unique Definitions 3-150

Foreign Key Definitions ... 3-151

Table Options ... 3-154

CREATE TABLE AS SELECT .. 3-162

3.47 CREATE TABLESPACE .. 3-163

3.48 CREATE TEXT INDEX .. 3-169

Signature Text Index ... 3-170

Inverted File Text Index ... 3-172

3.49 CREATE TRIGGER ... 3-174

For Each Row Clause ... 3-176

For Each Statement Clause ... 3-177

3.50 CREATE VIEW .. 3-180

3.51 DECLARE SET .. 3-183

3.52 DELETE ... 3-186

3.53 DISABLE INDEX .. 3-188

3.54 DROP COMMAND ... 3-190

3.55 DROP DATABASE LINK ... 3-192

3.56 DROP DOMAIN ... 3-194

3.57 DROP GROUP .. 3-196

3.58 DROP INDEX ... 3-197

3.59 DROP PROCEDURE ... 3-198

Contents

@Copyright 1995-2024 CASEMaker Inc. v

3.60 DROP REPLICATION .. 3-199

3.61 DROP SCHEDULE .. 3-201

3.62 DROP SCHEMA .. 3-202

3.63 DROP SYNONYM .. 3-203

3.64 DROP TABLE .. 3-205

3.65 DROP TABLESPACE .. 3-207

3.66 DROP TEXT INDEX ... 3-208

3.67 DROP TRIGGER ... 3-209

3.68 DROP VIEW .. 3-211

3.69 END BACKUP .. 3-213

3.70 EXECUTE COMMAND .. 3-215

3.71 GRANT (Execute Privileges) 3-217

3.72 GRANT (Object Privileges) 3-219

3.73 GRANT (Security Privileges) 3-223

3.74 INSERT .. 3-227

3.75 KILL CONNECTION ... 3-231

3.76 LOAD STATISTICS .. 3-232

3.77 LOCK TABLE ... 3-233

3.78 REBUILD COMMAND .. 3-235

3.79 REBUILD INDEX .. 3-236

3.80 REBUILD INDEX IN ANOTHER TABLESPACE 3-238

3.81 REBUILD TEXT INDEX ... 3-239

3.82 REMOVE FROM GROUP .. 3-241

3.83 REMOVE TRACE .. 3-243

3.84 RESUME SCHEDULE ... 3-244

3.85 REVOKE (Execute Privileges) 3-245

3.86 REVOKE (Object Privileges) 3-247

3.87 REVOKE (Security Privileges) 3-251

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. vi

3.88 ROLLBACK ... 3-254

3.89 SAVEPOINT ... 3-256

3.90 SELECT ... 3-257

SELECT WITHOUT FROM .. 3-258

SELECT Clause ... 3-259

FROM Clause ... 3-260

WHERE Clause ... 3-265

Compound Comparisons ... 3-271

Join Conditions ... 3-272

GROUP BY Clause .. 3-280

HAVING Clause ... 3-283

ORDER BY Clause .. 3-283

FOR BROWSE Clause ... 3-287

EXCEPT Clause ... 3-288

Aggregate Functions .. 3-290

WINDOW Functions .. 3-292

XML Functions ... 3-294

3.91 SET CONNECTION OPTIONS................................ 3-298

No Value Options .. 3-298

ON/OFF Options .. 3-299

Number Options .. 3-302

String Options .. 3-304

Symbol Options.. 3-307

Transaction Options .. 3-311

3.92 SET CLIENT_CHAR_SET 3-313

3.93 SET ERRMSG_CHAR_SET 3-315

3.94 SUSPEND SCHEDULE ... 3-317

3.95 SYNC AUTO INDEX .. 3-318

3.96 SYNCHRONIZE SCHEDULE 3-319

3.97 UNLOAD STATISTICS .. 3-320

UNLOAD STATISTICS Object List ... 3-321

Contents

@Copyright 1995-2024 CASEMaker Inc. vii

3.98 UPDATE .. 3-322

3.99 UPDATE STATISTICS ... 3-324

UPDATE STATISTICS Object List .. 3-325

3.100 UPDATE STATISTICS SET 3-327

3.101 UPDATE TABLESPACE STATISTICS 3-330

4 Functions ... 4-1

Built-in Functions ... 4-2

ABS ... 4-3

ACOS .. 4-4
ADD_DAYS .. 4-5

ADD_HOURS .. 4-6

ADD_MINS ... 4-7

ADD_MONTHS ... 4-8

ADD_SECS .. 4-9
ADD_YEARS .. 4-10

ASCII ... 4-11

ASIN .. 4-13

ATAN .. 4-14

ATAN2 .. 4-15
ATOF ... 4-16
BAND .. 4-17
BLOBLEN .. 4-18

BLOBLENEX ... 4-19

BLSHIFT .. 4-20

BNOT .. 4-21
BOR ... 4-22

BRSHIFT .. 4-23
BXOR ... 4-24
CEILING ... 4-25
CHAR .. 4-26
CHAR_LENGTH ... 4-28

CHARACTER_LENGTH .. 4-29

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. viii

CHECKMEDIAFORMAT .. 4-30

CONCAT ... 4-31
COS .. 4-33
COSH ... 4-34
COT .. 4-35
CURDATE .. 4-36
CURRENT_DATE .. 4-37

CURRENT_TIME .. 4-39

CURRENT_TIMESTAMP ... 4-41

CURRENT_USER .. 4-43

CURTIME .. 4-45
DATABASE ... 4-46
DATEPART ... 4-47
DATETOEPOCH .. 4-48

DAYNAME .. 4-49
DAYOFMONTH ... 4-50

DAYOFWEEK .. 4-51
DAYOFYEAR .. 4-52
DAYS_BETWEEN ... 4-53
DEGREES .. 4-54
DIFFERENCE ... 4-55
DOCTOTXT ... 4-56
EPOCHTODATE .. 4-57

EPOCHTOTIME .. 4-58

EPOCHTOTIMESTAMP ... 4-59

EXISTSNODE ... 4-60
EXP .. 4-61
EXTRACT .. 4-62
EXTRACTVALUE .. 4-63
FILEEXIST .. 4-64
FILELEN .. 4-65
FILELENEX .. 4-66
FILENAME .. 4-67
FIX.. 4-68

Contents

@Copyright 1995-2024 CASEMaker Inc. ix

FLOOR .. 4-69
FRACTIONPART .. 4-70
FREXPE .. 4-71
FREXPM ... 4-72
FTOA ... 4-73
HIGHLIGHT .. 4-74
HITCOUNT ... 4-76
HITPOS .. 4-77
HMS ... 4-79
HOUR .. 4-80
HTMLHIGHLIGHT ... 4-81
HTMLTITLE ... 4-83
HTMTOTXT .. 4-84
HYPOT .. 4-85
INSERT .. 4-86
INVDATE ... 4-88
INVTIME ... 4-89
INVTIMESTAMP .. 4-90
LAST_DAY ... 4-91
LCASE ... 4-92
LDEXP .. 4-93
LEFT .. 4-94
LENGTH ... 4-95
LOCATE ... 4-96
LOG .. 4-98
LOG10 .. 4-99
LOWER ... 4-100
LTRIM ... 4-101
MDY .. 4-102
MINUTE .. 4-103
MOD ... 4-104
MODFI ... 4-105
MODFM ... 4-106
MONTH ... 4-107

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. x

MONTHNAME ... 4-108
NEXT_DAY .. 4-109
NOW ... 4-110
PDFTOTXT ... 4-111
PI .. 4-112
POSITION .. 4-113
POW .. 4-115
PPTTOTXT ... 4-116
PURETEXT ... 4-117
QUARTER ... 4-118
RADIANS ... 4-119
RAND .. 4-120
REPEAT ... 4-121
REPLACE ... 4-122
RIGHT ... 4-123
RND ... 4-124
ROUND ... 4-125
RTRIM .. 4-127
SECOND ... 4-128
SECS_BETWEEN .. 4-129

SESSION_USER ... 4-130

SIGN .. 4-131
SIN ... 4-132
SINH .. 4-133
SOUNDEX .. 4-134
SPACE ... 4-135
SQRT ... 4-136
STRTOINT .. 4-137
SUBBLOB .. 4-138
SUBBLOBTOBIN .. 4-139

SUBBLOBTOCHAR .. 4-140

SUBSTRING .. 4-141
TAN ... 4-143
TANH .. 4-144

Contents

@Copyright 1995-2024 CASEMaker Inc. xi

TIMEPART ... 4-145
TIMESTAMPADD .. 4-146
TIMESTAMPDIFF ... 4-148
TIMESTAMPTOEPOCH .. 4-149
TIMETOEPOCH ... 4-150
TRIM .. 4-151
UCASE ... 4-154
UPPER ... 4-155
USER .. 4-156
UTFConvert .. 4-157
WEEK .. 4-158
XLSTOTXT ... 4-159
XMLUPDATE .. 4-160
YEAR .. 4-161

User-Defined Functions ... 4-162

AES_DECRYPT ... 4-163

AES_ENCRYPT ... 4-165

DATETOSTR ... 4-167
TIMETOSTR .. 4-168
TIMESTAMPTOSTR ... 4-169
TO_DATE .. 4-171

5 System-Stored Procedures 5-1

5.1 APPENDBLOB ... 5-2

5.2 APPENDBLOBBYOID .. 5-5

5.3 COPYTABLE ... 5-7

5.4 CSVEXPORT ... 5-9

5.5 EXTENDTS .. 5-12

5.6 GETCPUNUMBER ... 5-14

5.7 GETSYSTEMOPTION ... 5-15

5.8 SCHEDULE_ALTER .. 5-20

5.9 SCHEDULE_CREATE ... 5-23

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. xii

5.10 SCHEDULE_DISABLE .. 5-26

5.11 SCHEDULE_DROP ... 5-27

5.12 SCHEDULE_ENABLE ... 5-28

5.13 SCHEDULE_RELOAD ... 5-29

5.14 SCHELOG_CLEAN ... 5-30

5.15 SETAFFINITY .. 5-31

5.16 SETPRIORITY ... 5-33

5.17 SETSYSTEMOPTION ... 5-35

5.18 SETSYSTEMOPTIONW .. 5-41

5.19 SOADD ... 5-46

5.20 SOCREATE .. 5-47

5.21 SODROP ... 5-48

5.22 SOLOCK .. 5-49

5.23 SOREAD .. 5-50

5.24 SOSET .. 5-51

5.25 SOUNLOCK .. 5-52

5.26 START_DMSCHSVR ... 5-53

5.27 STOP_DMSCHSVR ... 5-54

5.28 TASK_ALTER .. 5-55

5.29 TASK_CREATE ... 5-56

5.30 TASK_DROP .. 5-57

5.31 XMLEXPORT ... 5-58

Constructing XMLEXPORT Arguments 5-59

Exporting XML Files... 5-61

5.32 XMLIMPORT ... 5-67

Constructing XMLIMPORT Arguments.................................. 5-68

Importing XML Files .. 5-74

5.33 SHOWINDEX ... 5-79

Contents

@Copyright 1995-2024 CASEMaker Inc. xiii

5.34 DEFTABLE ... 5-81

5.35 SHOWDMLOG ... 5-83

6 dmSQL Commands ... 6-1

6.1 CONNECT .. 6-2

6.2 CREATE DATABASE .. 6-6

6.3 DEF TABLE ... 6-15

6.4 DEF VIEW ... 6-16

6.5 DEF PROC ... 6-17

6.6 DISCONNECT ... 6-19

6.7 EXPORT ... 6-20

EXPORT COMMAND INTERFACE .. 6-20

DESCRIPTION FILE .. 6-21

6.8 IMPORT .. 6-28

IMPORT COMMAND INTERFACE ... 6-28

DESCRIPTION FILE .. 6-29

6.9 LOAD .. 6-39

LOAD DB [DATABASE] ... 6-40

LOAD TABLE .. 6-41

LOAD SCHEMA ... 6-41

LOAD DATA .. 6-41

LOAD MODULE .. 6-42

LOAD PROJECT .. 6-42

LOAD PROC [PROCEDURE] .. 6-42

6.10 SET DUMP PLAN .. 6-44

6.11 START DATABASE ... 6-45

6.12 TERMINATE DATABASE .. 6-47

6.13 UNLOAD .. 6-48

UNLOAD DB [DATABASE] ... 6-50

UNLOAD TABLE... 6-51

UNLOAD SCHEMA... 6-52

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. xiv

UNLOAD DATA ... 6-52

UNLOAD PROJECT .. 6-53

UNLOAD MODULE .. 6-53

UNLOAD [PROC | PROCEDURE] ... 6-53

UNLOAD [PROC DEFINITION | PROCEDURE DEFINITION]6-53

Introduction 1

 @Copyright 1995-2024 CASEMaker Inc. 1-1

1 Introduction

Welcome to the DBMaker SQL Command and Function Reference manual.

DBMaker is a powerful and flexible SQL Database Management System

(DBMS) that supports an interactive Structured Query Language (SQL), a

Microsoft Open Database Connectivity (ODBC) compatible interface, and

Embedded SQL for C (ESQL/C). The unique open architecture and native

ODBC interface adds the freedom to build custom applications using a wide

variety of programming tools, or to query a database using ODBC-compliant

applications.

DBMaker is easily scalable from personal single-user databases to distributed

enterprise-wide databases. Regardless of the configuration of a database, the

advanced security, integrity, and reliability features of DBMaker ensure the

safety of critical data. Extensive cross-platform support permits leveraging of

existing hardware and allows for expansion and upgrading when required.

DBMaker provides excellent multimedia-handling capabilities to store, search,

retrieve, and manipulate all types of multimedia data. Binary Large Objects

(BLOBs) ensure the integrity of multimedia data by taking full advantage of

the advanced security and crash recovery mechanisms included in DBMaker.

File Objects (FOs) manage multimedia data while maintaining the capability to

edit individual files in source applications.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 1-2

1.1 Additional Resources

DBMaker provides a complete set of DBMS manuals in addition to this one.

Consult one of the books listed below for more information on a particular

subject.

 For an introduction to DBMaker's capabilities and functions, refer to the

DBMaker Tutorial.

 Please refer to the Database Administrator's Guide for more information

on designing, administering, and maintaining a DBMaker database.

 For more information on DBMaker management, refer to the JServer

Manager User's Guide.

 For more information on DBMaker configurations, refer to the

JConfiguration Tool Reference.

 For more information on DBMaker functions, refer to the JDBA Tool User's

Guide.

 For more information on the dmSQL interface tool, refer to the dmSQL

User's Guide.

 For more information on DCI COBOL Interfaces, refer to the DCI User's

Guide.

 For more information on the ESQL/C programming, refer to the ESQL/C

User's Guide.

 For more information on the native ODBC API and JDBC API, refer to the

ODBC Programmer's Guide and JDBC Programmer's Guide.

 For more information on error and warning messages, refer to the Error

and Message Reference.

 For more information on the SQL stored procedure, refer to the DBMaker

SQL Stored Procedure User's Guide.

Introduction 1

 @Copyright 1995-2024 CASEMaker Inc. 1-3

1.2 Technical Support

CASEMaker provides thirty days of complimentary support via email and

phone during the evaluation period. When software is registered an additional

thirty days of support is included extending the total support period for

software to sixty days. However, CASEMaker continues to provide email

support for bugs reported after the complimentary support or registered

support has expired (free of charge).

For most products, support is available beyond sixty days and may be

purchased for twenty percent of the retail price of the product. Please contact

sales@casemaker.com for details and prices.

CASEMaker support contact information, by post mail, phone, or email, for

your area is at: www.casemaker.com/support. We recommend searching the

most current database of FAQ's before contacting CASEMaker support staff.

Please have the following information available when phoning support for a

troubleshooting enquiry or include this information in your correspondence:

 Product name and version number

 Registration number

 Registered customer name and address

 Supplier/distributor where product was purchased

 Platform and computer system configuration

 Specific action(s) performed before error(s) occurred

 Error message and number, if any

 Any additional information deemed pertinent

mailto:sales@casemaker.com
http://www.casemaker.com/support

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 1-4

1.3 Document Conventions

This book uses a standard set of typographical conventions for clarity and

ease of use. The NOTE, Procedure, Example, and Command Line conventions

also have a second setting used with indentation.

Convention Description

Italics
Italics indicate placeholders for information that must be
supplied, such as user and table names. A word in italics
should not be typed, but replaced by the actual name. In
addition, italics can be used to introduce new words and are
occasionally used for emphasis in text.

Boldface
Boldface indicates filenames, database names, table names,
column names, user names, and other database schema
objects. It is also used to emphasize menu commands in
procedural steps.

KEYWORDS
All keywords used by the SQL language appear in uppercase
when used in normal paragraph text.

small caps
Small capital letters indicate keys on the keyboard. A plus
sign (+) between two key names indicates to hold down the
first key while pressing the second. A comma (,) between two
key names indicates to release the first key before pressing
the second key.

NOTE
Contains important information.

 Procedure
Indicates that procedural steps or sequential items will
follow. Many tasks are described using this format to provide
a logical sequence of steps for the user to follow.

 Example
Examples are given to clarify descriptions, and commonly
include text, as it will appear on the screen.

Command Line Indicates text, as it should appear on a text-delimited screen.
This format is commonly used to show input and output for
dmSQL commands or the content in the dmconfig.ini file.

Table 1-1 Document Conventions Table

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-1

2 SQL Basics

This manual is intended for anyone using the SQL language with DBMaker.

This includes everyone from, users performing ad-hoc queries using the

dmSQL command line utility, to programmers developing custom applications

using ESQL/C and the DBMaker ODBC-compliant interface.

This manual also provides a complete reference to the Structured Query

Language found in DBMaker, and provides the syntax for each SQL statement.

Examples and illustrations are provided throughout the manual to assist with

more clarity of understanding the contents.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-2

2.1 Syntax Diagrams

Syntax diagrams demonstrate the syntax for all SQL commands. These

diagrams provide assistance when constructing a statement on the command

line. To use the syntax diagram, simply follow the line(s) and arrows from

start to finish. Any elements of the command that cannot be navigated around

are required. Any elements that can be navigated around are optional, but

provide additional options and/or flexibility.

Any words that appear in italics are placeholders for the actual names used in

a database. Substitute the actual names for these placeholders. In the diagram,

replace the table_name placeholder with the name of a table in the database.

For example, in the tutorial database, you could replace the table_name

placeholder with Customers to execute this command on the Customers table.

Sometimes it is possible to have a list of items in a command, which are shown

in the syntax diagram as a circular path. The column name field can include a

list of column names, separated by commas, as indicated by the circular path

following the arrows.

column_name

,

ALTER TABLE table_name DROP CASCADE

RESTRICT

()

Figure 2-1: A sample syntax diagram

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-3

2.2 Data Types

When defining a column in a table, choose a data type for the field.

Understand how to use each field in order to make the right choice of data

type. Choosing the wrong data type can waste space in the database, or make

the application program take extra steps to convert the data into a usable

form.

DBMaker supports the following data types:

BIGINT, BINARY(size), BIGSERIAL, CHAR(size), NCHAR(size), DATE,

DECIMAL(NUMERIC), DOUBLE, FILE, FLOAT, INTEGER, JSONCOLS, LONG

VARBINARY(BLOB), LONG VARCHAR(CLOB), REAL, OID, SERIAL(start),

SMALLINT, TIME, TIMESTAMP, VARCHAR(size), NVARCHAR(size) and Media

types.

BIGINT

BIGINT data type is an exact signed numeric data type with a precision of

nineteen and a scale of zero. The BIGINT data type uses 8 bytes of storage

with a maximum value of 9,223,372,036,854,775,807 and a minimum value of

−9,223,372,036,854,775,808.

Using BIGINT or INTEGER to move a value larger than the maximum allowed

by those data types results in a conversion error and and the data is not

moved.

 Example 1

37654

 Example 2

857823

BIGSERIAL(start)

DBMaker uses the BIGSERIAL data type when for allocating consecutive

integers to uniquely identify each table contained in a database. DBMaker

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-4

manages these integers internally. The value of each integer is automatically

increased by one each time it is used.

When defining a BIGSERIAL column, providing an integer value for the

optional START parameter specifies the first value in a number sequence. A

default value of 1 is used when the START parameter is omitted. Each table

may contain one column with the BIGSERIAL data type.

An integer is used to generate BIGSERIAL numbers. The integer is an exact

signed numeric data type occupying 8 bytes of storage with a precision of 19

and a scale of 0. The BIGSERIAL data type has a maximum value of

9,223,372,036,854,775,806 and a minimum value of

−9,223,372,036,854,775,808.

A sequential number can be inserted into a BIGSERIAL column by place a

NULL or empty value in the BIGSERIAL column when inserting a new row.

DBMaker inserts the sequential number for that table into the BIGSERIAL

column of the new record and increases the internal value by one.

When inserting a new column, if an integer is supplied for BIGSERIAL, instead

of a NULL or empty value, DBMaker uses the integer instead of the next

sequential number. Additionally, the internal value is not incremented by 1. If

the supplied integer value is greater than the last sequential number

generated, DBMaker resets the sequence of generated sequential numbers to

start with the supplied integer.

 Example 1

10000, 10001, 10002, 10003, 10004, 10005, 10006, 10007

 Example 2

10000, 10001, 5000, 10002, 10003, 11000, 11001, 11002

BINARY (size)

The BINARY data type is a fixed-length data type that can contain any binary

value. BINARY columns maximum length can be specified as 4 KB, 8 KB, 16 KB

or 32 KB, User can enter a value for the size parameter when creating a

BINARY column. Any data entered in a BINARY column shorter than the

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-5

column length is padded with a zero-value byte. By default, the minimum

length of BINARY columns is 1 byte and the maximum length is 8056 bytes.

Enter character data by enclosing the data in single quotes (' '), the same as

when entering CHAR data. However, in BINARY columns the data is stored as

hexadecimal values representing the ASCII code of the characters, not as the

actual characters entered.

Alternatively, enter hexadecimal values directly by enclosing them in single

quotes and appending the 'x' character (' 'x) to indicate the string contains a

hexadecimal value. It requires two digits to represent all possible values for

each byte in hexadecimal; use an even number of digits when entering values.

 Example 1

'AaBbCcDdEe'x

 Example 2

'41614262436344644565'x

CHAR (size)

The CHAR data type is a fixed-length data type that can contain any character

from the keyboard. CHAR columns maximum length can be specified as 4 KB,

8 KB, 16 KB or 32 KB, User can enter a value for the size parameter when

creating a CHAR column. By default, the minimum length of CHAR columns is

1 byte and the maximum length is 8056 bytes.

Any CHAR data in a column that is shorter than the column length is padded

with spaces. When entering CHAR data, enclose it in single quotes (' ').

Double-byte characters occupy two bytes. If using double-byte characters,

account for this when specifying the length of the column.

 Example 1

'This is a CHAR string.'

 Example 2

'This is another CHAR string.'

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-6

DATE

There are two types of DATE data; DATE literal and DATE constant. Date

literal represents the present date. DATE constant is a set point in time. The

DATE data type is fixed-length containing the calendar date (year, month and

day). The DATE data type uses 4 bytes of storage. Valid values for the year are

from 0001 to 9999.

The DATE data type has multiple input/output formats. If the values in the

database do not appear correctly, or you are not able to enter dates you think

are valid, check the date input/output formats to ensure that they are correct.

 Example 1a

'0001/01/01'

 Example 1b

'0001/01/01'd

 Example 1c

DATE '0001/01/01'

 Example 2a

'1999/12/31'

 Example 2b

'1999/12/31'd

 Example 2c

DATE '1999/12/31'

DECIMAL (NUMERIC)

The DECIMAL data type is an exact signed numeric value with a variable

precision and scale. Precision refers to the total number of digits in the

mantissa, both to the left and to the right of the decimal point. The default

value for precision is 17 with a maximum value of 38. Scale refers to the

number of digits to the right of the decimal point. The default value for scale is

6.

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-7

The amount of storage used by a DECIMAL column is based on the actual

value entered, not on the default precision and scale values or the precision

and scale values entered when defining the column.

To calculate the amount of storage, use the following formula:

2
2

1
 bytes of # +

+
=
p

For example, the number 9283.83 would be stored as 6 bytes.

The actual calculation used is:

5.5

2
2

16

2
2

1
 bytes of #

=

+
+

=

+
+

=
p

If you attempt to move a value larger than the allowed maximum from a data

type such as FLOAT or DOUBLE, DBMaker displays a conversion error and

does not move the data. The DECIMAL data type may be abbreviated as DEC.

 Example 1

3452.8373645

 Example 2

736.383732652

DOUBLE

The DOUBLE data type is an approximate signed numeric data type with a

mantissa of precision 15. Precision refers to the total number of digits in the

mantissa, both to the left and to the right of the decimal point. The DOUBLE

data type uses 8 bytes of storage and has a valid input range from 1.0E308

to –1.0E308.

The smallest valid input values are 1.0E-308 and –1.0E-308.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-8

 Example 1

2.89837457884451E285

 Example 2

-1.93873634847372E-174

FILE

The FILE data type is a structured data type that occupies 48 bytes of storage.

This data type is similar to the CLOB and BLOB data types and stores the

contents of any existing file as an external file that DBMaker can reference the

same as any other data. DBMaker stores the data externally as a file instead of

internally as an object. This allows third-party tools to access and manipulate

the data in its native format, without having to re-import the data to register

any changes in the database. A file object has a maximum path length of 255

characters.

The FILE column stores a reference to a record in the system catalog tables.

The database uses system catalog information to find the file object. When you

display a FILE column, you do not actually see what is stored in the FILE

column itself. Instead, DBMaker shows one of three views of information

stored in the system catalog or the file itself the filename, the file size, or the

file contents.

The FILE data type can store data in two ways, as a system file object or as a

user file object. A system file object copies an existing file to the file object

directory of the database and gives it a unique name. The database manages

this file, and deletes it when there are no references to it in the database. A

user file object creates a link to an existing file, while leaving the file in the

original location with the original name. Since, the user created this file; it will

not be deleted when there are no references made to it in the database.

DBMaker must have the read permission on a file before you can insert it into

the database as a user file object.

When multiple records reference the same file, DBMaker will store only a

single copy of the file and share it between records to save disk space.

However, from the user's point of view, there is always a dedicated file for

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-9

each record. DBMaker transparently generates a new file when updating a

shared file. Other records sharing that file are not changed, and other users

still see the original file. This prevents changes made to a record in one file

from influencing other records.

FLOAT

The FLOAT data type is an approximate signed numeric data type having a

mantissa with a precision of 15. Precision refers to the total number of digits

to the left and to the right of the decimal point. The default FLOAT data type

uses 8 bytes of storage and has a valid input range from 1.0E308 to –1.0E308.

The default FLOAT type can be specified as REAL or DOUBLE with the

keyword DB_FltDb.

The smallest valid input values are 1.0E-308 and –1.0E-308.

 Example 1

2.89837457884451E285

 Example 2

-1.93873634847372E-174

INTEGER

The INTEGER data type is an exact signed numeric data type with a precision

of 10 and a scale of 0. The INTEGER data type uses 4 bytes of storage and has

a maximum value of 2,147,483,647 and a minimum value of -2,147,483,648.

If you attempt to move a value larger than the allowed maximum from a data

type such as DOUBLE, DBMaker displays a conversion error and does not

move the data. The INTEGER data type may be abbreviated as INT.

 Example 1

393848

 Example 2

-298376

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-10

JSONCOLS

JSONCOLS Type is a column set of dynamic columns. DBMaker supports

dynamic columns. A dynamic column does not exist in the table definition, and

it's the keys which can be derived from the JSON string and can be used only

when a table has declared a column as JSONCOLS column. For details of a

dynamic column, please refer to chapter Using Dynamic Columns in Database

Administrator's Guide. For details of a JSONCOLS column, please refer to

chapter Using JSONCOLS Type in Database Administrator's Guide. Dynamic

columns of a table are stored as JSONCOLS type which is derived from LONG

VARBINARY.

Note: Users can use JSONPath to insert, update, select data on jsoncols and

dynamic columns. Please refer to JSONPath User’s Guide for more information.

 Example 1

Creating a table that has JSONCOLS type:

dmSQL> CREATE TABLE student(name CHAR(30), info JSONCOLS);

or

dmSQL> CREATE TABLE student(name CHAR(30));

dmSQL> ALTER TABLE student ADD COLUMN info JSONCOLS;

Inserting data into table student by using the name of the JSONCOLS type:

dmSQL> INSERT INTO student(name,info) VALUES

('jessia','{"desk_id":3,"birthday":"1986-09-19","score":90}');

1 rows inserted

dmSQL> INSERT INTO student(name,info) VALUES

('pine','{"desk_id":4,"birthday":"1987-03-03","score":95}');

1 rows inserted

Query table student by using "SELECT *":

dmSQL> SET blobwidth 80;

dmSQL> SELECT * FROM student;

 NAME INFO

================== ==

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-11

jessia {"score":90,"birthday":"1986-09-19","desk_id":3}

pine {"score":95,"birthday":"1987-03-03","desk_id":4}

2 rows selected

Query table student by using the name of the JSONCOLS type:

dmSQL> SELECT name, info FROM student;

 NAME INFO

================== ==

jessia {"score":90,"birthday":"1986-09-19","desk_id":3}

pine {"score":95,"birthday":"1987-03-03","desk_id":4}

2 rows selected

Updating data of table student by using the name of the JSONCOLS type:

dmSQL> UPDATE student SET info = '{"desk_id":7, "birthday":"1986-09-

19","score":88}' WHERE name='jessia';

1 rows updated

Modifying data type of the column named birthday to DATE:

dmSQL> ALTER TABLE student ADD DYNAMIC COLUMN birthday DATE;

dmSQL> SELECT info FROM student;

 INFO

===

{"score":88,"birthday":"1986-09-19","desk_id":7}

{"score":95,"birthday":"1987-03-03","desk_id":4}

2 rows selected

dmSQL> INSERT INTO student(name,desk_id,birthday,score) VALUES ('mike','8','1985-

02-15','92');

dmSQL> SELECT info FROM student;

 INFO

===

{"score":88,"birthday":"1986-09-19","desk_id":7}

{"score":95,"birthday":"1987-03-03","desk_id":4}

{"BIRTHDAY":477244800000,"DESK_ID":"8","SCORE":"92"}

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-12

3 rows selected

Creating a text index on the JSONCOLS column named info:

dmSQL> CREATE TEXT INDEX idx_stu ON student(INFO);

Creating a view on the JSONCOLS column named info:

dmSQL> CREATE VIEW view1 AS SELECT info FROM student;

dmSQL> SELECT * FROM view1;

 INFO

===

{"score":88,"birthday":"1986-09-19","desk_id":7}

{"score":95,"birthday":"1987-03-03","desk_id":4}

{"BIRTHDAY":477244800000,"DESK_ID":"8","SCORE":"92"}

3 rows selected

 Example 2

The following operations base on table student. For details of table student,

please refer to Example 1.

Inserting data into table student by using the names of the dynamic columns:

/* implicit data conversion is closed by default */

dmSQL> INSERT INTO student(name,score) VALUES(?,?);

dmSQL/Val> 'demi','85'; /* it is ok */

1 rows inserted

dmSQL/Val> 'finly',82; /* INT cannot be converted to CHAR */

ERROR (9629): value list syntax error

dmSQL/Val> END;

dmSQL> SET itcmd ON;

dmSQL> INSERT INTO student (name,score) VALUES(?,?);

dmSQL/Val> 'finly',82; /* using implicit data conversion */

1 rows inserted

dmSQL/Val> END;

dmSQL> SET itcmd OFF;

dmSQL> INSERT INTO student(name,desk_id,birthday,score) VALUES('linda','1','1982-

01-01','91');

1 rows inserted

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-13

dmSQL> INSERT INTO student(name,desk_id,birthday,score) VALUES('glow','2','1984-

03-25','93');

1 rows inserted

dmSQL> INSERT INTO student (name,desk_id,birthday,score)

VALUES('kitty','abc','1980-02-27','97');

1 rows inserted

Query table student by using "SELECT *":

dmSQL> SELECT * FROM student;

 NAME INFO

============== ==

jessia {"score":88,"birthday":"1986-09-19","desk_id":7}

pine {"score":95,"birthday":"1987-03-03","desk_id":4}

mike {"BIRTHDAY":477244800000,"DESK_ID":"8","SCORE":"92"}

demi {"SCORE":"85"}

finly {"SCORE":"82"}

linda {"BIRTHDAY":378662400000,"DESK_ID":"1","SCORE":"91"}

glow {"BIRTHDAY":448992000000,"DESK_ID":"2","SCORE":"93"}

kitty {"BIRTHDAY":320428800000,"DESK_ID":"abc","SCORE":"97"}

8 rows selected

Query table student by using the names of the dynamic columns:

dmSQL> SELECT name, desk_id, birthday, score FROM student;

 NAME DESK_ID BIRTHDAY SCORE

============== =========== ============ ======================

jessia 7 19* 88

pine 4 19* 95

mike 8 19* 92

demi NULL NU* 85

finly NULL NU* 82

linda 1 19* 91

glow 2 19* 93

kitty abc 19* 97

8 rows selected

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-14

Updating/deleting data of table student by using the names of the dynamic

columns:

dmSQL> UPDATE student SET score='88' WHERE name='linda';

1 rows updated

dmSQL> DELETE FROM student WHERE desk_id='2';

1 rows deleted

Adding description of dynamic columns to this table:

dmSQL> ALTER TABLE student ADD DYNAMIC COLUMN desk_id INT;

dmSQL> ALTER TABLE student ADD DYNAMIC COLUMN score DOUBLE;

Inserting data into table student:

dmSQL> INSERT INTO student(name, desk_id, age, score) VALUES('jane','12','1982-

05-07',96);

ERROR (6150): [DBMaker] the insert/update value type is incompatible with column

data type or compare/operand value is incompatible with column data type in

expression/predicate

dmSQL> INSERT INTO student(name, desk_id, age, score) VALUES('jim',8,'1984-09-

26',98);

1 rows inserted

dmSQL> SELECT name, desk_id, birthday, score FROM student;

 NAME DESK_ID BIRTHDAY SCORE

============== ============ ============ ======================

jessia 7 1986-09-19 8.80000000000000e+001

pine 4 1987-03-03 9.50000000000000e+001

mike 8 1985-02-15 9.20000000000000e+001

demi NULL NULL 8.50000000000000e+001

finly NULL NULL 8.20000000000000e+001

linda 1 1982-01-01 8.80000000000000e+001

kitty NULL 1980-02-27 9.70000000000000e+001

jim 8 NULL 9.80000000000000e+001

8 rows selected

Modifying the data type of the dynamic column named score:

dmSQL> ALTER TABLE student MODIFY DYNAMIC COLUMN score TYPE TO INT;

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-15

Creating an index on the dynamic column named desk_id:

dmSQL> CREATE INDEX idx1 ON student(desk_id);

Dropping description information of the dynamic column named birthday:

dmSQL> ALTER TABLE student DROP DYNAMIC COLUMN birthday;

LONG VARBINARY (BLOB)

The BLOB data type is a variable-length data type that can contain any binary

value. The maximum length of BLOB columns is 8 TB. Unlike the BINARY data

type, which uses zero-value bytes for padding, only the bytes entered are

stored in the database.

You can enter character data by enclosing the data in single quotes (' '), the

same as when entering CHAR data. However, in BLOB columns the data is

stored as hexadecimal values representing the ASCII code of the characters,

not as the actual characters entered.

Alternately, enter hexadecimal values directly by enclosing the data in single

quotes and appending the 'x' character (' 'x) to indicate a string containing a

hexadecimal value. Two digits represent all possible values for each byte in

hexadecimal; use an even number of digits when entering values.

 Example 1

'AaBbCcDdEe'x

 Example 2

 '41614262436344644565'x

LONG VARCHAR (CLOB)

The variable-length CLOB data type can contain any character that can be

entered from the keyboard. The maximum length of CLOB columns is 8 TB .

Unlike the CHAR data type, which uses spaces for padding, only the characters

entered are stored in the database. When entering data in a CLOB column,

enclose it in single quotes (' '). Double-byte characters occupy two bytes each,

account for this when specifying the length of the column.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-16

 Example 1

'This is a varchar string.'

 Example 2

'This is another varchar string.'

NCHAR (size)

The NCHAR data type is a fixed-length data type that can contain any Unicode

character. Each Unicode character occupies two bytes of storage in UTF16

Little-Endian (LE) encoding. The (size) parameter determines the number of 2

byte characters in the column. The (size) parameter must be entered when

creating an NCHAR column, and may range from 1 to 4028 by default.

If NCHAR data is entered into a column that is shorter than the column length,

the data will be padded with spaces. When entering NCHAR data, enclose the

Unicode character with single quotes and prefix the quotes with 'N'.

 Example 1

The following demonstrates the syntax of a Unicode data entry:
N'Unicode Data'

If NCHAR data is input in hexadecimal format, enclose the hexadecimal string

with quotes and append a 'u' character.

 Example 2

The following demonstrates the syntax of a three-character hexadecimal

Unicode data entry:
'610a620b63f1'u

When a character string is input to a Unicode column but is not prefixed by

'N', then it will automatically be converted from local code to Unicode. If

Unicode characters are entered into a regular CHAR type column, then the

Unicode character will be converted to the local code defined by the

dmconfig.ini parameter DB_LCode. Characters that are not defined in the local

code are represented by .

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-17

Synonyms for the NCHAR data type include NATIONAL CHAR(size), and

NATIONAL CHARACTER(size).

NVARCHAR (size)

The NVARCHAR data type is a variable-length data type that can contain any

Unicode character. Each Unicode character occupies two bytes of storage in

UTF16 Little-Endian (LE) encoding. The (size) parameter determines the

number of 2 byte characters in the column. The (size) parameter must be

entered when creating an NVARCHAR column, and may range from 1 to 4028

by default.

If NVARCHAR data is entered into a column that is shorter than the column

length, the data is not padded with spaces. When entering NVARCHAR data,

enclose the Unicode character with single quotes and prefix the quotes with

'N'.

 Example 1

The following demonstrates the syntax of a Unicode data entry:
N'Unicode Data'

If NVARCHAR data is input in hexadecimal format, enclose the hexadecimal

string with quotes and append a 'u' character.

 Example 2

The following demonstrates the syntax of a three-character hexadecimal

Unicode data entry:
'610a620b63f1'u

When a character string is input to a Unicode column but is not prefixed by

'N', then it will automatically be converted from local code to Unicode. If

Unicode characters are entered into a regular VARCHAR type column, then the

Unicode character will be converted to the local code defined by the

dmconfig.ini parameter DB_LCode. Characters that are not defined in the local

code are represented by .

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-18

Synonyms for the NVARCHAR data type include NATIONAL CHAR

VARYING(size), NCHAR VARYING(size), NATIONAL VARCHAR(size), and

NATIONAL CHARACTER VARYING(size).

OID

The OID (object identifier) data type is a special data type that provides a

unique ID for each object, record or BLOB, stored in a database. A structured

data type has a precision of 10 and a scale of 0, and occupies 16 bytes of

storage. DBMaker automatically generates and inserts an OID with each

record. The OID is internally managed and maintained by DBMaker and

cannot be used directly.

The value generated for an OID is related to the storage location of objects in

the database. This means that two OIDs generated consecutively may not

necessarily be sequential.

The OID values act as a hidden pseudo-column in tables, and will not appear

in queries such as SELECT * FROM CUSTOMERS. Explicitly select the OID

column by using 'OID' as a column name in a query.

Although it is possible to use an OID in a query to select data from a table and

then use the OIDs to update the table data, this is not common practice when

using the SQL language. OIDs are usually used in the internal programming

interface, and not directly in the interactive dmSQL environments.

REAL

The REAL data type is an approximate signed numeric data type having a

mantissa with a precision of 7. Precision refers to the total number of digits to

the left and to the right of the decimal point. The REAL data type uses 4 bytes

of storage and has a valid input range from 3.402823466E38 to –

3.402823466E38. The smallest valid input values are 1.175494351E-38 and –

1.175494351E-38. A move involving a value larger than the allowed

maximum, from a data type such as DOUBLE, fails and DBMaker displays a

conversion error.

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-19

 Example 1

3.583837E34

 Example 2

-1.873653E-21

SERIAL (start)

The SERIAL data type is a special data type that provides a sequence of

consecutive values. DBMaker allocates an integer number for each table

contained in a database and uses those numbers to generate a unique

sequence for the corresponding table. DBMaker manages and maintains these

integer numbers internally. The value of each integer value is automatically

increased by one each time it is used.

Providing an integer value for the optional START parameter when defining a

SERIAL column can specify the first value in a number sequence, or the START

parameter omitted to use the default value of 1. Each table in a database can

have only one column with the SERIAL data type.

The internal value used to generate a SERIAL number is actually an integer

value; the SERIAL data type shares all of the properties of the INTEGER data

type. It is an exact signed numeric data type with a precision of 10 and a scale

of 0, which occupies 4 bytes of storage. The SERIAL data type also has the

same range of values as the INTEGER data type, with a maximum value of

2,147,483,646 and a minimum value of –2,147,483,648.

Place a NULL, or empty value in the SERIAL column when inserting a new row

to insert a sequential number into a SERIAL column. DBMaker will insert the

sequential number for that table into the SERIAL column of the new record,

and automatically increase the internal value by one.

If inserting a new column, and supplying an integer value for the SERIAL

instead of a NULL or empty value, DBMaker will use the supplied integer value

instead of the next sequential number; the internal value will not be

incremented by 1. If the supplied integer value is greater than the last

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-20

sequential number generated, DBMaker will reset the sequence of generated

sequential numbers to start with the supplied integer value.

 Example 1

100, 101, 102, 103, 104, 105, 106, 107

 Example 2

100, 101, 50, 102, 103, 110, 111, 112

SMALLINT

The SMALLINT data type is an exact signed numeric data type with a precision

of five and a scale of zero. The SMALLINT data type uses two bytes of storage

and has a maximum value of 32,767 and a minimum value of -32,768.

If attempting to move a value larger than the permitted maximum value from

a data type such as INTEGER or DOUBLE, DBMaker displays a conversion

error and does not move the data.

 Example 1

4769

 Example 2

8376

TIME

There are two types of TIME data, TIME literal, and TIME constant. A TIME

literal displays the present time, which is an ever-changing value. A TIME

constant is a fixed moment in time. Both TIME data type settings are fixed-

lengths, and use 4 bytes of storage. All time values are entered in twenty-four

hour format by default unless the optional 'AM' or 'PM' values are specified.

Both TIME data types have multiple input/output formats. If the values in the

database do not appear correctly or you are unable to enter perceived valid

times then, check the time input/output formats for validity.

 Example 1a

'22:04:05'

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-21

 Example 1b

'22:04:05't

 Example 1c

TIME '22:04:05'

 Example 2a

'10:04:05 PM'

 Example 2b

10:04:05 PM't

 Example 2c

TIME 10:04:05 PM'

TIMESTAMP

There are two types of TIMESTAMP, TIMESTAMP literal, and TIMESTAMP

constant. A TIMESTAMP literal displays the present time, which is an ever-

changing value. A TIMESTAMP constant is a fixed moment in time.

Both TIMESTAMP data type settings are a fixed-length data type that contains

calendar data and the time-of-day. Both TIMESTAMP data type settings use 11

bytes of storage, has a precision of 17, and a scale of 10. Valid years range

from 0001 to 9999. All time values are entered in twenty-four hour format by

default unless the optional 'AM' or 'PM' values are specified.

Both TIMESTAMP data type settings use the input and output formats for the

TIME and DATE data types to display values and determine if input values are

valid. If the values in the database do not appear correctly or you are unable

to enter perceived valid times then, verify the time input and output formats.

 Example 1a

'1997/01/01 10:02:03'

 Example 1b

'1997/01/01 22:02:03'ts

 Example 1c

TIMESTAMP '1997/01/01 10:02:03'

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-22

 Example 2a

'01.01.1997 22:02:03'

 Example 2b

'01.01.1997 22:02:03'ts

 Example 2c

TIMESTAMP '01.01.1997 22:02:03'

VARCHAR (size)

The VARCHAR data type is a variable-length data type that can contain any

character that can be entered from the keyboard. VARCHAR maximum

columns length can be specified as 4 KB, 8 KB, 16 KB or 32 KB, User can enter

a value for the size parameter when creating a VARCHAR column. By default,

the minimum length of VARCHAR columns is 1 byte and the maximum length

is 8056 bytes.

Only the VARCHAR characters entered are stored in the database. When

entering data in a column, use single quotes (' '). If using double-byte

characters, account for two bytes for each character when specifying the

length of a column.

 Example 1

' This is a VARCHAR string.'

 Example 2

' This is another VARCHAR string.'

Media Types

Large object columns may also be specified as media types to aid in media

process functions such as full text search for Microsoft Word documents.

The following media types are available: MsWordType, HtmlType, XmlType,

MsPPTType, MsExcelType, PDFType, MsWordFileType, HtmlFileType,

XmlFileType, MsPPTFileType, MsExcelFileType, and PDFFileType.

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-23

Media types are domains of existing data types; MsWordType, MsPPTType,

MsExcelType, PDFType, HtmlType, and XmlType are derived from LONG

VARBINARY, and MsWordFileType, HtmlFileType, XmlFileType,

MsPPTFileType, MsExcelFileType, and PDFFileType are derived from FILE

type columns. This is important to consider if you choose to use the ALTER

TABLE function to change a column from one data type to another. The

characteristics of each of the media types are similar to the characteristics of

the data type from which it is derived.

The features of XMLTYPE include:

• Well-formed XML checking: inserted/updated xml content must be well-

formed

• XML validation: optionally specify a validation udf when creating an

xmltype column and DBMaker will validate the xml content with it

• XML data is stored in the original format

• Query with XPath search: optionally specify an xpath and use extract

functions to query/locate nodes in an XML data

• Update XML content specified by XPath

• Build index on XPath extract: speed up xpath querieswith indexes on

frequent query xpath expression

• Altering an xmltype column or other data types to the xmltype is not

allowed

 Example

dmSQL> CREATE TABLE minutes (id INT, meeting_date DATE, doc MSWORDFILETYPE);

dmSQL> INSERT INTO minutes VALUES (1, 3/3/2003, 'c:\meeting\20030303.doc');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-24

2.3 Data Conversion

Data types will be converted in the following scenarios:

 When data from one object is moved to, compared with, or combined with

data from another object, the data may have to be converted from the

data type of one object to the data type of the other.

 When data from a SQL result column, return code, or output parameter is

moved into a program variable, the data must be converted from the

DBMaker system data type to the data type of the variable.

 When an expression contains data of different datatypes, there is a need

for data conversion to make data compatible.

DBMaker supports both implicit and explicit conversion of data from one

datatype to another.

It is recommended that users specify explicit conversions, rather than rely on

implicit or automatic conversions. The reasons are as follows:

 SQL statements are easier to understand when you use explicit datatype

conversion functions.

 Implicit datatype conversion can have a negative impact on performance,

especially if the datatype of a column value is converted to that of a

constant rather than the other way around.

 Implicit conversion depends on the context in which it occurs and may

not work the same way in every case.

Explicit Data Conversion

Users can explicitly specify datatype conversions using the following SQL

conversion functions: CAST, DATETOSTR, TIMETOSTR, TIMESTAMPTOSTR

and TO_DATE.

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-25

CAST allows the output data to be converted to another data type. For details

please refer to Chapter 3.85, SELECT.

The DATETOSTR function is used to convert a value in DATE type into the

character string in specified format. For details please refer to Chapter 4.2.3,

DATETOSTR.

The TIMETOSTR function is used to convert a value in TIME type into the

character string with specified format. For details please refer to Chapter

4.2.4, TIMETOSTR.

The TIMESTAMPTOSTR function is used to convert a value in TIMESTAMP

type into the character string in specified format. For details please refer to

Chapter 4.2.5, TIMESTAMPTOSTR.

The TO_DATE function converts a selected character string to a value in DATE

type. For details please refer to Chapter 4.2.6, TO_DATE.

Implicit Data Conversion

DBMaker automatically converts a value from one datatype to another when

such a conversion makes sense. It mainly contains conversion between

numeric data and character data. A numeric data and a character data both

include data of multiple types. A numeric data's type can be integer (int,

serial), smallint, bigint, bigserial, float, double, and decimal. A character data's

type can be char, varchar, nchar and nvarchar. Before using implicit data

conversion, users should open this function by using "set itcmd on" or set

value of DB_ItcMd to 1.

The table 2-1 illustrates all valid conversions, and the direction of the

conversion is from row X to column Y.

Xy int

(serial)
small-

int
bigint

(bigserial)
decimal double float (var)

char
n(var)
char

int(serial) Y Y Y Y Y Y Y Y

smallint Y Y Y Y Y Y Y Y

bigint(bigserial) Y Y Y Y Y Y Y Y

decimal Y Y Y Y Y Y Y Y

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-26

double Y Y Y Y Y Y Y Y

float Y Y Y Y Y Y Y Y

(var)char Y Y Y Y Y Y Y Y

n(var)char Y Y Y Y Y Y Y Y

Table 2-1 Implicit Conversion Table

The following rules govern the direction in which DBMaker makes implicit

datatype conversion:

 During INSERT operations, DBMaker converts the value to the datatype of

the affected column.

 During arithmetic operations (arithmetic operators: +, -, *, /), DBMaker

converts the character data to a numeric data.

a) When only one side of an operator is character data and the other

side is numeric data, DBMaker converts this character data to a

numeric data of the same type with the numeric data on the other

side.

b) When the both side of an operator are character data, if meanwhile

the character data both are constant character data, DBMaker

converts the character data to a value of proper type, for example, in

expression '123'+'123.456'+'1.23e45', '123', '123.456' and '1.23e45'

will be converted to 123 (int type), 123.456 (decimal type), and

1.23e45 (double type) separately, otherwise, DBMaker converts the

character data to a DOUBLE value.

 During comparison operations (comparison operators: >, >=, =, <=, <, !=,

<>, IN, IS NULL), DBMaker converts the value on the right side of the

operator to a value of the same type with the value on the left side.

 During concatenation operations (concatenation operators: ||, CONCAT),

DBMaker converts the numeric data to a character data.

Please note that DBMaker also can implicitly convert the argument of a UDF

and a default value.

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-27

 Example 1

In the following statement, DBMaker implicitly converts a char(varchar) value

to a int value.
dmSQL> set itcmd on;

dmSQL> create table t1 (c1 int);

dmSQL> insert into t1 values ('123');

dmSQL> select * from t1 where c1 = '123';

dmSQL> update t1 set c1='456'+111;

dmSQL> delete from t1 where c1 = '678'-111;

 Example 2

In the following statement, DBMaker implicitly converts a decimal value to a

nchar(nvarchar) value.
dmSQL> create table t2 (c1 nchar(20), c2 nvarchar(20));

dmSQL> insert into t2 values (12345.6789, 222.222);

dmSQL> select * from t2 where c1 = 12345.6789 and c2 = 222.222;

dmSQL> update t2 set c1 = -6789.12345;

 Example 3

In the following statement, DBMaker implicitly converts the argument of a

UDF.
dmSQL> create table t1 (c1 int, c2 char(10), c3 nchar(10));

dmSQL> insert into t1 values(abs('-10'), -abs(-10), abs(10));

dmSQL> select * from t1;

 C1 C2 C3

=========== ========== =======================================

 10 -10 3100300000000000000000000000000000000000

1 rows selected

dmSQL> select * from t1 where abs(c1) = abs(c2);

 C1 C2 C3

=========== ========== ==

 10 -10 3100300000000000000000000000000000000000

1 rows selected

dmSQL> select * from t1 where abs(c1) = abs(c3);

 C1 C2 C3

=========== ========== ==

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-28

 10 -10 3100300000000000000000000000000000000000

1 rows selected

dmSQL> select abs(c1), abs(c2), abs(c3) from t1;

 ABS(C1) ABS(C2) ABS(C3)

======================= ====================== ===================

1.00000000000000e+001 1.00000000000000e+001 1.00000000000000e+001

1 rows selected

dmSQL> select concat(c1,c2), concat(c1,-123), concat(1.234e8, c1) from t1;

 CONCAT(C1,C2) CONCAT(C1,-123) CONCAT(1.234E8, C1)

====================== ==================== ======================

10-10 10-123 12340000010

1 rows selected

 Example 4

In the following statement, DBMaker implicitly converts the default value.
dmSQL> create table t1 (c1 int default '123456');

dmSQL> insert into t1 values(default);

1 rows inserted

dmSQL> select * from t1;

 C1

===========

123456

1 rows selected

dmSQL> create table t1 (c1 char(20) default 123456);

dmSQL> insert into t1 values(default);

1 rows inserted

dmSQL> select * from t1;

 C1

============

123456

1 rows selected

SQL Basics 2

@Copyright 1995-2024 CASEMaker Inc. 2-29

2.4 RESERVED WORDS

The following list of keywords should not be used as identifiers. DBMaker

returns the ERR_RESERVED_WORD error message and does not perform the

desired command when the following reserved words are used as keywords.

ABSOLUTE | ACTION | ADD | ADMIN | AFTER | AGGREGATE | ALIAS |

ALLOCATE | ALTER | AND | ANY | ARE | ARRAY | AS | ASC | ASSERTION |

ASENSITIVE | AT | AUTHORIZATION | BEFORE | BEGIN | BIGINT | BIGSERIAL |

BINARY | BIT | BLOB | BOOLEAN | BOTH | BREADTH | BREAK | BY | CALL |

CASCADE | CASCADED | CASE | CAST | CATALOG |CHAR | CHECK | CLASS |

CLOB | CLOSE | COLLATE | COLLATION | COLUMN | COMMIT | COMPLETION|

CONDITION | CONNECT | CONT | CONNECTION | CONSTRAINT |

CONSTRAINTS | CONSTRUCTOR | CONTINUE | CORRESPONDING | CREATE |

CROSS | CUBE | CURRENT | CURRENT_DATE | CURRENT_PATH |

CURRENT_ROLE | CURRENT_TIME | CURRENT_TIMESTAMP | CURRENT_USER

| CURSOR | CYCLE| DATE | DAY | DEALLOCATE | DEC | DECIMAL | DECLARE |

DEFAULT | DEFERRABLE | DEFERRED | DELETE | DEPTH | DEREF | DESC |

DESCRIBE | DESCRIPTOR | DESTROY| DESTRUCTOR | DETERMINISTIC |

DICTIONARY | DIAGNOSTICS | DISCONNECT | DISTINCT |DO |DOMAIN |

DOUBLE | DROP | DYNAMIC | EACH | ELSE | ELSEIF | END | END-EXEC |

EQUALS | ESCAPE | EVERY | EXCEPT| EXCEPTION | EXEC | EXECUTE | EXIT |

EXTERNAL | FALSE | FETCH | FIRST | FLOAT | FOR | FOREIGN | FOUND |

FROM| FREE | FULL | FUNCTION | GENERAL | GET | GLOBAL | GO | GOTO |

GRANT | GROUP | GROUPING | HANDLER | HAVING | HOLD | HOST |

IDENTITY | IF | IGNORE | IMMEDIATE | IN | INDICATOR | INITIALIZE |

INITIALLY | INNER | INOUT | INPUT | INSENSITIVE | INT | INTEGER |

INTERSECT | INTO | IS | ISOLATION | ITERATE | JOIN | KEY | LANGUAGE |

LANGUAGE SQL | LARGE | LAST | LATERAL | LEADING | LEAVE | LESS | LEVEL

| LIKE | LIMIT | LOCAL | LOCALTIME | LOCALTIMESTAMP | LOCATOR | LOOP |

MAP | MATCH | MODIFIES | MODIFY | MODULE | NAMES | NATIONAL |

NATURAL | NCHAR | NCLOB | NEXT | NO | NONE | NOT | NULL | NUMERIC |

NVARCHAR | OBJECT | OF | OFF | ON | ONLY | OPEN | OPERATION | OPTION |

OR | ORDINALITY | OUT | OUTER | OUTPUT | PAD | PARTIAL | PATH |

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 2-30

POSTFIX | PREFIX | PREORDER | PREPARE | PRESERVE | PRIMARY | PRIOR |

PRIVILEGES | PROCEDURE | READ | READS | REAL | RECURSIVE |

REFERENCES | REFERENCING | RELATIVE | REPEAT | RESTRICT | RESULT |

RETURN | RETURNS | REVOKE | ROLE | ROLLBACK | ROLLUP | ROUTINE |

ROW | ROWS|SAVEPOINT | SCHEMA | SCROLL | SCOPE | SEARCH | SECTION |

SELECT| SENSITIVE | SEQUENCE | SERIAL | SESSION | SESSION_USER | SET |

SETS | SHORT | SIZE | SMALLINT | SOME | SPECIFIC | SPECIFICTYPE | SQL |

SQLCODE | SQLEXCEPTION | SQLSTATE | SQLWARNING | START | STATIC |

STATISTICS | STOP | STRUCTURE | SYSTEM_USER | TABLE | TEMPORARY |

TERMINATE | THAN | THEN | TIME | TIMESTAMP | TIMEZONE_HOUR|

TIMEZONE_MINUTE | TO | TRACE | TRAILING | TRANSACTION |

TRANSLATION | TREAT | TRIGGER | TRUE | UNDER | UNION | UNKNOWN |

UNTIL | UNNEST | UPDATE | USAGE | USING | VALUE | VALUES | VARBINARY

| VARBPTR | VARCHAR | VARCPTR | VARIABLE | VARYING | VIEW | WHEN |

WHENEVER | WHERE | WHILE | WITH | WITHOUT | WORK | WRITE | ZONE

SQL Commands 3

3-1

@Copyright 1995-2024 CASEMaker Inc.

3 SQL Commands

DBMaker provides a comprehensive SQL query language. SQL (Structured

Query Language) is a query language standardized by ANSI. The current

standard is ANSI-99 SQL. This chapter contains the DBMaker version of all

supported ANSI-99 commands.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-2

3.1 ABORT BACKUP

The ABORT BACKUP command cancels an online backup. Cancel a backup if

errors occur during the backup operation or to perform the backup at another

time. Only users with SYSADM, SYSDBA or DBA security privileges can execute

the ABORT BACKUP command.

Backup mode indicates whether DBMaker will perform online incremental

backups, and what data to backup. There are three backup modes

NONBACKUP, BACKUP-DATA, and BACKUP-DATA-AND-BLOB. Set the backup

mode in three ways using the DB_BMode keyword in the dmconfig.ini

configuration file, SQL SET command at the dmSQL command prompt, or

Server Manager Utility.

NONBACKUP mode provides no protection for data inserted or updated after

the last full backup. A database can use the Journal to fully recover from a

program failure, but a disk failure may result in loss of data. Immediately

reuse Journal blocks not in use by an active transaction, after a checkpoint.

Once overwritten, the database can only restore to the point in time of the last

full backup.

BACKUP-DATA mode provides protection for data; excluding BLOB data

inserted or updated since the last full backup. In this mode, DBMaker can

perform an online incremental backup; only non-BLOB data will be stored in

the backup files. A database can use the Journal to fully recover from a

program failure and can partially recover from a disk failure. Journal blocks

not in use by an active transaction can only be reused after a checkpoint has

taken place and the Journal file has been backed up.

BACKUP-DATA-AND-BLOB mode provides protection for all data including

BLOB data inserted or updated since the last full backup. In this mode,

DBMaker can perform an online incremental backup; all data will be stored in

the backup files. A database can use the Journal to fully recover from a

program failure and fully recover from a disk failure. Use the last backup to

completely restore the database to the point in time of the media failure,

SQL Commands 3

3-3

@Copyright 1995-2024 CASEMaker Inc.

including all BLOB data. Journal blocks not in use by an active transaction can

only be reused after a checkpoint has taken place and the Journal file has been

backed up.

Issuing the ABORT BACKUP command does not change the backup mode of

the database. The database will remain in the same backup mode it was in

before the backup started.

ABORT BACKUP

Figure 3-1 ABORT BACKUP syntax

 Example

The following example illustrates aborting a backup operation.

BEGIN BACKUP

ABORT BACKUP

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-4

3.2 ABORT CONNECTION

The ABORT CONNECTION command aborts an active connection but not

disconnect the connection from the database. Only users with DBA, SYSDBA or

SYSADM security privileges can execute the ABORT CONNECTION command.

The ABORT CONNECTION function is similar to the KILL CONNECTION

function, the only difference is that the connection cannot be disconnected,

and will rollback to latest commit state. The main purpose is interrupting

query if it costs a great deal of time, but not killing the connection.Executing

this command will not free all lock resources held by this user.

Please note that the abort connection will be rolled back. If the connection is

being carried out, it will be interrupted and rolled back. If the connection is

not being carried out, it will work until the connection executes next SQL

statement and then rolled back.

connection_id........... Number of the connection to abort

ABORT CONNECTION connection_id

Figure 3-2 ABORT CONNECTION syntax

 Example

The following example aborts the connection of which ID is 12345.

ABORT CONNECTION 12345

SQL Commands 3

3-5

@Copyright 1995-2024 CASEMaker Inc.

3.3 ADD TO GROUP

The ADD TO GROUP command adds a user to an existing group. The user gains

all current and future object privileges granted to the group. Only users with

SYSADM, SYSDBA or DBA security privileges can execute the ADD TO GROUP

command.

Groups simplify management of object privileges in databases with a large

number of users. Use a group to collect several users and even other groups.

Object privileges granted to the group are automatically granted to members

in the group.

Members added to a group also maintain previously assigned privileges.

Members removed from a group lose object privileges to that group, but retain

any other privileges granted to them directly or to another group.

Specify a group name in place of a user name, as long as the group does not

already contain a reference to that group. User and group names have a

maximum length of 128 characters and may contain letters, numbers, the

underscore character, and the $ and # symbols. The first character may not be

a number.

user_name Name of an existing user that has at least the connect

privilege.

group_name Name of an existing group.

ADD

user_name

,

TO GROUP group_name

Figure 3-3 ADD TO Group syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-6

 Example 1

This example illustrates adding users Joe and John to the Manager group.

dmSQL> ADD Joe, John TO GROUP Manager;

 Example 2

The following example illustrates adding the groups FullTime and PartTime

to the Staff group.

dmSQL> ADD FullTime, PartTime TO GROUP Staff;

 Example 3

The following example illustrates adding user Bill and the group FlexTime to

the Staff group.

dmSQL> ADD Bill, FlexTime TO GROUP Staff;

SQL Commands 3

3-7

@Copyright 1995-2024 CASEMaker Inc.

3.4 ADD TRACE

The ADD TRACE command adds trace on a single table to log the detaile

OLD/NEW data. Actually, it is implemented by 3 internal triggers for

insert/update/delete operation, which operation on the traced table would be

logged, and the OLD/NEW data would be printed in

DBNAME_currentdate_###.TXT as extra information. Only users with table

owner, DBA, SYSDBA or SYSADM security privileges can execute the ADD

TRACE command.

NOTE DB_LgSvr need to be equal or greater then 4. Otherwise, the detail

information would be skipped and nothing would be written to log

files.

table_name Name of an exisiting single table

ADD TRACE ON table_name

Figure 3-4 ADD TRACE Syntax

 Example

Add trace on table tb1, and insert, update delete record.

dmSQL> ADD TRACE ON tb1;

dmSQL> INSERT INTO tb1 VALUES (1, 'abc');

1 rows inserted

dmSQL> UPDATE tb1 SET c2 = 'xyz' WHERE c1=1;

1 rows updated

dmSQL> DELETE FROM tb1;

1 rows deleted

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-8

3.5 ALTER DATAFILE

The ALTER DATAFILE command enlarges the size of a data or BLOB file by

adding a specified number of pages. Only users with SYSADM, SYSDBA or DBA

security privileges can execute the ALTER DATAFILE command.

Files are physical units of storage that contain data in a database. The

operating system manages files the DBMS managed data in the files. DBMaker

uses Data, BLOB, and Journal type files.

Data files and BLOB files store user and system data. Although they have

similar characteristics, DBMaker manages these two file types in different

ways to improve performance. Data files store table and index data, while

BLOB files store Binary Large Objects.

Journal files are special files that provide a real-time, historical record of all

changes made to a database and the status of each change. This allows the

database to undo changes made by a transaction that fails, or to redo changes

made successfully but not written to disk after a database crash. Journal files

are used only by the database management system, and are not used to store

user data.

To ensure data independence of a database, operating system files cannot be

referenced directly. Each database file has two names a physical file name and

a logical file name. The physical file name is the name used by the operating

system, while the logical file name is the name used by the database. These

two file names interact via an entry in the dmconfig.ini file.

When using the ALTER DATAFILE command, specify the name of the logical

file. Add 1 to 2,147,483,645 pages to a file, providing the total number of

pages in the file does not exceed 2,147,483,647, and there is sufficient disk

space. The total size of a file or all files in the same tablespace cannot exceed 8

TB.

file_name Name of the logical file to enlarge

number Number of pages to add

SQL Commands 3

3-9

@Copyright 1995-2024 CASEMaker Inc.

ALTER DATAFILE file_name ADD number PAGES

Figure 3-5 ALTER DATAFILE syntax

 Example 1

The following is an excerpt from a dmconfig.ini file displaying entries for four

database files with the logical and physical file names. The logical file names

display on the left and the physical file names display on the right.

customer_data = d:\dbmaker\tutorial\database\custdata.db 500

customer_blob = d:\dbmaker\tutorial\database\custblob.bb 1000

 Example 2

The following example adds 1000 pages to the customer_data file.

dmSQL> ALTER DATAFILE customer_data ADD 1000 PAGES;

 Example 3

From the same dmconfig.ini file including the increased number of pages for

the customer_data file.

customer_data = d:\dbmaker\tutorial\database\custdata.db 1500

customer_blob = d:\dbmaker\tutorial\database\custblob.bb 1000

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-10

3.6 ALTER INDEX RENAME

The ALTER INDEX RENAME command renames an existing index on an

existing table. The renaming only affects the index name in the system catalog;

it will not rebuild the index in the database. Only the table owner, a DBA, or a

user with the INDEX privilege may execute the ALTER INDEX RENAME

command on a table.

index_name Index's original name

new_index_name Index's new name

table_name Name of the table you are creating the index on

ALTER INDEX RENAME TOON table_name new_index_nameindex_name

Figure 3-6 ALTER IndexRename syntax

 Example

dmSQL> ALTER INDEX ix1 ON tb_tmp RENAME TO ix_new;

SQL Commands 3

3-11

@Copyright 1995-2024 CASEMaker Inc.

3.7 ALTER PASSWORD

The ALTER PASSWORD command changes a user password from its current

value to a new value. A user can change their current password or the

SYSADM may change the current password of any user.

When a user wants to change their current password, they should use the

ALTER PASSWORD old_password TO new_password command. When the

SYSADM changes the current password, they use the ALTER PASSWORD OF

user_name TO new_password command. Only SYSADM may use the second

command.

When changing a user password, the old password must match the password

that is stored in the database for that user. If a user has no password, assign a

password using the NULL keyword as the old password. To delete a user

password use the NULL keyword as the new password.

Passwords have a maximum length of sixteen characters and may contain

letters, numbers, the underscore character, and the $ and # symbols. The first

character may not be a number.

user_name Name of the user whose password is being changed

old_password Current password for user user_name

new_password New password for user user_name

tde Determine the password be changed is TDE password, only

SYSADM and SYSDBA privilege can set/alter tde password

Figure 3-7 ALTER PASSWORD syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-12

 Example 1

The following example illustrates assigning the password abcdef for a user

with no password.

dmSQL> ALTER PASSWORD NULL TO abcdef;

 Example 2

The following example illustrates changing a password from abcdef to

a23456.

dmSQL> ALTER PASSWORD abcdef TO a23456;

 Example 3

The following example illustrates removing a password named a23456.

dmSQL> ALTER PASSWORD a23456 TO NULL;

 Example 4

The following example illustrates how the SYSADM can change the password

of user John to abcedf, regardless of the current value of the password.

dmSQL> ALTER PASSWORD OF John TO abcdef;

 Example 5

The following example illustrates how SYSADM/SYSDBA sets the TDE

password to abc with no password.

dmSQL> ALTER TDE PASSWORD NULL to abc;

Note: SYSADM can set TDE password without old_password.

 Example 6

The following example illustrates how SYSADM resets the TDE password

dmSQL> ALTER PASSWORD of _DMTDE to null;

SQL Commands 3

3-13

@Copyright 1995-2024 CASEMaker Inc.

3.8 ALTER REPLICATION ADD REPLICATE

The ALTER REPLICATION ADD REPLICATE command adds an additional

remote table to an existing table replication. Add as many additional remote

tables to a replication as you wish. The table owner or a user with DBA,

SYSDBA or SYSADM security privilege can execute the ALTER REPLICATION

ADD REPLICATE command.

A table replication creates a full or partial copy of a table to a remote location.

This allows users in remote locations to work with a local copy of data. The

local copy remains synchronized with the database in another location. This

way each database can service data requests immediately and efficiently,

without having to go to another machine over a slower network connection.

This is not the same as backing up the database to a remote location. The

synchronization is done on a transaction-by-transaction basis by the DBMS

without any intervention from users.

There are two primary types of table replication synchronous and

asynchronous. Synchronous table replication modifies the remote table at the

same time it modifies the local table. Asynchronous table replication stores

changes to the local table and modifies the remote table based on a predefined

schedule. The ALTER REPLICATION ADD REPLICATE command modifies both

synchronous and asynchronous table replications.

Synchronous table replication in DBMaker uses a global transaction model, in

which the replication of data to the remote table is treated as an integral part

of the local transaction. This means that if the replication of data to the

remote database fails, the transaction on the local table will also fail.

 A transaction is traditionally defined as a logical unit of work, or one or more

operations on a database that must be completed together to leave the

database in a consistent state. Transactions are self-contained and must either

complete and change the data, or fail and leave the data unchanged.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-14

Asynchronous table replication in DBMaker uses transaction logs to replicate

data to the remote table. Modifications to the local table are stored in the

transaction log, and replicated to the remote table according to a predefined

schedule. Using the transaction log enables DBMaker to treat the local

transaction and the remote transaction independently, allowing updates to

the local tables even if the remote connection is not available. This allows

asynchronous table replications to tolerate network and remote database

failures; the replication will keep trying until any failures are corrected.

When modifying a table replication specify the replication name, local table

name, and names of the additional remote tables to replicate to. The local

table and the remote tables must already exist in their respective databases.

DBMaker automatically drops any replications created for a table when

dropping a table.

DBMaker will replicate an entire table unless a column list specifies the local

table columns. Only specify a column list for the local table when creating the

replication. To replicate an entire table without providing a column list, the

columns in the local and remote tables must have the same names and data

types.

If the column names in the local and remote tables are different, provide a

column list for the remote table. Columns in the local table, from left to right,

replicate to the corresponding columns in the column list for the remote table.

Alternately, explicitly specify which columns in the local table correspond to

columns in the remote table by providing a column list for both the local and

remote tables. The number and data type of the primary key columns in both

tables must match.

DBMaker does not identify replications using fully qualified names; a

combination of owner and object names, but associates them with tables

instead. For this reason all replication names on the same table must be

unique.

Synchronous table replication operates with the same security and object

privileges as the owner of the local table. If the remote table is specified using

SQL Commands 3

3-15

@Copyright 1995-2024 CASEMaker Inc.

links then the replication operates with the same security and object

privileges as the link.

Asynchronous table replication operates with the security privileges of the

remote account specified by the IDENTIFIED BY keywords in the CREATE

SCHEDULE command. Create a schedule for an asynchronous table replication

before creating the replication.

The CLEAR DATA/FLUSH DATA/CLEAR AND FLUSH DATA keywords are

optional. These keywords specify the operations that take place when creating

a replication. The CLEAR DATA keywords delete all data from the remote table

when a replication is created. The FLUSH DATA keywords copy all data that

matches a search condition into the remote table. The CLEAR AND FLUSH

DATA keywords clear all data from the remote table, and then copy all data

that matches a search condition into the remote table. If you do not specify an

action, no action takes place.

The NO CASCADE keywords are optional. The keyword specifies a cascade

replication. For example, commands flow in most organizations from the

highest level to the basic level. This is similar to replicating data from point A

to point B, and then to point C. This is a typical kind of Cascade replication. In

the No-Cascade model A replicates data to B and B replicates data to A. If your

data model works like this, you can turn on the NO CASCADE option. If no

specification exists, the default setting CASCADE will be used.

replication_name Name of the table replication to add a remote table to.

local_table_name Name of the local table the replication was created on.

remote_table_name Name of the table in the remote database.

column_name Name of a column in the remote table to replicate to.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-16

ALTER REPLICATION replication_name

ADD REPLICATE TO

,

remote_table_name

column_name

,

)(

CLEAR DATA

FLUSH DATA

CLEAR AND FLUSH DATA

ON local_table_name

Figure 3-8 ALTER REPLICATION ADD REPLICATE syntax

 Example 1

The following modifies a replication named EmpRep created on the local

Employeesinfo table. Data replicates to the Div1Emp table in the remote

database, which is identified by a database configuration section named

Div1Office in the local dmconfig.ini file. All column names and data types in

both tables are identical.

dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo ADD REPLICATE TO

 Div1Office:Div1Emp;

 Example 2

The CLEAR DATA keyword causes DBMaker to delete all data in the remote

table before the replication begins:

dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo ADD REPLICATE TO

SQL Commands 3

3-17

@Copyright 1995-2024 CASEMaker Inc.

 Div1Office:Div1Emp CLEAR DATA;

 Example 3

The FLUSH DATA keyword causes DBMaker to send data in the local table to

the remote table before replication begins.

dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo ADD REPLICATE TO

 Div1Office:Div1Emp FLUSH DATA;

 Example 4

The CLEAR AND FLUSH DATA keyword causes DBMaker to delete all data in

the remote table and then send data in the local table to the remote table.

dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo ADD REPLICATE TO

 Div1Office:Div1Emp CLEAR AND FLUSH DATA;

 Example 5

The following adds the replication to the Div2Emp table in the remote

Div2Office database, and the Div3Emp table in the remote Div3Office

database. Both remote databases have a database configuration section with

the same name as the database in the local dmconfig.ini file.

dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo ADD REPLICATE TO

 Div2Office:Div2Emp CLEAR DATA,

 Div3Office:Div3Emp FLUSH DATA;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-18

3.9 ALTER REPLICATION DROP
REPLICATE

The ALTER REPLICATION DROP REPLICATE command drops a remote table

from an existing table replication. Drop a remote table from a table replication

when you no longer want to replicate data to that table. Only the table owner

or a user with DBA, SYSDBA or SYSADM security privilege can execute the

ALTER REPLICATION DROP REPLICATE command.

A table replication creates a full or partial copy of a table in a remote location.

This allows users in remote locations to work with a local copy of data. The

local copy remains synchronized with the databases in other locations. This

way each database can service data requests immediately and efficiently,

without having to go to another machine over a slower network connection.

This is not the same as backing up the database to a remote location. The

synchronization is done on a transaction-by-transaction basis by the DBMS,

without any user intervention.

There are two primary types of table replication, synchronous and

asynchronous. Synchronous table replication modifies the remote table at the

same time it modifies the local table. Synchronous table replication stores

changes to the local table and modifies the remote table based on a predefined

schedule. The ALTER REPLICATION DROP REPLICATE command modifies

synchronous and asynchronous table replications.

Synchronous table replication in DBMaker uses a global transaction model, in

which the replication of data to the remote table is treated as an integral part

of the local transaction. A transaction is traditionally defined as a logical unit

of work, or one or more operations on a database that must be completed

together to leave the database in a consistent state. Transactions are self-

contained and must either complete and change the data, or fail and leave the

data unchanged. This means that if the replication of data to the remote

database fails, the transaction on the local table will also fail.

SQL Commands 3

3-19

@Copyright 1995-2024 CASEMaker Inc.

Asynchronous table replication in DBMaker uses transaction logs to replicate

data to the remote table. Modifications to the local table are stored in the

transaction log, and are replicated to the remote table according to a

predefined schedule. Using the transaction log enables DBMaker to treat the

local transaction and the remote transaction independently, updating local

tables normally even if the remote connection is not available. This allows

asynchronous table replications to tolerate network and remote database

failures. The replication will keep trying until all failures are corrected.

To drop a remote table from a table replication, specify the replication name,

the local table name, and the name of the remote table. Drop more than one

remote table from a replication by listing all tables to drop. Any replications

created for a table are dropped automatically when dropping the table.

replication_name Name of the table replication to drop a remote table from.

local_table_name Name of the local table the existing replication was created

on.

remote_table_name Name of the table in the remote database to stop

replicating to.

ALTER REPLICATION replication_name ON local_table_name

remote_table_name

,

DROP REPLICATE TO

Figure 3-9 ALTER/DROP REPLICATION syntax

 Example 1

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-20

The following drops a remote table named Div1Emp from the replication

named EmpRep created on the local Employeesinfo table.

dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo DROP REPLICATE TO Div1Emp;

 Example 2

The following drops the remote tables named Div2Emp, Div3Emp, and

Div4Emp from the replication named EmpRep created on the local

Employeesinfo table.

dmSQL> ALTER REPLICATION EmpRep ON Employeesinfo DROP REPLICATE TO Div2Emp,

Div3Emp, Div4Emp;

SQL Commands 3

3-21

@Copyright 1995-2024 CASEMaker Inc.

3.10 ALTER SCHEDULE

The ALTER SCHEDULE command changes the replication schedule for an

asynchronous table replication. Synchronous table replications do not use

schedules, so the ALTER SCHEDULE command has no effect on a synchronous

table replication. Only users with DBA, SYSDBA or SYSADM security privileges

can execute the ALTER SCHEDULE command.

A table replication creates a full or partial copy of a table in a remote location.

This allows users in remote locations to work with a local copy of data. The

local copy remains synchronized with the databases in other locations. This

way each database can service data requests immediately and efficiently,

without having to go to another machine over a slower network connection.

This is not the same as backing up the database to a remote location. The

synchronization is done on a transaction-by-transaction basis by the DBMS

without any intervention from users.

There are two primary types of table replication, synchronous and

asynchronous. Synchronous table replication modifies the remote table at the

same time it modifies the local table. Asynchronous table replication stores

changes to the local table and modifies the remote table based on a predefined

schedule. The ALTER SCHEDULE command affects only asynchronous table

replications.

BEGIN AT specifies the date and time of the first replication for an

asynchronous table replication. The date must be in yyyy/mm/dd format,

where yyyy is the year in the range from 1970 to 2038, mm is the month in the

range from 01 to 12, and dd is the date in the range from 01 to 31. The time

must be in hh:mm:ss format, where hh is the hour in the range from 00 to 23,

mm is the number of minutes in the range from 00 to 59, and ss is the number

of seconds in the range from 00 to 59. The value for the year must be in the

range from 1970 to 2038. Include both the date and time when using the

BEGIN AT keyword. If you change the date or time of the first replication to a

date in the future after a replication is already running, table data that has not

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-22

yet been replicated to the remote database will wait until the new time for

replication.

EVERY, defines the interval between successive replications for an

asynchronous table replication. The interval may be provided as

hours/minutes/seconds, days, or a combination of both. To specify the

number of hours/minutes/seconds, use EVERY hh:mm:ss, where hh is the

number of hours in the range 00 to 23, mm is the number of minutes from 00

to 59, and ss is the number of seconds from 00 to 59. EVERY d DAYS, specifies

the number of days, where d is the number of days in the range from 1 to 365.

To specify a combination of both, use EVERY d DAYS AND hh:mm:ss.

RETRY, indicates how many times DBMaker tries replicating table data if there

is an error while trying to process a single SQL statement, such as a lock time-

out error, or rollback to savepoint due to a full Journal. To specify the number

of times to try, use RETRY n TIMES, where n is the number of times to try in

the range from 0 to 2,147,483,647. The default value is 0.

If DBMaker encounters a network error or remote database error that

prevents it from connecting to the remote server, DBMaker waits until the

next scheduled replication to send any table data that was not successfully

replicated. It will retry once if it encounters a transaction, which requires a

rollback, but waits until the next scheduled replication if this fails.

The AFTER keyword is optional. This keyword is used together with the

RETRY keyword to specify the interval between successive retries in the event

of an error. Use AFTER s SECONDS to specify the interval, where s is the

number of seconds in the range from 0 to 2,147,483,647. The default value is

5.

The ON ERROR keyword specifies the action DBMaker takes when data in the

remote database has been updated in such a way that the replication cannot

take place. This includes situations where DBMaker tries to delete a record

from the remote table, which has already been deleted, or tries to insert a

record into a remote table that already exists. DBMaker provides two options

when encountering this type of error, STOP ON ERROR and IGNORE ON

SQL Commands 3

3-23

@Copyright 1995-2024 CASEMaker Inc.

ERROR. STOP ON ERROR indicates DBMaker stops replicating data when an

error of this type occurs. IGNORE ON ERROR indicates that DBMaker ignores

the data that caused the error and continues replicating the remaining data.

The default behavior is IGNORE.

The IDENTIFIED BY keywords specify the user name and password to use

when connecting to the remote database. The user name provided must be an

existing user in the remote database with sufficient privileges on the remote

tables to perform INSERT, DELETE, and UPDATE operations. Security and

object privileges granted to that user determine the operations that can be

performed

Specify the remote database name to alter the schedule. The remote database

name cannot be a database link. All asynchronous table replications on this

database will use the new schedule.

yyyy/mm/dd Date to begin the replication

hh:mm:ss Time to begin the replication and time interval to replicate

d Day interval to replicate to the remote table

n Number of times to retry in the event of a failure

s Number of seconds to wait before retrying replication in

the event of a failure

user_name User name of the account in the remote database

password Password of the account in the remote database

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-24

ALTER SCHEDULE FOR REPLICATION TO remote_database_name

user_nameIDENTIFIED BY

password

IGNORE

STOP

ON ERROR

BEGIN AT yyyy/mm/dd hh:mm:ss EVERY hh:mm:ss

EVERY d DAYS AND hh:mm:ss

EVERY d DAYS

RETRY n TIMES

AFTER s SECONDS

Figure 3-10 ALTER SCHEDULE syntax

 Example 1

The following alters the replication schedule for the asynchronous replication

named EmpRep. The number of times to retry after an error lock time-out,

or a rollback to save point due to a full Journal, is set to 3, with an interval of

5 seconds between successive retries.

dmSQL> ALTER SCHEDULE FOR REPLICATION TO EmpRep

 RETRY 3 TIMES AFTER 5 SECONDS;

 Example 2

The following alters the replication schedule for the asynchronous replication

named EmpRep. The action DBMaker should take when data in the remote

database has been updated in such a way that the replication couldn't take

place is set to STOP:

dmSQL> ALTER SCHEDULE FOR REPLICATION TO EmpRep

SQL Commands 3

3-25

@Copyright 1995-2024 CASEMaker Inc.

 STOP ON ERROR;

 Example 3

The following alters the replication schedule for the asynchronous replication

named EmpRep. The username and password used for connecting to the

remote database is set to a new value.

dmSQL> ALTER SCHEDULE FOR REPLICATION TO EmpRep

 IDENTIFIED BY RepUser rdejpe88;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-26

3.11 ALTER TABLE ADD COLUMN

The ALTER TABLE ADD COLUMN command modifies the definition of an

existing table and adds new columns. Only the table owner, a DBA, or a user

with the ALTER privilege for that table may execute the command.

Specify a column definition by providing a column name and a data type or

domain. Optionally, add multiple columns in a single command, however, the

total number of columns in the table, after executing the command, must not

exceed the maximum number of columns permitted in a table. The maximum

number of columns allowed in a table is 2000.

table_name Name of the table to add columns

column_definition .. New definition for the column to alter

ALTER TABLE table_name ADD

column_definition

,

()

Figure 3-11 ALTER TABLE ADD COLUMN syntax

Column Definition

Specify a data type for each column. DBMaker supports the following data

types: BIGINT, BIGSERIAL, BINARY, CHAR, DATE, DECIMAL, DOUBLE, FILE,

FLOAT, INTEGER, BLOB, CLOB, OID, SERIAL, SMALLINT, TIME, TIMESTAMP,

VARCHAR and JSONCOLS.

Optionally, specify a user-defined domain for the column instead of a data

type. Domains are a combination of data type, default value, and constraints

that are applied to a column when it is defined using the domain data type. See

the DEFAULT and CHECK keywords below for a description of default values

SQL Commands 3

3-27

@Copyright 1995-2024 CASEMaker Inc.

and constraints. Default values and constraints provided in the column

definition will override those of the domain. Column definitions can also

provide constraints in addition to those of the domain.

The NULL/NOT NULL keywords are optional. These keywords specify

whether a column can contain a NULL value; can be left empty, when inserting

a new row. The NULL keyword specifies that a column may contain an

undefined value when a new row is inserted. The NOT NULL keyword

specifies that a value must be provided when a new row is inserted. The NOT

NULL keyword cannot be used unless a table is empty, since the NOT NULL

rule will be violated causing existing rows not to contain a value for the

column. As a result, the column will not be created.

The USER/SYSTEM keywords are optional. These keywords specify whether

users can modify value of the column with a default value by using the

INSERT/UPDATE statement. USER is used by default. The USER keyword

specifies that users can modify its value, and the SYSTEM keyword specifies

that users cannot modify its value.

The DEFAULT keyword is optional. This keyword is used to specify a default

value that will be inserted into a column if no value is provided when inserting

a new row. Constants, results from built-in functions, or the NULL keyword

may be used as the default value. Use built-in functions that have no argument,

such as PI(), NOW(), or USER(), when defining a column. When using the

NULL keyword as the DEFAULT value, the column cannot be defined with the

NOT NULL keyword. The DEFAULT keyword is not normally required when

using user-defined domains instead of the standard DBMaker data types, since

domains normally include their own DEFAULT clause.

The ON UPDATE keyword is optional. This keyword specifies that value of the

column with a default value can be automatically updated when other

columns' value is changed.

The CHECK keyword is optional. This keyword is used to specify a range of

acceptable values; constraints, that may be entered in a column. The

expression that specifies the range of acceptable values may be any expression

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-28

that evaluates a true or false statement. The VALUE keyword may be used in

the expression in conjunction with the CHECK keyword to represent the value

of the column. If an SQL statement does not satisfy the CHECK condition, it is

not processed. The CHECK keyword is not normally required when using user-

defined domains in place of the standard DBMaker data types, since domains

normally include their own CHECK clause.

The GIVE keyword is optional. This keyword is used to specify the value

inserted into the new column for any rows that already exist in the table. If

you do not provide a value using the GIVE keyword, DBMaker inserts a NULL

value into the new column for any existing rows; columns using the SERIAL

data type cannot contain NULL values, use the GIVE keyword when adding a

SERIAL column. Constants, results from built-in functions, or the NULL

keyword may be used as the GIVE value. Use the NULL keyword as the GIVE

value; the column cannot be defined with the NOT NULL keyword. Also, use

the SEQUENTIAL/SEQ keywords with the GIVE keyword when you insert a

SERIAL column. These keywords specify that DBMaker will insert serial values

into existing rows, starting with the value specified by the definition of the

SERIAL data type in the column definition. The serial values continue to

increment as new rows are inserted.

The BEFORE/AFTER keywords are optional. These keywords specify the

location to insert the new column in relation to an existing column. The

BEFORE keyword specifies DBMaker should insert the new column before, to

the immediate left of, the specified column. The AFTER keyword specifies

DBMaker should insert the new column after, to the immediate right of, the

specified column. If you do not specify a relative location using the

BEFORE/AFTER keywords, DBMaker simply appends the column to the right

side of the table.

The ENCRYPT keyword is optional only when column encryption is opened.

This keyword specifies the column will be an encrypt column. When the

column encryption is closed, an encrypt column can prevent unauthorized

access and ensure data completeness. Users can create and access encrypt

column only when SYSADM/SYSDBA opens column encryption.

SQL Commands 3

3-29

@Copyright 1995-2024 CASEMaker Inc.

Adding a new column to a table has no effect on any views or synonyms based

on that table. Column names have a maximum length of 128 characters and

may contain letters, numbers, the underscore character, and the $ and #

symbols. The first character must not be a number.

column_name Name of the new column

data_type Data type to use for the new column

domain_name Name of the domain to use for the new column

literal Literal value to be used if no value is inserted

constant Constant value to be used if no value is inserted

function_name Built-in function to be used if no value is inserted

constraint_name Name of constraint to be put on column

boolean_expression Expression that evaluates to true or false

column_name_a....... The new column is positioned after the existing column

with name column_name_a

column_name_b The new column is positioned before the existing column

with name column_name_b

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-30

data_type

domain_name

NULL

NOT NULL

column_name

DEFAULT

constant

NULL

function_name

CHECK boolean_expression

USER

SYSTEM

ON UPDATE

constant

NULL

function _name

SEQUENTIAL

SEQ

GIVE

BEFORE column_ name_b

AFTER column_name_a

Figure 3-12 COLUMN DEFINITION syntax

 Example 1

The following example adds the HireDate column with the DATE data type to

the Employeesinfo table.

dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE);

SQL Commands 3

3-31

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

The following adds the same HireDate column from the previous example,

but adds the NOT NULL keyword to require a value is entered for this column

when inserting a new row.

dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE NOT NULL);

 Example 3

The following adds the same HireDate column from the previous example,

but adds the DEFAULT keyword to insert a default value if no value is entered.

This is the only case when you may omit a value for a column defined with the

NOT NULL keyword. In this example, the built-in function NOW() is used to

insert the current date if no value is specified for this column.

dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE NOT NULL DEFAULT NOW());

 Example 4

The following adds the same HireDate column from the previous example,

but adds the ON UPDATE keyword to auto update a default value if other

columns's value is changed.

dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE NOT NULL DEFAULT NOW() ON

UPDATE);

 Example 5

The following adds the same HireDate column from the previous example,

but adds the CHECK keyword to specify a range of acceptable values that may

be entered in the HireDate column. The VALUE keyword represents the value

to enter in the column.

dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE NOT NULL DEFAULT NOW() CHECK

VALUE > '01/01/1995');

 Example 6

The following adds the same HireDate column from the previous example,

but uses the user-defined D_ValidDates domain instead of the DATE data

type. The DEFAULT and CHECK keywords are usually not required when

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-32

using domains, since domains normally include their own DEFAULT and

CHECK clauses.

dmSQL> ALTER TABLE Employeesinfo ADD (HireDate D_ValidDates NOT NULL);

 Example 7

The following adds the same HireDate column from example 1, but adds the

ENCRYPT keyword to encrypt column, this column can only be created and

accessed when column encryption is opened.

dmSQL> ALTER TABLE Employeesinfo ADD (HireDate DATE ENCRYPT);

SQL Commands 3

3-33

@Copyright 1995-2024 CASEMaker Inc.

3.12 ALTER TABLE ADD DYNAMIC COLUMN

The ALTER TABLE ADD DYNAMIC COLUMN command adds description

information for a dynamic column. Only the table owner, a DBA, a SYSDBA, a

SYSADM, or a user with the ALTER privilege for that table may execute the

ALTER TABLE ADD DYNAMIC COLUMN command.

After a JSONCOLS column has been created, dynamic columns can be directly

used without defining. The default data type of dynamic columns is

varchar(256), and users can change the default data type to another data type

with ALTER TABLE ADD DYNAMIC COLUMN command. In addition, users also

can declare data type of a dynamic column with this command when this

dynamic column is inserted into a table.

However, if a user first inserts data without executing ALTER TABLE ADD

DYNAMIC COLUMN, but the inserted data cannot be converted to the data type

that is later declared with this command by the user, the data will be display

as NULL when a query statement is executed and no error occurs.

For details of a dynamic column, please refer to chapter Using Dynamic

Column in Database Administrator's Guide. For details of a JSONCOLS column,

please refer to chapter Using JSONCOLS Type in Database Administrator's

Guide.

table_name Name of the table that has a JSONCOLS column

column_name Name of the dynamic column for which description

information is added

data_type Data type to use for the dynamic column/added

description information

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-34

ALTER TABLE table_name ADD DYNAMIC

column_name data_type

COLUMN

Figure 3-13 ALTER TABLE ADD DYNAMIC COLUMN syntax

 Example

The following example illustrates adding description information for a

dynamic column.

dmSQL> CREATE TABLE books(name CHAR(50),info JSONCOLS);

dmSQL> INSERT INTO books(name,id,price) VALUES('C language','abc','19');

1 rows inserted

dmSQL> INSERT INTO books(name,id,price) VALUES('College english','2','32');

1 rows inserted

dmSQL> ALTER TABLE books ADD DYNAMIC COLUMN id INT;

dmSQL> ALTER TABLE books ADD DYNAMIC COLUMN price FLOAT;

dmSQL> SELECT name,id,price FROM books;

 NAME ID PRICE

=================================== ========== ====================

C language NULL 1.900000000000e+001

College english 2 3.200000000000e+001

2 rows selected

SQL Commands 3

3-35

@Copyright 1995-2024 CASEMaker Inc.

3.13 ALTER TABLE DROP COLUMN

The ALTER TABLE DROP COLUMN command modifies the definition of an

existing table and drops a column that was previously defined. To execute the

ALTER TABLE DROP COLUMN command on a table, only the table owner, a

DBA, a SYSDBA, a SYSADM, or user with ALTER privilege for that table.

Use this command to drop a column from a table when it is no longer

necessary. You cannot drop a column if a primary or foreign key has been

defined on that column, unless you drop the primary or foreign key first. If you

drop a column with a defined view, the view will become invalid and DBMaker

returns an error if you try to use it. This command should be used with

caution since the data in a column cannot be recovered once dropped.

The CASCADE/RESTRICT keywords are optional. These keywords denote

whether to remove or check dependent objects refered to the dropped

column. When the CASCADE keyword is specified, it will remove all the

dependent objects with the column. When the RESTRICT keyword is specified,

it will not drop column that is referenced by any view definition, foreign key,

or constraint. The RESTRICT keyword ensures that only columns with no

dependent objects can be deleted.

table_name Name of the table dropping the column

column_name Name of the column to be dropped

column_name

,

ALTER TABLE table_name DROP CASCADE

RESTRICT

()

Figure 3-14 ALTER TABLE DROP COLUMN syntax

 Example 1

This command drops the BirthDate column from the Employeesinfo table.

dmSQL> ALTER TABLE Employeesinfo DROP (BirthDate);

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-36

 Example 2

The following command drops the BirthDate and HireDate columns from the

Employeesinfo table.

dmSQL> ALTER TABLE Employeesinfo DROP (BirthDate, HireDate);

 Example 3

The following command drops the column BirthDate from the

Employeesinfo table and the dependent view EmpView.

dmSQL> CREATE VIEW EmpView AS SELECT BirthDate FROM Employeesinfo;

dmSQL> ALTER TABLE Employeesinfo DROP (BirthDate) CASCADE;

SQL Commands 3

3-37

@Copyright 1995-2024 CASEMaker Inc.

3.14 ALTER TABLE DROP DYNAMIC
COLUMN

The ALTER TABLE DROP DYNAMIC COLUMN command drops the description

information of a dynamic column, but doesn't drop data of this dynamic

column. To execute the ALTER TABLE DROP DYNAMIC COLUMN command on

a table, only the table owner, a DBA, a SYSDBA, a SYSADM, or user with ALTER

privilege for that table.

Please note that, if a user drops a JSONCOLS column or the table which

contains this JSONCOLS column, the description information of the dynamic

columns contained in this JSONCOLS column will be automatically dropped by

system.

For details of a dynamic column, please refer to chapter Using Dynamic

Column in Database Administrator's Guide. For details of a JSONCOLS column,

please refer to chapter Using JSONCOLS Type in Database Administrator's

Guide.

table_name Name of the table containing the dynamic column to drop

descripton information

column_name Name of the dynamic column to drop description

information

ALTER TABLE table_name DROP DYNAMIC

column_name

COLUMN

Figure 3-15 ALTER TABLE DROP DYNAMIC COLUMN syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-38

 Example

The following example illustrates dropping description information of the

dynamic column id. For details of table books, please refer to ALTER TABLE

ADD DYNAMIC COLUMN.

dmSQL> ALTER TABLE books DROP DYNAMIC COLUMN id;

dmSQL> SELECT name,id,price FROM books;

 NAME ID PRICE

============= ========================= ==============

C language abc *9e+001

College engl* 2 *3e+001

2 rows selected

SQL Commands 3

3-39

@Copyright 1995-2024 CASEMaker Inc.

3.15 ALTER TABLE DROP FOREIGN KEY

The ALTER TABLE DROP FOREIGN KEY command modifies the definition of

an existing table and drops a foreign key that was previously defined. Only the

table owner, a DBA, or a user with the ALTER privilege for the table may

execute the command.

A key is a column or combination of columns that help identify specific rows in

a table. The columns that make up a key are known as key columns. A unique

key is a key in which no two records have the same value for the key field.

A primary key is a key that uniquely identifies each row in a table. Without a

primary key, it is impossible to distinguish between specific rows in a table

because rows may contain duplicate values. The DBMS does not allow defining

of a primary key on columns that contain duplicate values or entering a

duplicate value in a primary key that already exists.

A foreign key is a key that corresponds to the primary key or a unique index of

another table. This establishes a parent-child relationship between two tables

that are represented by common data values. The parent table contains the

primary key or unique index, and the child table contains the foreign key.

Referential integrity ensures that every value in a child key; the foreign key of

the child table, has a corresponding value in the parent key; the primary key

or unique index of the parent table. Referential integrity is enforced between

tables using the parent-child relationship established with foreign keys.

DBMaker has automatic support for referential integrity constraints between

tables through the definition of foreign keys. When adding a record to a child

table, the value in the child key must also exist in the parent key. Similarly,

when deleting a record from the parent table, all records in the child key with

the same value must be deleted first.

Referential actions provide a means to update or delete a parent key when

referential integrity would not normally allow it, for example, when a child

key references a parent key. The referential actions define the operation

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-40

DBMaker should perform on all matching child keys when you update or

delete a parent key. DBMaker supports four referential actions for both

updates and deletes: CASCADE, SET NULL, SET DEFAULT, and NO ACTION.

CASCADE performs the update or delete on matching child keys as well as the

parent key. SET NULL sets the value of matching child keys to NULL. SET

DEFAULT sets the value of matching child keys to the default value of the

column. NO ACTION enforces normal referential integrity rules. When no

referential action is defined when a foreign key is created then, DBMaker uses

NO ACTION by default.

Use the ALTER TABLE DROP FOREIGN KEY command to drop a foreign key on

a table when it is no longer necessary. After dropping a foreign key, DBMaker

no longer enforces referential integrity or performs referential actions on the

child table. Without the foreign key it is possible to enter values in the child

table that do not exist in the parent table and to update or delete values in the

parent table. This command should be used with caution.

table_name Name of the table dropping the foreign key

key_name Name of the foreign key to be dropped

ALTER TABLE table_name DROP FOREIGN KEY key_name

Figure 3-16 ALTER TABLE DROP FOREIGN KEY syntax

 Example

The following drops foreign key fkey from the Salary table.

dmSQL> ALTER TABLE Salary DROP FOREIGN KEY fkey;

SQL Commands 3

3-41

@Copyright 1995-2024 CASEMaker Inc.

3.16 ALTER TABLE DROP PRIMARY KEY

The ALTER TABLE DROP PRIMARY KEY command modifies the definition of

an existing table and drops the primary key that was previously defined. Only

the table owner, a DBA, or a user with both the ALTER and INDEX privileges

for that table may execute the command.

A key is a column or combination of columns that help identify specific rows in

a table. The columns that make up keys are key columns. A unique key is a key

in which no two records have the same value for the key field.

A primary key is a key that uniquely identifies each row in a table. Without a

primary key, it is impossible to distinguish between specific rows in a table

because rows may contain duplicate values. The DBMS does not allow defining

of a primary key on columns that contain duplicate values, and does not allow

a duplicate value in a primary key.

A foreign key is a key that corresponds to the primary key or a unique index of

another table. This establishes a parent-child relationship between two tables

that are represented by common data values. The parent table contains the

primary key or unique index, and the child table contains the foreign key

columns corresponding to columns in the parent table.

Referential integrity ensures that every value in a child key; the foreign key of

the child table, has a corresponding value in the parent key; the primary key

or unique index of the parent table. Referential integrity is enforced between

tables using the parent-child relationship established with foreign keys.

DBMaker has automatic support for referential integrity constraints between

tables through the definition of foreign keys. When adding a record to a child

table, the value in the child key must also exist in the parent key. Similarly,

when deleting a record from the parent table, all records in the child key with

the same value must be deleted first.

Use the ALTER TABLE DROP PRIMARY KEY command to drop the primary key

on a table when it is no longer necessary. DBMaker enforces referential

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-42

integrity when a foreign key is defined. Drop all foreign keys that refer to a

primary key before you drop the primary key. After dropping a primary key,

DBMaker no longer requires a unique key value for each record; it will be

possible to enter values that may make two records indistinguishable from

each other possibly causing database inconsistency. Use this command with

caution.

table_name The name of the table from which the primary key is

dropped

ALTER TABLE table_name DROP PRIMARY KEY

Figure 3-17 ALTER TABLE DROP PRIMARY KEY syntax

 Example

The following command drops the Primary Key from the Employeesinfo

table.

dmSQL> ALTER TABLE Employeesinfo DROP PRIMARY KEY;

SQL Commands 3

3-43

@Copyright 1995-2024 CASEMaker Inc.

3.17 ALTER TABLE FOREIGN KEY

The ALTER TABLE FOREIGN KEY command modifies the definition of an

existing table and adds a new foreign key. To execute the ALTER TABLE

FOREIGN KEY command on a table, you must have the DBA security privilege,

ALTER privilege on the table, and be the owner of the table, or have the

REFERENCE privilege on the columns or table containing the primary key.

A key is a column or combination of columns that help identify specific rows in

a table. The columns that make up a key are known as key columns. A unique

key is a key in which no two records have the same value for the key field.

A primary key is a key that uniquely identifies each row in a table. Without a

primary key, it is impossible to distinguish between specific rows in a table

because rows may contain duplicate values. The DBMS does not allow you to

define a primary key on columns that contain duplicate values, and does not

allow entering a duplicate value in a primary key that already exists.

A foreign key is a key that corresponds to the primary key or a unique index of

another table. This establishes a parent-child relationship between two tables

that is represented by common data values stored in the tables. The parent

table contains the primary key or unique index, and the child table contains

the foreign key columns corresponding to columns in the parent table.

Referential actions provide a means to update or delete a parent key when

referential integrity would not normally allow it such as when a parent key is

referenced by a child key. The referential actions define the operation

DBMaker should perform on all matching rows in the child key when updating

or deleting a parent key. DBMaker supports four referential actions for both

updates and deletes: CASCADE, SET NULL, SET DEFAULT, and NO ACTION.

The ON UPDATE/ON DELETE keywords are optional. These keywords specify

the referential action DBMaker should perform when updating or deleting a

value in a parent key. The referential actions for these keywords are

CASCADE, SET NULL, SET DEFAULT, and NO ACTION.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-44

CASCADE performs an update or delete on all matching values in the child key

when updating or deleting the parent key. This will set the value of the child

key to the same value as the parent key when a row in the parent key updates,

or will delete all matching values in the child key with the same value as the

parent key when deleting a row in the parent key.

SET NULL sets all matching values in the child key to NULL when you update

or delete a row in the parent key. You cannot use the SET NULL action when

the child key was defined with the NOT NULL constraint.

SET DEFAULT sets all matching values in the child key to the default value of

the column when you update or delete a row in the parent key. You cannot use

the SET DEFAULT action when the default value is NULL and the child key was

defined with the NOT NULL constraint.

NO ACTION enforces normal referential integrity rules. DBMaker will use NO

ACTION by default.

No limit exists for the number of foreign keys on a table. The parent key may

be the primary key or any other unique index of a table, but create the parent

key before adding the child key. The number of columns and column type or

length must be the same in the parent key and the child key. The column order

of corresponding keys may be different in each table, provided they are listed

in corresponding order in the ALTER TABLE FOREIGN KEY command. The

primary key of the parent table is used by default.

Columns in a foreign key may contain null values. If a foreign key contains a

null value, it automatically satisfies referential integrity. You may not create a

foreign key on a view, but may create one on a synonym. Foreign key names

have a maximum length of 128 characters, and may contain numbers, letters,

underscore characters, and $ and # symbols. The first character may not be a

number.

table_name Name of the table adding the foreign key to

key_name Name of the new foreign key

column_name 1. Name of the column the foreign key is created on

SQL Commands 3

3-45

@Copyright 1995-2024 CASEMaker Inc.

 2. Name of the column referenced by the foreign key

parent_table_name Name of the table the foreign key references

REFERENCES parent_table_name

olumn_name

,

)(

key_name

column_name

,

()

ALTER TABLE table_name FOREIGN KEY

ON UPDATE

CASCADE

SET DEFAULT

SET NULL

NO ACTION

ON DELETE

CASCADE

SET DEFAULT

SET NULL

NO ACTION

Figure 3-18 ALTER TABLE FOREIGN KEY syntax

 Example 1

The following creates a foreign key named fkey_CNo on column CustNo of

table Accounts that references the Customers table. In the example, no

column name is specified for the parent key, DBMaker will use the primary

key of the Customers table as the parent key. The primary key of the

Customers table must be defined before executing the command.

dmSQL> ALTER TABLE Accounts FOREIGN KEY fkey_CNo (CustNo)

 REFERENCES Customers;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-46

 Example 2

The following creates the same foreign key fkey_CNo from the previous

example, but specifies the CustNo column as the parent key. The CustNo

column can be the primary key of the Accounts table or any other unique

index. The primary key or other unique index of the Customers table must be

defined before executing this command.

dmSQL> ALTER TABLE Accounts FOREIGN KEY fkey_CNo (CustNo)

 REFERENCES Customers (CustNo);

 Example 3

The following creates a foreign key named fkey_No on columns PartNo and

StockNo of table Invoice that references the Stock table. Column order in the

Invoice table (PartNo, SuppNo) is different from the corresponding columns

in the Stock table (SuppNo, PartNo). This is acceptable provided

corresponding columns from each table are listed in the same order in the

command.

dmSQL> ALTER TABLE Invoice FOREIGN KEY fkey_No (SuppNo, PartNo)

 REFERENCES Stock (SuppNo, PartNo);

 Example 4

The following creates the same foreign key fkey_No from the previous

example, but defines the referential actions DBMaker should perform. The ON

UPDATE SET DEFAULT keywords specify DBMaker to set all matching values

in the child key to the default column value when updating a row in the parent

key. The ON DELETE SET NULL keywords specify DBMaker to set all

matching values in the child key to NULL when deleting a row in the parent

key.

dmSQL> ALTER TABLE Invoice FOREIGN KEY fkey_No (SuppNo, PartNo)

 REFERENCES Stock (SuppNo, PartNo)

 ON UPDATE SET DEFAULT

 ON DELETE SET NULL;

SQL Commands 3

3-47

@Copyright 1995-2024 CASEMaker Inc.

3.18 ALTER TABLE MODIFY COLUMN

The ALTER TABLE MODIFY COLUMN command modifies the definition of

existing columns in a table. Only the table owner, a DBA, a SYSDBA, a SYSADM,

or a user with the ALTER privilege for that table may execute the ALTER

TABLE MODIFY COLUMN command.

table_name Name of the table you are modifying the column on

column_name Name of the column you are modifying

column_definition ... New definition for the column

ALTER TABLE table_name

MODIFY ()

,

modify-column-definition

Figure 3-19 ALTER TABLE MODIFY COLUMN syntax

Modify Column Definitions

There are two kinds of definitions in column definitions: attribute-modify-

column-def and full-attributes-modify-column-def.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-48

ATTRIBUTE-MODIFY-COLUMN-DEF

column-identifier

NAME TO column-identifier

TYPE TO data-type give-opt

NULL TO NOT NULL give-opt

NOT NULL TO NULL

CONSTRAINT TO check-opt

BEFORE column-identifier

AFTER column-identifier

DROP DEFAULT

DROP CONSTRAINT

SET DEFAULT SYSTEM

USER

default-

val

ON UPDATE

DEFAULT TO SYSTEM
default-

val

USER
ON UPDATE

 Figure 3-20 ATTRIBUTE-MODIFY-COLUMN-DEF syntax

FULL-ATTRIBUTES-MODIFY-COLUMN-DEF

()

column_name

,

TO column_definition

Figure 3-21 FULL-ATTRIBUTES-MODIFY-COLUMN-DEF syntax

column_name Name of the modified column

SQL Commands 3

3-49

@Copyright 1995-2024 CASEMaker Inc.

data_type Data type to use for the modified column

domain_name Name of the domain to use for the modified column

literal Literal value to be used if no value is inserted

constant Constant value to be used if no value is inserted

function_name Built-in function to be used if no value is inserted

constraint_name Constraint to be applied to the column

boolean_expression Expression that evaluates to true or false

column_name_a....... The modified column will be positioned after

column_name_a

column_name_b The modified column will be positioned before

column_name_b

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-50

data_type

domain_name

NULL

NOT NULL

column_name

DEFAULT

constant

NULL

function_name

CHECK boolean_expression

USER

SYSTEM

ON UPDATE

constant

NULL

function _name

SEQUENTIAL

SEQ

GIVE

BEFORE column_ name_b

AFTER column_name_a

Figure 3-22 COLUMN_DEFINITIONS syntax

To specify a column definition, provide a column name and a data type or

domain. Modify multiple columns in a single command, up to the maximum

number of 252 columns permitted in a table.

Specify a data type for each column modified. DBMaker supports the following

data types: BINARY, CHAR, DATE, DECIMAL, DOUBLE, FILE, FLOAT, INTEGER,

BLOB, CLOB, OID, SERIAL, SMALLINT, TIME, TIMESTAMP and VARCHAR.

SQL Commands 3

3-51

@Copyright 1995-2024 CASEMaker Inc.

Optionally, specify a user-defined domain for the column instead of a data

type. Domains are a combination of data type, default value, and constraint

that are applied to a column when it is defined using a domain data type. (See

the DEFAULT and CHECK keywords below for a description of default values

and constraints). Default values and constraints provided in the column

definition will override those of the domain. Column definitions can also

provide constraints in addition to those of the domain.

The NULL/NOT NULL keywords are optional. These keywords specify

whether a column can contain a NULL value, left empty, when inserting a new

row. The NULL keyword specifies that a column may contain an undefined

value when inserting a new row. The NOT NULL keyword specifies that a

value must be provided when a new row is inserted. The NOT NULL keyword

cannot be used when modifying a column that was previously defined with

NULL, unless the table is empty, or by using the GIVE keyword.

The USER/SYSTEM keywords are optional. These keywords specify whether

users can modify value of the column with a default value by using the

INSERT/UPDATE statement. USER is used by default. The USER keyword

specifies that users can modify its value, and the SYSTEM keyword specifies

that users cannot modify its value.

The DEFAULT keyword is optional. This keyword is used to specify a default

value that will be inserted into a column if no value is provided. Constants,

results from built-in functions, or the NULL keyword may be used as the

default value. Only use built-in functions that have no argument PI(), NOW(),

or USER(), when defining a column. Use the NULL keyword as the DEFAULT

value; the column cannot be defined with the NOT NULL keyword. The

DEFAULT keyword is not normally required when using user-defined domains

instead of the standard DBMaker data types, since domains normally include

their own DEFAULT clause.

The ON UPDATE keyword is optional. This keyword specifies that value of the

column with a default value can be automatically updated when other

columns' value is changed.The CHECK keyword is optional. This keyword is

used to specify a range of acceptable values that may be entered in a column.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-52

The expression that specifies the range of acceptable values may be any

expression that evaluates a true or false statement. The VALUE keyword may

be used in the expression in conjunction with the CHECK keyword to

represent the value of the column. If an SQL statement does not satisfy the

CHECK conditions, it is not processed. The CHECK keyword is not normally

required when using user-defined domains instead of the standard DBMaker

data types.

The GIVE keyword is optional. This keyword is used to specify the value

inserted into the modified column for any existing rows that contain NULL

values. If you modify a column from NULL to NOT NULL and do not provide a

value using the GIVE keyword, DBMaker will not modify the column.

Constants, results from built-in functions, or the NULL keyword may be used

as the GIVE value. Use the NULL keyword as the GIVE value; the column

cannot be defined with the NOT NULL keyword. Alternately, use the

SEQUENTIAL/SEQ keywords with the GIVE keyword when modifying a

column to a SERIAL column. These keywords specify that DBMaker will insert

serial values into existing rows, starting with the value specified by the

definition of the SERIAL data type in the column definition. The serial values

will continue to increment as you insert new rows.

The BEFORE/AFTER keywords are optional. These keywords specify the

location to position the modified column in relation to another column. The

BEFORE keyword specifies DBMaker to position the modified column before;

to the immediate left of, the specified column. The AFTER keyword specifies

DBMaker to position the modified column after; to the immediate right of, the

specified column. If you do not specify a relative location using the

BEFORE/AFTER keywords, DBMaker leaves the column in the original

position.

The ENCRYPT keyword is optional only when column encryption is opened.

This keyword specifies the column will be an encrypt column. When the

column encryption is closed, an encrypt column can prevent unauthorized

access and ensure data completeness. Users can create and access encrypt

column only when SYSADM/SYSDBA opens column encryption.

SQL Commands 3

3-53

@Copyright 1995-2024 CASEMaker Inc.

Modifying a column in a table makes all views and stored commands defined

on the table invalid, but has no effect on any synonyms based on that table.

Column names have a maximum length of 128 characters, and may contain

letters, numbers, the underscore character, and the $ and # symbols. The first

character may not be a number.

 Example 1

The following modifies the length of the Phone column in the Employeesinfo

table by changing the data type from CHAR(15) to CHAR(20).

dmSQL> ALTER TABLE Employeesinfo MODIFY (Phone TO Phone CHAR(20));

 Example 2

The following modifies the length of the Phone column in the Employeesinfo

table by changing the data type from CHAR(15) to CHAR(20). Adds the NOT

NULL keyword and requires a value to be entered for this column, when

inserting a new row. Any rows that previously contained NULL values are

assigned a new value using the GIVE keyword.

dmSQL> ALTER TABLE Employeesinfo MODIFY (Phone TO Phone CHAR(20)

 NOT NULL

 GIVE '000-0000');

 Example 3

The following modifies the data type of the Quantity and Amount columns in

the LineItems table by changing the data type of both columns from

SMALLINT to INT.

dmSQL> ALTER TABLE LineItems MODIFY (Quantity TO Quantity INT,

 Amount TO Amount INT);

 Example 4

The following modifies the constraint for a column named height in the

tb_staff table.

dmSQL> ALTER TABLE tb_staff MODIFY height CONSTRAINT TO CHECK value < 250;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-54

 Example 5

The following modifies the data type of the Name and Age columns in the

Student table by using implicit type conversion. dmSQL will return an error

unless the SET ITCMD ON command is entered.

dmSQL> SET ITCMD ON;

dmSQL> ALTER TABLE Student MODIFY (Name TO Name INT,Age TO Age CHAR(20));

SQL Commands 3

3-55

@Copyright 1995-2024 CASEMaker Inc.

3.19 ALTER TABLE MODIFY DYNAMIC
COLUMN

The ALTER TABLE MODIFY DYNAMIC COLUMN command modifies the

existing description information of a dynamic column. To execute the ALTER

TABLE MODIFY DYNAMIC COLUMN command on a table, only the table

owner, a DBA, a SYSDBA, a SYSADM, or user with ALTER privilege for that

table.

Dynamic columns only support modifying data type.

For details of dynamic columns, please refer to chapter Using Dynamic Column

in Database Administrator's Guide.

table_name Name of the table containing the dynamic column whose

description information will be modified

column_name Name of the dynamic column whose description

information will be modified

data_type Data type to use for the modified dynamic column

ALTER TABLE table_name MODIFY DYNAMIC

column_name data_type

COLUMN

TYPE TO

Figure 3-23 ALTER TABLE MODIFY DYNAMIC COLUMN syntax

 Example

The following example illustrates modifying description information of the

dynamic column price. For details of table books, please refer to ALTER

TABLE ADD DYNAMIC COLUMN.

dmSQL> ALTER TABLE books MODIFY DYNAMIC COLUMN price TYPE TO INT;

dmSQL> SELECT name,id,price FROM books;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-56

 NAME ID PRICE

============= ========================= ==============

C language abc 19

College engl* 2 32

2 rows selected

SQL Commands 3

3-57

@Copyright 1995-2024 CASEMaker Inc.

3.20 ALTER TABLE PRIMARY KEY

The ALTER TABLE PRIMARY KEY command modifies the definition of an

existing table and adds a primary key. Only the table owner, a DBA, or a user

with both the ALTER and INDEX privileges for the table may execute the

command.

A key is a column or combination of columns that help identify specific rows in

a table. A unique key is a key in which no two records have the same value or

the key field.

A primary key is a key that uniquely identifies each row in a table. Without a

primary key, it is impossible to distinguish between specific rows in a table

because rows may contain duplicate values. The DBMS will not define a

primary key on columns that contain duplicate values, or enter a duplicate

value in a primary key that already exists.

A foreign key is a key that corresponds to the primary key or a unique index of

another table. This establishes a parent-child relationship between two tables

that is represented by common data values stored in the tables. The parent

table contains the primary key or unique index, and the child table contains

the foreign key columns corresponding to columns in the parent table.

Referential integrity ensures that every value in a child key; the foreign key of

the child table, has a corresponding value in the parent key; the primary key

or unique index of the parent table. Referential integrity is enforced between

tables using the parent-child relationship established with foreign keys.

DBMaker has automatic support for referential integrity constraints between

tables through the definition of foreign keys. When adding a record to a child

table, the value in the child key must also exist in the parent key. Similarly,

when deleting a record from the parent table, all records in the child key with

the same value must be deleted first.

Primary keys ensure data integrity in a table by requiring unique key values in

each record of the primary key. Since this means columns in a primary key

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-58

may not contain duplicate or null values, define the key columns with the NOT

NULL constraint.

Each table may only have one primary key. You cannot name a primary key for

this reason. Instead, DBMaker will automatically create and maintain a unique,

internally managed index named PrimaryKey for the primary key in each

table. Since DBMaker builds an index on the primary key, it is not necessary to

build another index on the columns in the primary key to increase the

performance of query operations.

Primary keys may be built on up to 32 columns, providing the size of the

columns does not exceed 4000 bytes. Primary keys cannot be created on

views, but may be created on synonyms. When creating a primary key on a

synonym, the primary key is created on the base table.

table_name Name of the table adding the primary key to

column_name Name of the column the primary key is created on

Figure 3-24 ALTER TABLE PRIMARY KEY syntax

 Example 1

The following example creates a primary key on column CustNo in the

Customers table. The CustNo column must be defined with the NOT NULL

constraint, and all values in the CustNo column must be unique, or the table

must be empty.

dmSQL> ALTER TABLE Customers PRIMARY KEY (CustNo);

 Example 2

The following example creates a disabled primary key on column CustNo in

the Customers table.

dmSQL> ALTER TABLE Customers PRIMARY KEY (CustNo) DISABLE;

SQL Commands 3

3-59

@Copyright 1995-2024 CASEMaker Inc.

NOTE: When a primary key is disabled, the unique constraint will also be

disabled, which means users can insert repeated data. If there’s repeated data

in the disabled primary key, users cannot rebuild primary key until data is

unique.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-60

3.21 ALTER TABLE RENAME

The ALTER TABLE RENAME command changes the name of an existing table.

Only the table owner, a DBA, or a user with the ALTER privilege for that table

can execute the ALTER TABLE RENAME command on a table.

A table name can be renamed when it only contains an index and/or text

index. Dependent objects like stored command, stored procedure, trigger, and

foreign key are not supported with the RENAME command.

table_name The table's name to alter

new_table_name The table's new name

ALTER TABLE table_name RENAME TO new_table_name

Figure 3-25 ALTER TABLE RENAME Syntax

SQL Commands 3

3-61

@Copyright 1995-2024 CASEMaker Inc.

3.22 ALTER TABLE SET OPTIONS

The ALTER TABLE SET OPTIONS command modifies the definition of an

existing table and changes its options. Only the table owner, a DBA, or a user

with the ALTER privilege for that table can execute the ALTER TABLE SET

OPTIONS command on a table.

LOCK MODE specifies the lock mode (lock level) DBMaker uses when

accessing data in a table. DBMaker has three lock modes; table, page, and row.

Page lock mode is set by default. To determine the lock mode of a table,

examine the LOCKMODE column of the SYSTABLE.

LOCK MODE TABLE locks an entire table. This mode decreases concurrency by

preventing simultaneous user access to the locked table. It also uses fewer

lock resources and requires less memory in the System Control Area (SCA).

LOCK MODE PAGE locks a single data page. This mode is a trade-off between

concurrency and lock resources. It provides moderate concurrency since

other users may access data in other pages, but not in the locked page.

LOCK MODE ROW locks a single row. This mode increases concurrency by

allowing additional users to access any data except the locked row. It also uses

more lock resources and requires more memory in the SCA.

FILLFACTOR specifies the maximum percentage of a data page that can be

filled. This allows the database to optimize the use of data pages by reserving

space for future updates to existing records. The number parameter can have a

value from 50 to 100, which represent a fillfactor from 50% to 100%. To

determine the fillfactor of a table, examine the FILLFACTOR column of the

SYSTABLE system table.

NOCACHE limits the number of page buffers used to cache data during a table

scan. DBMaker stores page buffers in a buffer chain with the most recently

used page at the beginning. When the NOCACHE option is turned on, data

pages read during a table scan are placed at end of the buffer chain. The end of

the buffer chain will be flushed before the beginning and subsequent data

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-62

pages read during the table scan will overwrite the previous pages. This

effectively limits the page buffers used during a table scan to one page buffer.

To determine the cache mode of a table, examine the CACHEMODE column of

the SYSTABLE system table.

The SERIAL option resets the counter for a serial column. This allows starting

a new sequence in a serial column without having to modify the table.

Using the ALTER TABLE SET OPTIONS command has no effect on any views or

synonyms based on that table.

table_name Name of the table to change options on

number Value to use for the fillfactor

n Time interval in days to wait between statistics updates

Figure 3-26 ALTER TABLE SET OPTIONS syntax

 Example 1

The following sets the LOCK MODE to TABLE on the Customers table.

dmSQL> ALTER TABLE Customers SET LOCK MODE TABLE;

SQL Commands 3

3-63

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

The following sets the LOCK MODE to PAGE on the Customers table.

dmSQL> ALTER TABLE Customers SET LOCK MODE PAGE;

 Example 3

The following sets the LOCK MODE to ROW on the Customers table.

dmSQL> ALTER TABLE Customers SET LOCK MODE ROW;

 Example 4

The following sets the FILLFACTOR to 90% on the Customers table.

dmSQL> ALTER TABLE Customers SET FILLFACTOR 90;

 Example 5

The following turns on the NOCACHE option on the Customers table.

dmSQL> ALTER TABLE Customers SET NOCACHE ON;

 Example 6

The following turns off the NOCACHE option on the Customers table.

dmSQL> ALTER TABLE Customers SET NOCACHE OFF;

 Example 7

The following alters the SERIAL counter value of table tb_tmp from its

current value to 100.

dmSQL> ALTER TABLE tb_tmp SET SERIAL 100;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-64

3.23 ALTER TABLE SET DYNAMIC MAX

The ALTER TABLE SET DYNAMIC MAX command defines the max value of a

dynamic column. After a JSONCOLS column has been created, you can use this

command to change the limit of the dynamic column, if the jsoncols’s blob size

exceed the size you set, it will return “ERROR (338): [DBMaker] Dynamic blob

size exceeds limit”, the default size of a dynamic column is 1M.

table_name……….Name of the table with the jsoncols you want to set the max

size

limit………………The max size of the dynamic column. The range is

0~10408576.

Set to 0 means use the default value.

Figure 3-27 ALTER TABLE SET DYNAMIC MAX syntax

 Example

The following example illustrates changing max size to 1000 bytes of table

book’s dynamic column.

dmSQL> CREATE TABLE dynamic1(name char(50), info jsoncols);

dmSQL> ALTER TABLE dynamic1 SET DYNAMIC MAX 1000;

dmSQL> DEF TABLE dynamic1;

create table SYSADM.DYNAMIC1 (

 NAME CHAR(50) default null ,

 INFO JSONCOLS default null)

 in DEFTABLESPACE lock mode row fillfactor 100 ;

alter table SYSADM.DYNAMIC1 set dynamic column default VARCHAR(256);

alter table SYSADM.DYNAMIC1 set dynamic max 1000;

SQL Commands 3

3-65

@Copyright 1995-2024 CASEMaker Inc.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-66

3.24 ALTER TABLE TO ANOTHER
TABLESPACE

The ALTER TABLE TO ANOTHER TABLESPACE command moves a table to

another tablespace, at the same time, move the index to another tablespace if

the index and the table in the same tablespace. In addition, if the index and the

table in different tablespace, the index will not be moved to another

tablespace, so we can rebuild index in another tablespace. Only the table

owner, a DBA, or a user with both the ALTER and INDEX privileges for the

table may execute the command.

Setting FASTCOPY ON, a user can improve execution speed of moving a table

to another tablespace. When a table is moved, system will directly copy one

data page to another data page, with log files operated only once in a copying

and the buffer needless. Therefor the repeated operations of the log will be

greatly reduced.

Move a table to another tablespace can store the table to other disk, and avoid

the table can't store data while disk full.

Altering table to another tablespace has some limitations:

• Users cannot alter a system table, temporary table or view to another

tablespace.

• Users cannot move a permanent table to SYSTABLESPACE or

TMPTABLESPACE.

• Users cannot rebuild index for permanent table in TMPTABLESPACE.

• Users cannot rebuild index for temporary table in NON-TMPTABLESPACE.

• Users cannot rebuild index for system table in other tablespace.

• Users cannot copy data from one table to the same table.

• Users cannot move table from one tablespace to the same one.

table_name Name of the table to be moved

SQL Commands 3

3-67

@Copyright 1995-2024 CASEMaker Inc.

tablespace_name Name of the tablespace to move to

ALTER TABLE table_name MOVE TABLESPACE tablespace_name

Figure 3-28 ALTER TABLE TO ANOTHER TABLESPACE syntax

 Example

The following moves the table Employeesinfo in ts_mode to another

tablespace ts_new.

dmSQL> ALTER TABLE Employeesinfo MOVE TABLESPACE ts_new;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-68

3.25 ALTER TABLESPACE

The ALTER TABLESPACE command adds a file to an existing tablespace or

changes the tablespace type from autoextend to regular or from regular to

autoextend or changes the tablespace type from read-write to read-only or

from read-only to read-write. Only users with DBA, SYSDBA or SYSADM

security privileges can execute the ALTER TABLESPACE command.

The way data is physically stored on computers has little or no significance to

most users. DBMaker uses the relational data model to hide the details of the

physical storage model and present data using a logical storage model instead.

In the DBMaker physical storage model, files are physical storage structures

that contain the data in the database. Files are managed by the operating

system, with the exception of raw UNIX devices, while data in the files are

managed by the DBMS. DBMaker uses three types of files during normal

operation Data, BLOB, and Journal.

Journal files are special files that provide a real-time, historical record of all

changes made to a database and the status of each change. This allows the

database to undo changes made by a transaction that fails or to redo changes

made successfully but not written to disk after a database crash. Journal files

are used only by the database management system not to store user data.

Data files and BLOB files are used to store user and system data. Although they

have similar characteristics, DBMaker manages these two file types in

different ways to improve performance. Data files store table and index data,

while BLOB files store only Binary Large OBjects (BLOBs).

In the DBMaker logical storage model, tablespaces are the logical storage

structures used to partition information in a database into manageable areas.

Each tablespace may contain several tables and indexes. Data in the

tablespace is managed by the DBMS, but is physically stored in files. There are

three types of tablespaces: regular, autoextend, and system.

Regular tablespaces have a fixed size and contain one or more data or BLOB

files. They may be extended manually by enlarging existing files or adding new

SQL Commands 3

3-69

@Copyright 1995-2024 CASEMaker Inc.

files in the tablespace. When adding a new file, first make an entry in the

dmconfig.ini, specifying the logical file name, the physical file name, and the

initial file size in the appropriate database section. A regular tablespace may

contain a maximum of 32767 files, with a maximum cumulative file size of 8

TB. On UNIX platforms, regular tablespaces may be placed on raw devices.

NOTE For more information on raw devices, see your UNIX system

documentation.

Autoextend tablespaces automatically increase in size to hold additional data

as required. They must contain at least one or more data files, and may

contain BLOB files. The difference between regular and autoextend

tablespaces is, an autoextend tablespace automatically extends. A DBA can

arrange tables for each type of tablespace. When adding a file to a regular

tablespace, first make an entry in the dmconfig.ini, specifying the logical file

name, physical file name, and initial file size in the appropriate database

section. Autoextend tablespaces do not support raw devices.

DBMaker generates system tablespaces while creating a database. Each

database has one system tablespace, which contains the system catalog tables

used to store schema, security, and status information. The system tablespace

is created as an autoextend tablespace, unless creating a database on a UNIX

raw device. System tablespaces automatically contain one DATA and one BLOB

file. System tablespaces may be converted to regular tablespaces.

Use the SET AUTOEXTEND OFF keywords to change any autoextend tablespace

to a regular tablespace. To restrict the amount of disk space a tablespace will

occupy, change a tablespace from autoextend to regular.

NOTE A file in an autoextend tablespace will grow to fill all available space

on a disk to a maximum of 8 TB.

Use the SET AUTOEXTEND ON keywords to change any regular tablespace to

an autoextend. Change a tablespace from regular to autoextend when the

tablespace is exhausted.

Read-only tablespaces do not allow users to perform any modifications on the

tablespace. However, the read-only tablespace has many advantages:

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-70

• Eliminates the need to perform backups. Read-only tablespaces just need

a single backup after being made read only.

• Recovery becomes easier. When the instance is started, DBMaker will take

advantage of the fact that read-only tablespace does not need any media

recovery.

• A read only tablespace requires few system resources than an updateable

tablespace (no lock).

Use the SET READ ONLY keywords to change any read-write tablespace to a

read-only tablespace.

Use the SET READ WRITE keywords to change any read-only tablespace to a

read-write tablespace.

Use the ADD DATAFILE keywords to add a new Data or BLOB file to a

tablespace. Files added to a tablespace do not have to be located on the same

physical disk. In UNIX, file can be stored on raw devices. DBMaker writes to

raw device files directly instead of relying on operating system calls, allowing

faster access, and performance improvements over normal files.

As mentioned earlier, files that make up a tablespace are referenced within

the database using logical file names to maintain physical data independence.

The logical file names are mapped to the physical file names in the;

dmconfig.ini configuration file, as shown in the examples. DBMaker will

create a new file in the default database directory specified by the DB_DbDir

keyword in the dmconfig.ini unless a different directory or path is specified.
After version 5.4.6, users can define the physical file name and file page/size

in the ALTER TABLESPACE command and don’t need to entry dmconfig.ini

first.

Logical file names have a maximum length of 128 characters, and may contain

numbers, letters, the underscore character, and the $ and # symbols .The first

character may not be a number. Physical file names have a maximum length,

including drive and path names, of 256 characters. Include any characters and

symbols permitted by the operating system, except spaces.

SQL Commands 3

3-71

@Copyright 1995-2024 CASEMaker Inc.

When adding a new file, specify the file type with the TYPE = DATA and

TYPE=BLOB keywords. The default file type is data.

Also, indicate the file size; in data pages, for a Data file or BLOB frames for a

BLOB file. Data pages can be: 4 KB, 8 KB, 16 KB or 32 KB, while BLOB pages

are variable in size and can range from 8 KB to 256 KB. DBMaker increases the

initial size of autoextend tablespaces as required. To determine the size of a

BLOB frame, check the DB_BfrSz keyword for a database in the dmconfig.ini

file.

tablespace_name Name of the tablespace to modify

tsfilename Logical name of the physical tablespace files

physical_file_name …………The physical file name of the added file, the location

will be in DB_DbDir or users can define a full path

unsigned_integer[M|G] ……The pages of the data/blob file, the file size is

page number*DB_PgSiz, or users can define M/G to

represent megabytes or gigabytes.

Figure 3-29 ALTER TABLESPACE syntax

 Mapping 1

Before executing example 1, add a line to the dmconfig.ini file to map the

logical file name to the physical file name and indicate the initial file size as 8

KB pages if you had set the page size to 8 KB. In this example, the file size will

be 800 KB.

file1=c:\dbmaker\databases\f1.db 100

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-72

 Example 1

The following adds the file f1.db to the ts_new tablespace file f1.db has the

logical file name of file1.

dmSQL> ALTER TABLESPACE ts_new ADD DATAFILE file1 TYPE=DATA;

 Mapping 2

Before executing the commands in example 2, add a line to the dmconfig.ini

file to map the logical file name to the physical file name and indicate the

initial file size in frames. In this example, the file size will be 4000 KB if the

default BLOB frame size of 8 KB is used.

file2=c:\dbmaker\databases\f2.bb 500

 Example 2

The following example changes the tablespace mode from autoextend to

regular and adds file f2.bb to the ts_mode tablespace; file f2.db has the

logical file name of file2.

dmSQL> ALTER TABLESPACE ts_mode SET AUTOEXTEND OFF;

dmSQL> ALTER TABLESPACE ts_mode ADD DATAFILE file2 TYPE=BLOB;

 Example 3

The following example changes the tablespace mode from read-write to read-

only.

dmSQL> ALTER TABLESPACE ts_mode SET READ ONLY;

 Example 4

The following example adds a new file to the tablespace ts1. The added logical

file name is f2, the size is 10M and the physical file name is

C:\DBMaker\5.4\TESTDB.F2.

dmSQL> ALTER TABLESPACE ts1 ADD DATAFILE f2='C:\DBMaker\5.4\TESTDB.F2 10M';

SQL Commands 3

3-73

@Copyright 1995-2024 CASEMaker Inc.

3.26 ALTER TABLESPACE DROP DATAFILE

The ALTER TABLESPACE DROP DATAFILE command drops an empty datafile

from a tablespace. Only users with DBA, SYSDBA or SYSADM security

privileges can execute the ALTER TABLESPACE DROP DATAFILE command.

When dropping a datafile from a tablespace it is imperative that the datafile is

empty. If the datafile contains data then the command will abort and an error

message will be returned to the user. Users are not able to drop a datafile if

the datafile is the only one in the tablespace. It is also important to note that

users cannot remove the system datafile from the system tablespace or the

default datafile from the default tablespace.

This command only drops the logical file, so after committing this command,

user need to drop the physical datafiles and remove the information in the

dmconfig.ini manually.

tablespace_name ... Name of the datafile's tablespace

file_name Name of the datafile to be dropped

ALTER TABLESPACE tablespace_name

file_nameDROP DATAFILE

Figure 3-30 ALTER TABLESPACE DROP DATAFILE syntax

 Example

A user wants to drop datafile tsfile1 from tablespace ts_new.

dmSQL> ALTER TABLESPACE ts_new DROP DATAFILE tsfile1;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-74

3.27 ALTER TRIGGER ENABLE

The ALTER TRIGGER ENABLE command enables or disables an existing

trigger on a table. Only the table owner, a DBA, a SYSDBA or a SYSADM can

execute the ALTER TRIGGER ENABLE command.

A trigger is a database server mechanism that automatically executes

predefined commands in response to specific events. This allows a database to

perform complex or unconventional operations that might not be possible

using standard SQL commands. Since triggers are under the control of the

database server, they can ensure data consistency, regardless of the source.

DBMaker will transparently fire the trigger every time a user or application

program generates a trigger event.

A trigger automatically enables when created. To suspend a trigger when

testing database operations that may cause the trigger to fire, use the DISABLE

keyword. Disabling a trigger does not remove it from the database and you

can enable it again with the ENABLE keyword.

trigger_name Name of the trigger to enable or disable

table_name Name of the table associated with the trigger

ALTER TRIGGER trigger_name

DISABLE

ENABLE

table_nameON

Figure 3-31 ALTER TRIGGER ENABLE syntax

SQL Commands 3

3-75

@Copyright 1995-2024 CASEMaker Inc.

 Example 1

The following disables the trigger Trig_emp on the Employeesinfo table.

dmSQL> ALTER TRIGGER Trig_emp ON Employeesinfo DISABLE;

 Example 2

The following enables the trigger Trig_emp on the Employeesinfo table.

dmSQL> ALTER TRIGGER Trig_emp ON Employeesinfo ENABLE;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-76

3.28 ALTER TRIGGER REPLACE

The ALTER TRIGGER REPLACE command replaces a trigger. Only the table

owner, a DBA, a SYSDBA or a SYSADM can execute the ALTER TRIGGER

REPLACE command.

A trigger is a database server mechanism that automatically executes

predefined commands in response to specific events. This allows a database to

perform complex or unconventional operations that might not be possible

using standard SQL commands. Since triggers are under the control of the

database server, they can ensure data consistency, regardless of the source.

DBMaker will transparently fire the trigger every time a user or application

program generates a trigger event.

Specify the name of the trigger when altering or replacing it. Also specify the

new trigger action, action time, event, table, and type.

NOTE The ALTER TRIGGER REPLACE command, only functions on the original

trigger table.

Unlike most database objects, DBMaker does not identify triggers using fully

qualified names, but associates them with tables instead. For this reason all

trigger names on the same table must be unique. The trigger action operates

with the same security and object privileges as the owner of the trigger table,

not with the privileges of the user executing the trigger event.

The BEFORE and AFTER keywords specify when the database server should

perform the trigger action relative to the trigger event and the trigger action

time. The BEFORE keyword instructs the database server to perform the

trigger action before the trigger event. The AFTER keyword instructs the

database server to perform the trigger action after the trigger event.

The INSERT, DELETE, and UPDATE keywords specify the event that fires a

trigger. There are some differences in the use of the INSERT and DELETE

keywords, and the UPDATE keyword. The INSERT keyword instructs a trigger

to fire whenever a row is inserted into a table. The DELETE keyword instructs

SQL Commands 3

3-77

@Copyright 1995-2024 CASEMaker Inc.

a trigger to fire whenever deleting a row from a table. The UPDATE keyword

specifies a trigger to fire after updating any column in a table. Also, use

UPDATE OF to specify a column list to fire a trigger after updating specific

columns.

NOTE A unique column name can only be used in one UPDATE trigger in a table.

The ON keyword specifies the name of the table to replace the trigger with on

the trigger table. The trigger table must be a permanent table in the database.

A trigger cannot be created on a temporary table, view, or synonym.

trigger_name Name of the trigger to replace

column_name Name of the column to create the new trigger on

table_name Name of the table to create the new trigger on

sql_statement Statement to execute when the trigger fires

ALTER TRIGGER

UPDATE

OF

ON

cloumn_name

trigger_name

BEFORE

AFTER

(sql_statement)

DELETE

INSERT

,

table_name

for _each _statement_clause

for_each_ row_clause

REPLACE WITH

Figure 3-32 ALTER TRIGGER REPLACE syntax

For Each Row Clause

The REFERENCING keyword specifies an alias for the OLD and NEW

keywords. When replacing a row trigger, indicate in the trigger action whether

referencing a value of a column, before or after the trigger fires. Use the

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-78

REFERENCING keyword in place of the OLD and NEW keywords when tables

named OLD and NEW already exist.

The FOR EACH ROW keywords instructs a trigger to fire once for each row the

trigger event modifies. Triggers defined using the FOR EACH ROW keyword do

not fire if the statement firing the trigger does not process rows.

The WHEN keyword specifies rows, which satisfy the search condition, to fire

a trigger. The WHEN clause is evaluated for each row the trigger event

modifies. If the search condition is true, the trigger fires for that row. If the

search condition is false, the trigger does not fire. The result of the WHEN

condition only affects the execution of the triggered action, it has no effect on

the statement that fires the trigger.

old_name Alias for referencing the values as they existed in the

trigger table before the trigger action fires

new_name Alias for referencing the values as they exist in the trigger

table after the trigger action fires

search_condition Conditions a row must meet for a trigger to fire

SQL Commands 3

3-79

@Copyright 1995-2024 CASEMaker Inc.

REFERENCING

OLD AS old_name

NEW AS new_name

OLD AS old_name

FOR EACH ROW

WHEN (search_condition)

NEW AS new_name

Figure 3-33 For Each Row Clause syntax

For Each Statement Clause

The FOR EACH STATEMENT keywords specify a trigger fire only once for each

statement that fires the trigger. Triggers defined using the FOR EACH

STATEMENT keywords fire even if the statement that fires the trigger does not

process any rows.

The statement that the trigger executes when it fires is known as the trigger

action. The trigger action may be an INSERT, UPDATE, DELETE, or EXECUTE

PROCEDURE statement. Only built-in functions that have no argument PI(),

NOW(), or USER() can be used when specifying the trigger action. Stored

procedures executed by a trigger cannot contain any COMMIT, ROLLBACK, or

SAVEPOINT transaction control statements.

Create multiple triggers for each trigger event on the trigger table by using the

trigger action time; BEFORE and AFTER keywords, in combination with the

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-80

trigger type; FOR EACH ROW and FOR EACH STATEMENT keywords. For

example, you can combine the trigger action time and the trigger type to

create four triggers for the INSERT trigger event: BEFORE/FOR EACH

STATEMENT, BEFORE/FOR EACH ROW, AFTER/FOR EACH ROW, and

AFTER/FOR EACH STATEMENT.

NOTE Also supported by the UPDATE and DELETE trigger events.

When using UPDATE OF instead of UPDATE, one trigger for each column in

the table for each trigger action time/trigger type combination can be created.

A table with four columns can have four UPDATE OF triggers for each:

BEFORE/FOR EACH STATEMENT, BEFORE/FOR EACH ROW, AFTER/FOR

EACH ROW, and AFTER/FOR EACH STATEMENT combination. When using

UPDATE OF to specify a trigger, UPDATE cannot be used to create a trigger on

that table. When you replace a trigger with a new one, no column already used

in another UPDATE OF trigger may be specified.

FOR EACH STATEMENT

Figure 3-34 For Each Statement Clause syntax

 Example 1

Originally defined as a FOR EACH ROW trigger, this command will replace it

with a FOR EACH STATEMENT trigger by altering the Trig_emp trigger on

the Employeesinfo table.

dmSQL> ALTER TRIGGER Trig_emp REPLACE WITH

 BEFORE UPDATE ON Employeesinfo

 FOR EACH ROW

 (INSERT INTO NameChange VALUES (OLD.FName, OLD.LName,

 NEW.FName, NEW.LName));

SQL Commands 3

3-81

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

This command will replace the UPDATE trigger event with an INSERT trigger

event by altering the Trig_emp trigger on the Employeesinfo table from

example 1.

dmSQL> ALTER TRIGGER Trig_emp REPLACE WITH

 AFTER INSERT ON Employeesinfo

 FOR EACH ROW

 (INSERT INTO NameChange VALUES (OLD.FName, OLD.LName,

 NEW.FName, NEW.LName));

 Example 3

This command will replace the INSERT statement with an EXECUTE

PROCEDURE statement by altering the Trig_emp trigger on the

Employeesinfo table from example 2.

dmSQL> ALTER TRIGGER Trig_emp REPLACE WITH

 AFTER INSERT ON Employeesinfo

 FOR EACH ROW

 (EXECUTE PROCEDURE LogTime);

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-82

3.29 BEGIN BACKUP

The BEGIN BACKUP command places a database in a special state that allows

backing up of all files without requiring other users to disconnect or shut

down the database. Only users with DBA, SYSDBA or SYSADM security

privileges can execute the BEGIN BACKUP command.

Media failure is the failure of the online secondary or auxiliary storage of a

computer system. The most common secondary and auxiliary storage devices

are hard disks. Media failures are usually caused by physical trauma to the

disk itself: head crash, fire, earthquake, exposure to high vibration, or g-forces

outside its physical operating limits.

When a media failure occurs, one or more files can be physically damaged.

Provide archiving or backup to successfully restore a database. Create

backups of database files periodically, to restore the database in the event of a

media failure. There are several different types of backups.

An online backup is can be performed while a database is running. The

Database Administrator does not have to shut down the database, and users

do not need to disconnect. Online backups are more convenient for users,

since no action is required on their part. A DBMS must provide the capability

to back up a database online.

An offline backup is performed after a database has been shut down. The

Database Administrator must schedule a time to shut down the database, and

notify all users so they can disconnect before the shut down. Offline backups

can be inconvenient for users, since they must remember to complete all

active transactions and disconnect from the database. A DBMS does not need

to provide the capability to back up a database offline.

A full backup creates a copy of all data and Journal files, providing a copy of

the entire database system at one point in time. Full backups archive the

entire database and require a large amount of storage space, but can restore

the database quickly.

SQL Commands 3

3-83

@Copyright 1995-2024 CASEMaker Inc.

A differential backup is based on the latest full backup of the data. This is

known as the base of the differential, or the differential base. A differential

backup contains only the data that has changed since the differential base was

created. A differential base is typically used for several successive differential

backups. During a restore operation, the full backup and its corresponding

differential backup combine to produce a fully restored database.

An incremental backup creates a copy of only the Journal files that have

changed since the last full backup. These files provide a copy of the changes

made to the database since the last full backup. Incremental backups archive

only Journal files and require only a small amount of storage space, but need

more time to restore the database.

DBMaker supports five types of backups: offline full backups, online full

backups, online differential backups, online incremental backups and online

incremental to current backups. Before performing an incremental backup,

perform either an offline full backup or an online full backup. If full backup is

not performed first, you may be unable to restore the database in the event of

a media failure.

To perform an offline full backup, make sure all users are disconnected and

shut down the database. If an error occurs while the database is shutting

down, completing the backup operation or restoring the database may be

impossible. Backup all Data, BLOB, and Journal files. Using an offline full

backup can restore a database up to the point in time of shutting down.

To perform an online full backup, start the database in NON-BACKUP,

BACKUP-DATA, or BACKUP-DATA-AND-BLOB mode. To begin the backup,

issue the BEGIN BACKUP command. Back up all Data and BLOB files. After

these files have been backed up, issue the END BACKUP DATAFILE command.

Then back up all Journal files. Next, issue the END BACKUP JOURNAL

command to complete the backup and return the database to normal

operation. Using an online full backup can restore a database from, the point

in time the END BACKUP DATAFILE command was executed to and the point

in time the currently active Journal file was copied.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-84

To perform a differential backup, start the database in NON-BACKUP,

BACKUP-DATA, or BACKUP-DATA-AND-BLOB mode. A full backup must first

exist before a differential backup is created. A differential base must exist

before a differential backup is created. DBMaker's differential backup only

includes data files (e.g., *.DB and *.BB), not journal files. This is because

journal files changed too frequently. So, when doing a differential backup, only

useful journal blocks are copied.

To perform an online incremental backup or an online incremental backup to

current, start the database in either BACKUP-DATA or BACKUP-DATA-AND-

BLOB mode.

Only users that have read permissions on the database files from the

operating system can perform an offline full backup, and only users with DBA,

SYSDBA or SYSADM security privileges can perform online backups. In

addition, only one user at a time can perform an online backup.

Abort an online backup at any time by issuing the ABORT BACKUP command.

After this command executes, you will not be able to use the files from this

backup to restore the database.

Perform an online full backup and an online differential backup at any time

with the database in any backup mode, including NON-BACKUP mode.

Incremental online backups may only be performed when the database is

running in BACKUP-DATA or BACKUP-DATA-AND-BLOB mode.

The backup mode indicates the type of information DBMaker backs up during

an online incremental backup. Change the backup mode online or offline,

using one of three different methods: offline with the DB_BMode keyword in

the dmconfig.ini configuration file, online with the SQL SET command at the

dmSQL command prompt, or online with the Server Manager utility provided

with DBMaker.

NON-BACKUP mode provides no protection for data inserted or updated since

the last full backup. In this mode, a database cannot perform online

incremental backups. A database can use the Journal to fully recover from an

instance failure, but a media failure may result in loss of data. Journal blocks

SQL Commands 3

3-85

@Copyright 1995-2024 CASEMaker Inc.

not in use by an active transaction can be reused immediately after a

checkpoint, but once they are overwritten, the database can only be restored

to the point in time of the last full backup.

To set the backup mode to NON-BACKUP using the DB_BMode keyword, open

the dmconfig.ini file using any text editor and change the value of DB_BMode

to 0. You may use the SET BACKUP OFF command during an online full backup

to set the backup mode to NON-BACKUP. This command must be executed

after the BEGIN BACKUP command, but before the END BACKUP JOURNAL

command, and only during an online full backup.

BACKUP-DATA mode provides protection for data, excluding BLOB data that

was added or changed since the last full backup. In this mode, DBMaker can

perform an online incremental backup, but since changes to BLOB data are not

recorded in the Journal, they are not stored in the backup Journal files. Any

records containing BLOB data added or changed since the last full backup will

have the BLOB data replaced with a NULL value. After restoring the database,

manually update all records with the new BLOB data. A database can use the

Journal to fully recover from an instance failure and partially recover from

media failure.

To set the backup mode to BACKUP-DATA using the DB_BMode keyword,

open the dmconfig.ini file using any text editor and change the value of

DB_BMode to 1. Use the SET DATA BACKUP ON command during an online

full backup to set the backup mode to BACKUP-DATA. This command must be

executed after the BEGIN BACKUP command, before the END BACKUP

JOURNAL command, and during an online full backup.

BACKUP-DATA-AND-BLOB mode provides protection for all data, including

BLOB data that was inserted or updated since the last full backup. In this

mode, DBMaker can perform an online incremental backup, and all data will

be stored in the backup Journal files. A database can use the Journal to fully

recover from an instance failure, and can fully recover from a disk failure. Use

the last backup to completely restore the database to the point in time of the

media failure, including all BLOB data. Journal blocks not in use by an active

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-86

transaction can only be reused after a checkpoint has taken place and the

Journal file has been backed up.

To set the backup mode to BACKUP-DATA-AND-BLOB using the DB_BMode

keyword, open the dmconfig.ini file using a text editor and change the value

of DB_BMode to 2. Use the SET BLOB BACKUP ON command during an online

full backup to set the backup mode to BACKUP-DATA-AND-BLOB. This

command must be executed after the BEGIN BACKUP command, before the

END BACKUP JOURNAL command, and only during an online full backup.

BEGIN

BACKUP

TO CURRENT

INCREMENTAL BACKUP

Figure 3-35 BEGIN BACKUP syntax

 Example

The following shows the steps involved in a full online backup. To begin, issue

the BEGIN BACKUP command to notify DBMaker that a full backup is in

progress. Then, copy all data and BLOB files to the backup location using

operating system commands. Next, issue the END BACKUP DATAFILE

command. Then, use operating commands to copy all Journal files to the

backup location. Finally, issue the END BACKUP JOURNAL command. On

completion, this command returns the database to normal operation.

BEGIN BACKUP

 Copy data and BLOB files to backup location using OS commands

 Change backup mode if desired

 Abort the backup if desired

END BACKUP DATAFILE

SQL Commands 3

3-87

@Copyright 1995-2024 CASEMaker Inc.

 Copy Journal files to backup location using OS commands

 Change the backup mode if desired

 Abort the backup if desired

END BACKUP JOURNAL

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-88

3.30 BEGIN WORK

The BEGIN WORK command is an optional command used in a script file to

document the beginning of a transaction; DBMaker ignores this command.

BEGIN WORK

Figure 3-36 BEGIN WORK syntax

 Example

The following illustrates how the BEGIN WORK command can be used in a

script file to document the beginning of a transaction; the text may be located

anywhere within the script file.

BEGIN WORK

 ...

 SQL Command

 SQL Command

 ...

COMMIT WORK

SQL Commands 3

3-89

@Copyright 1995-2024 CASEMaker Inc.

3.31 CHECK

The CHECK command checks the database objects specified for data

consistency. You may want to check database consistency if queries are

returning inconsistent or erroneous results, or receiving frequent or unusual

error messages. Only the owner of the object, a DBA, a SYSDBA or SYSADM

may execute the CHECK command.

DBMaker checks the consistency of a database, indexes, tables, files,

tablespaces, and the system catalog. Checking the consistency of database

objects can be time and resource consuming. Use the CHECK command only

when necessary, and try to schedule its use for off-peak times when

inconveniences to users are minimized.

When checking a database object, DBMaker first checks the system catalog

tables to ensure all catalog information is valid and correct. If any errors are

found in the system catalogs, checking stops immediately. If the system

catalog has errors, the database may have serious consistency errors. Then

DBMaker checks the physical structure and data integrity of the object and

any related objects. When checking an object, DBMaker also checks, all objects

contained in or related to the original object. Also checks the indexes, data

pages, files, and tables.

Some types of errors can be repaired. Dropping the index and rebuilding it can

usually correct most problems. It is also possible to correct a corrupted table

by unloading all records in the table, dropping the table, then recreating the

table, and reloading all data.

If a database does have consistency errors, immediately back up the database,

including all data and Journal files. DBMaker can fix some types of consistency

errors after recovering from a crash. To engage DBMaker crash recovery

routines, shut down and restart the database. After the database restarts,

execute the CHECK command again to see if the error has been corrected.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-90

If any inconsistency still exists, contact the CASEMaker customer service.

CASEMaker customer support representatives will assist you with repairing

the database.

NOTE For information on how to contact a CASEMaker customer service

representative in your area, see your license agreement.

tablespace_name Name of the tablespace to check

file_name Name of the file to check

table_name Name of the table to check

index_name Name of the index to check

CHECK

DB

CATALOG

TABLE table_name

FILE file_name

TABLESPACE tablespace_name

INDEX index_name

Figure 3-37 CHECK syntax

 Example 1

The following command checks the consistency of data in the Customers

table.

dmSQL> CHECK TABLE Customers;

SQL Commands 3

3-91

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

The following command checks the consistency of data in index idxCustNum

of the Customers table; when specifying an index name, specify the table

name.

dmSQL> CHECK INDEX Customers.idxCustNum;

 Example 3

The following command checks the consistency of Data pages or frames in a

BLOB file in the customer_data file.

dmSQL> CHECK FILE customer_data;

 Example 4

The following command checks the consistency of database objects in the

specified tablespace and may include files, tables, data pages, and data in all

tables in the ts_new tablespace.

dmSQL> CHECK TABLESPACE ts_new;

 Example 5

The following command checks the consistency of the database system

catalogs.

dmSQL> CHECK CATALOG;

 Example 6

The following command checks the consistency of all database objects.

dmSQL> CHECK DB;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-92

3.32 CHECKPOINT

The CHECKPOINT command forces DBMaker to take a checkpoint. Take a

checkpoint if database activity is very high or you infrequently back up or

restart the database. Only users with DBA, SYSDBA or SYSADM security

privileges can execute the CHECKPOINT command.

A checkpoint event brings the database to a clean state. DBMaker writes all

Journal records and all dirty data pages in memory buffers to disk, and

reclaims Journal blocks that are no longer required for backup or recovery

purposes. DBMaker can reclaim Journal blocks that contain non-active

transactions completed before the start of the oldest active transaction.

Startup time after an instance failure is reduced after taking a checkpoint.

DBMaker writes the time of the last checkpoint and a list of all transactions

active at the time of the checkpoint to the Journal file header. During database

recovery, DBMaker uses this information to determine which transactions

should be undone, redone, and ignored.

DBMaker automatically takes a checkpoint when a database starts or

terminates when performing an online backup, or when the Journal is full. This

may require a significant amount of time to complete, depending on the size

and number of transactions since the last checkpoint. Any transactions that

are active when an automatic checkpoint occurs must wait until the

checkpoint operation completes. DBMaker will also abort the current

transaction if the Journal is full and issuing a checkpoint cannot reclaim

enough Journal space to complete the transaction. In this situation, redo all

commands in the aborted transaction.

To avoid any unnecessary delays in transaction processing, periodically take

manual checkpoints using the CHECKPOINT command. Periodic manual

checkpoints reduce the amount of time required to start, terminate, and back

up a database, time transactions wait for checkpoint operations to complete,

and the possibility of a full Journal. The optimal time interval between manual

checkpoints depends on the activity frequency in the database.

SQL Commands 3

3-93

@Copyright 1995-2024 CASEMaker Inc.

CHECKPOINT

Figure 3-38 CHECKPOINT syntax

 Example

The following example forces the system to take a checkpoint.

CHECKPOINT

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-94

3.33 CLOSE DATABASE LINK

The CLOSE DATABASE LINK command closes links to a remote database. Use

this command to close a single link, or multiple links at the same time. Any

user with an active link to a remote database can execute the CLOSE

DATABASE LINK command.

A database link creates a connection to a remote database, providing access to

remote data from the local database. Links provide additional security

information. Links enable a user to connect to a remote database with a

different user name. Alternately, use the public link to connect to a remote

database without an account.

When executing the CLOSE DATABASE LINK command and specifying a link

name, DBMaker closes the link to the remote database if it no active

transactions exist. When executing the CLOSE DATABASE LINK command and

specifying a remote database, DBMaker closes all links that connect to the

remote database. If a link has an active transaction, it remains open and

DBMaker returns an error. Wait until the transaction has finished and retry

closing the link.

The NONACTIVE keyword closes all links to a remote database that are not

being used by an active transaction. If a transaction is using a link when you

execute the CLOSE DATABASE LINK command using the NONACTIVE

keyword, the link remains open. To close this link, wait until the transaction is

finished and try closing it again.

The ALL keyword closes all links to a remote database. If a transaction is using

a link when you execute the CLOSE DATABASE LINK command using the ALL

keyword, the link remains open and DBMaker returns an error. To close this

link, wait until the transaction is finished.

link_name Name of the link to a remote database to close

remote_database_name…close all links to the remote database

remote_database_name

SQL Commands 3

3-95

@Copyright 1995-2024 CASEMaker Inc.

CLOSE DATABASE LINK
remote_database_name

NONACTIVE

link_name

ALL

Figure 3-39 CLOSE DATABASE LINK syntax

 Example 1

The following closes the FieldLink.

dmSQL> CLOSE DATABASE LINK FieldLink;

 Example 2

The following closes all links to the remote database identified in the local

dmconfig.ini file as FieldOffice.

dmSQL> CLOSE DATABASE LINK FieldOffice;

 Example 3

The following closes all links to not being used by an active transaction.

dmSQL> CLOSE DATABASE LINK NONACTIVE;

 Example 4

The following closes all links unless a link is being used by an active

transaction, DBMaker will return an error and the link will remain open.

dmSQL> CLOSE DATABASE LINK ALL;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-96

3.34 COMMIT WORK

The COMMIT WORK command commits the current transaction. DBMaker

automatically starts a new transaction after execution of the COMMIT WORK

command. Any user with CONNECT or higher security privileges can execute

the COMMIT WORK command.

A transaction, traditionally defined as a logical unit of work, or one or more

operations on a database that need to complete together in order to leave the

database in a consistent state. Transactions are self-contained and must either

complete successfully, change the data, or fail and leave the data unchanged.

For example, suppose you store two different kinds of information in the

database records of shipments sent to customers and records of items

currently in stock, including quantity of items. When an item ships to a

customer, the item and the quantity shipped are added to the shipment list.

The quantity shipped must also be subtracted from the items currently in

stock. If both of these operations are not completed together as a logical unit

of work, the database will be in an inconsistent state. The quantity of items in

stock will be too high; items shipped and not subtracted from items in stock,

or too low; items subtracted from items in stock and not shipped. Both of

these operations together make up a single transaction, and must complete

successfully or both will fail.

If a transaction completes successfully and changes the data, it has been

committed. If a transaction fails and leaves the data unchanged, it has been

rolled back.

When executing the COMMIT WORK command, DBMaker will write all

changes made by commands in the current transaction to the database. The

COMMIT WORK command only writes changes for the current transaction.

The COMMIT WORK command is not required if the connection to a database

is running in AUTOCOMMIT mode.

SQL Commands 3

3-97

@Copyright 1995-2024 CASEMaker Inc.

AUTOCOMMIT mode controls when DBMaker will commit a transaction. When

AUTOCOMMIT mode is on, each command is treated as a separate transaction.

Pressing the Enter key to execute a command automatically commits the

command if it completes successfully, or rolls it back if an error occurs during

execution. When AUTOCOMMIT mode is OFF, all commands between

successive COMMIT WORK commands form a single transaction. Executing the

COMMIT WORK command commits any changes made in the transaction, and

executing the ROLLBACK WORK command rolls back all changes.

In the event of a database crash, DBMaker will automatically roll back any

transactions that have not been committed. If the changes made in the rolled

back transactions reflected in the database, redo all commands in these

transactions when the database restarts.

COMMIT

WORK

Figure 3-40 COMMIT WORK syntax

 Example

The following example commits the changes made by all commands executed

between the first and second COMMIT WORK commands with

AUTOCOMMIT mode turned off.

COMMIT WORK

 ...

 SQL Command

 SQL Command

 ...

COMMIT WORK

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-98

3.35 CREATE COMMAND

The CREATE COMMAND creates a new stored command. Use stored

commands to quickly and conveniently execute frequently used SQL data-

manipulation statements. To execute the CREATE COMMAND, only users with

the RESOURCE or higher security privileges, and all security and object

privileges necessary to execute the SQL statement may use this command.

A stored command is a compiled SQL data-manipulation statement

permanently stored in the database in executable format. Repeatedly execute

the stored command without waiting for DBMaker to compile and optimize

the command. Stored commands are similar to stored procedures except; they

can only contain a single command and cannot contain program logic.

When creating a stored command, specify the command name and a valid SQL

data-manipulation statement of SELECT, INSERT, UPDATE, or DELETE. Use

host variables as placeholders for column values in the SQL statement. This

permits assigning actual values to the column when executing he command.

To use host variables in a stored command, replace any data or column value

with a question mark (?).

When executing a stored command that has host variables, use result

constants from built-in functions, the NULL keyword, the DEFAULT keyword,

or another host variable. Only use built-in functions that have no argument,

such as RAND(), PI(), CURDATE(), and NOW(), when providing a value for a

host variable. To use NULL value for the host variable, the value represented

by the host variable must be capable of accepting the NULL values. The

number of parameters provided when executing a stored command must

equal the number of host variables in the command definition.

When dropping a table or a column that is referenced by a stored command or

altering a table and modify the column definition using the BEFORE and

AFTER keywords, the stored command becomes invalid and cannot be used

again. Altering a table and adding a column without using the BEFORE and

SQL Commands 3

3-99

@Copyright 1995-2024 CASEMaker Inc.

AFTER keywords has no impact on a stored command. Drop an invalid stored

command to remove it from the database.

Stored command names must be unique in the database. Stored command

names have a maximum length of 128 characters and may contain numbers,

letters, underscore characters and $ and # symbols. The first character may

not be a number.

OR REPLACE: specify OR REPLACE to re-create the stored command that

already exists, that is to say, you can use this clause to change the definition of

an existing stored command.

command_name Name of the new stored command to create

select_statement A valid SELECT statement

insert_statement A valid INSERT statement

update_statement... A valid UPDATE statement

delete_statement..... A valid DELETE statement

CREATE

OR REPLACE

COMMAND AS

insert_statement

command_name

select_statement

delete_statement

update_statement

Figure 3-41 CREATE COMMAND syntax

 Example 1

The following creates a stored command named sc_select and selects all

employees in the Employeesinfo table whose last name begins with the

letter 'A'.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-100

dmSQL> CREATE COMMAND sc_select AS SELECT * FROM Employeesinfo WHERE LastName

LIKE 'A%';

 Example 2

To create a stored command named sc_update that uses host variables to

update the Manager column in the Employeesinfo table, you can use the

following syntax:

dmSQL> CREATE COMMAND sc_update AS UPDATE Employeesinfo SET Manager = ? WHERE

Manager = ?;

or

dmSQL> CREATE COMMAND OR REPLACE sc_update AS UPDATE Employeesinfo SET Manager

= ? WHERE Manager = ?;

 Example 3

To create a stored command named csc1 that uses stored procedure result set

to build a cross join between T1, T2, T3, T4. The result will be output by the

ORDER BY clause.

dmSQL> CREATE COMMAND csc1 AS SELECT * FROM (call t1)AS t1 CROSS JOIN t2,t3 CROSS

JOIN t4 WHERE t1c1=t2c1 AND t3c1=t4c1 AND t1c1 IN(1,4,?) ORDER BY t1c1;

SQL Commands 3

3-101

@Copyright 1995-2024 CASEMaker Inc.

3.36 CREATE DATABASE LINK

The CREATE DATABASE LINK command creates a new public or private link

to a remote database. Database links permits a user to access objects in

remote databases the same way as objects a local database. Only a DBA, a

SYSDBA or a SYSADM may execute the CREATE DATABASE LINK command to

create a public link to a database. Only users with CONNECT or higher security

privileges may execute the CREATE DATABASE LINK command to create a

private link to a database.

A database link creates a connection to a remote database, providing access to

remote data a local database. Although you can directly identify remote

databases, links provide additional benefits since they also contain security

information. This permits connecting to a remote database with a different

user name or an account using a public link.

Provide the link name and the remote database name when creating a

database link. The dmconfig.ini file for both the local and remote database

must contain a database configuration section for the opposite database. This

database configuration section must contain the IP address and the port

number of the opposite database server. Enter the IP address using the

DB_SvAdr keyword and the port number using the DB_PtNum keyword.

The PUBLIC/PRIVATE keywords are optional. These keywords specify the

type of database link to create, public or private. Public links are available to

all users in a database. Private links are available only to the user that creates

them. Only a DBA, a SYSDBA or a SYSADM can create a public database link,

while any user can create a private database link. If both a public and private

link exists with the same name, DBMaker uses the private link instead of the

public link. DBMaker creates a private link by default.

The IDENTIFIED BY keywords are optional. This keyword specifies the user

name and password to use when connecting to the remote database. The user

name provided must be an existing user in the remote database with the

CONNECT or higher security privileges. When the link is used to connect to the

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-102

remote database, the operations a user can perform depend on the security

and object privileges granted to. If a user name is not specified when

connecting to the remote database, DBMaker uses the current user name in

the local database.

Link names have a maximum length of 128 characters, and may contain

numbers, letters, the underscore character, and the symbols $ and #. The first

character may not be a number.

link_name Name of the link to create to a remote database

remote_db_name Name of the remote database to connect to

user_name Name of a user in the remote database with CONNECT or

higher security privileges

password Password of the user in the remote database

CREATE link_nameDATABASE LINK

user_nameIDENTIFIED BY

password

CONNECT TO remote_db_name

PRIVATE

PUBLIC

Figure 3-42 CREATE DATABASE LINK syntax

SQL Commands 3

3-103

@Copyright 1995-2024 CASEMaker Inc.

 Example 1

The following example creates a public database link named FieldLink to the

remote FieldOffice database. The user creating the link must have DBA,

SYSDBA or SYSADM security privileges in the local database and must have

the same user name in both the local and remote databases. Using this link

automatically connects the user to the remote database with the same user

name as the link creator. It provides the security and object privileges granted

to this user in the remote database.

dmSQL> CREATE PUBLIC Database LINK FieldLink CONNECT TO FieldOffice;

 Example 2

The following example creates a public database link named FieldLink to the

remote FieldOffice database. The user creating the link must have DBA,

SYSDBA or SYSADM security privileges in the local database. Using this link

automatically connects the user to the remote database with the user name

LinkUser and password dil3ryx9. It provides the security and object

privileges granted to this user.

dmSQL> CREATE PUBLIC Database LINK FieldLink CONNECT TO FieldOffice

 IDENTIFIED BY LinkUser dil3ryx9;

 Example 3

The following creates a private database link named FieldLink to the remote

FieldOffice database. The user creating the link must the same user name in

both the local and remote databases. Using this link automatically connects

the user to the remote database with the same user name as the local

database. It uses the security and object privileges granted to the user account

in the remote database. If there is a public link with the same name, the

private link is used instead.

dmSQL> CREATE PRIVATE Database LINK FieldLink CONNECT TO FieldOffice;

 Example 4

The following creates a private database link named FieldLink to the remote

FieldOffice database. Using this link automatically connects a user to the

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-104

remote database with the user name Vivian and password a23456. It

provides the security and object privileges granted to this user. This is useful if

you have a different user name in the local and remote databases. If there is a

public link with the same name, the private link is used instead.

dmSQL> CREATE PRIVATE Database LINK FieldLink CONNECT TO FieldOffice

 IDENTIFIED BY Vivian a23456;

SQL Commands 3

3-105

@Copyright 1995-2024 CASEMaker Inc.

3.37 CREATE DOMAIN

The CREATE DOMAIN command creates a new domain with an optional

default value and optional integrity constraints. Any user with RESOURCE or

higher security privileges can execute the CREATE DOMAIN command.

A domain is a user-defined data type that brings together a data type, a default

value, and a value constraint. Use a domain in the column definition of

CREATE TABLE or ALTER TABLE ADD COLUMN statements in place of a data

type to define the set of valid values entered in the column.

For example, create a domain based on the DATE data type with a default

value of NOW() that only accepts dates between January 1st, 1900 and today.

Any column created using this domain will inherit these characteristics,

allowing consistent definitions for columns that contain the same data type

without specifying default values and value constraints each time.

When creating a domain, specify the data type and optionally specify a default

value and a value constraint. Any data type may be used that DBMaker

supports when creating a domain, except the SERIAL data type. Specifies

default values and value constraints using the DEFAULT and CHECK

keywords.

Domains can be created with the TEXT CONVERTER syntax in the CREATE

DOMAIN clause. DBMaker uses the TEXT CONVERTER function to convert the

CLOB, NCLOB, BLOB, and FILE data to pure text for creating text indexes and

PURETEXT() UDF when the TEXT CONVERTER syntax on the domain is

specified. The TEXT CONVERTER function-name should contain one argument

of a BLOB related type. The return type must be CLOB or NCLOB data types or

an error is returned. At most 32767 domains can be created using the TEXT

CONVERTER syntax.

The DEFAULT keyword is optional. This keyword specifies a default value

inserted into a column if no value is provided when inserting a new row.

Constants, results from built-in functions, or the NULL keyword may be used

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-106

as the default value. Only use built-in functions that have no argument like

PI(), NOW(), or USER(), when creating a domain. If using the NULL keyword

as the DEFAULT value, the column cannot be defined with the NOT NULL

keyword.

The CHECK keyword is optional. This keyword is used to specify a range of

acceptable values (constraints) that may be entered in a column. The

expression that specifies the range of acceptable values may be any expression

that evaluates to true or false. The VALUE keyword may be used in the

expression in conjunction with the CHECK keyword to represent the value of

the column. If an SQL statement does not satisfy the CHECK conditions, it will

not be processed.

Specifying the default values and value constraints using domains gives the

same results as specifying them in a standard column definition. However,

default values provided in the column definition will override the default

value of the domain and the column definition can add value constraints in

addition to those of the domain.

Ensure the value constraints specified in a column definition do not conflict

with the value constraints provided by the domain. DBMaker does not check

for conflicting constraints when creating a column based on a domain. The

conflicting constraints may prevent inserting or updating some or all of the

data.

Domain names have a maximum length of 128characters, and may contain

numbers, letters, the underscore character, and the symbols $ and #. The first

character may not be a number.

NOTE Only functions that do not take an argument may be used when

creating domains.

domain_name Name of the domain that to create

data_type Data type to use for the domain

constant Constant value to be used if no value is inserted

function_name Built-in function to be used if no value if inserted

SQL Commands 3

3-107

@Copyright 1995-2024 CASEMaker Inc.

constraint_name Name of constraint to be applied to domain

boolean_expression Any expression that evaluates to true or false

CREATE DOMAIN domain_name

AS

DEFAULT

constant

NULL

function_name
CHECK boolean_expression

data_type

TEXT CONVERTER function-name

Figure 3-43 CREATE DOMAIN syntax

 Example 1

The following creates a domain named AllNum based on the INTEGER data

type.

dmSQL> CREATE DOMAIN AllNum AS INTEGER;

 Example 2

The following creates a domain named AllNum based on the INTEGER data

type that has a default value of 0.

dmSQL> CREATE DOMAIN AllNum AS INTEGER DEFAULT 0;

 Example 3

The following creates a domain named AllNum based on the INTEGER data

type, which does not allow NULL values.

dmSQL> CREATE DOMAIN AllNum AS INTEGER CHECK VALUE IS NOT NULL;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-108

 Example 4

The following creates a domain named PosNum based on the INTEGER data

type, which only allows values from 0 to 100, and has a default value of 0.

dmSQL> CREATE DOMAIN PosNum AS INTEGER DEFAULT 0 CHECK VALUE >= 0 AND VALUE <=

100;

 Example 5

The following creates a domain named ValidDate based on the DATE data

type, which uses the NOW() function as both the default value and one of the

value constraints.

dmSQL> CREATE DOMAIN ValidDate AS DATE

 DEFAULT NOW()

 CHECK VALUE > '01/01/1900' AND VALUE <= NOW();

SQL Commands 3

3-109

@Copyright 1995-2024 CASEMaker Inc.

3.38 CREATE GROUP

The CREATE GROUP command creates a new user group. Users in this group

gain all object privileges granted to the group. Only users with SYSADM,

SYSDBA or DBA security privileges can execute the CREATE GROUP command.

Groups simplify the management of object privileges in a database with a

large number of users. Use a group to collect all users that require the same

object privileges. Any object privileges granted for the group are automatically

granted to all members in the group. After creating a new group, add users to

the group using the ADD TO GROUP command.

DBMaker also provides support for nested groups. Add a group as a member

in another group, provided there are no circular references from the group

being added. For example, you cannot add group1 as a member of group2 if

group2 is already a member of group1, and cannot add group 1 as a member

of itself. Add a group, as a member in another group is the same as adding a

user.

The group name cannot be SYSTEM, PUBLIC, or GROUP, or the same as any

existing user or group names. Group names have a maximum length of 128

characters and may contain letters, numbers, underscore characters, and

symbols $ and #. The first character may not be a number.

group_name Name of the new group to create

CREATE GROUP group_name

Figure 3-44 CREATE GROUP syntax

 Example

The following creates a new group named Manager.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-110

dmSQL> CREATE GROUP Manager;

SQL Commands 3

3-111

@Copyright 1995-2024 CASEMaker Inc.

3.39 CREATE HASH INDEX

Hash indexes can only be created on memory tables. The benefit of a hash

index is that users have very quick access to data stored in the hash index.

Hash indexes also improve equal expression and equal join performance. To

create a hash index on a table users can use the CREATE HASH INDEX

index_name ON table_name (column_name, …) [bucket n]; where index name is

the name of the hash index being created, table name is the name of the

memory table, column name is the name of the column in the memory table

being effected. This value cannot specify asc/desc columns. Bucket n sets the

array size for the hash table being created.

index_name Name of the new hash index to create

table_name Name of the memory table you are creating the index on

column_name Name of the column(s) created on the hash index

bucket n sets the array size

ON table_name

,

column_name

)

CREATE index_nameINDEXHASH

[bucket n]

(

Figure 3-45 CREATE HASH INDEX syntax

 Example

With the memory table created, a hash index idx1, can be made on memory

table tb_mem, using columns c01_int and c02_char with an array size of 31.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-112

dmSQL> CREATE HASH INDEX idx1 ON tb_mem (c01_int, c02_char) BUCKET 31;

SQL Commands 3

3-113

@Copyright 1995-2024 CASEMaker Inc.

3.40 CREATE INDEX

The CREATE INDEX command creates a new index on an existing table. Use

indexes to increase the performance of queries by quickly locating specific

rows in a table without examining the entire table. Only the table owner, a

DBA, or a user with the INDEX privilege may execute the CREATE INDEX

command on a table.

An index is a mechanism that provides fast access to specific rows in a table

based on the values of one or more columns from the table (known as the

key). Indexes contain the same data as the key columns, but the data is

structured and sorted to make retrieval much faster. Once an index is created

on a table, its operation is transparent to users of the database. The DBMS

uses the index to improve query performance whenever possible.

When creating an index specify the index name, the name of the table creating

the index on and the name of the key columns in the table. Create an index on

one or more columns, up to a maximum of 32 columns. Any column in a table

can be used in an index. DBMaker limits indexes to a maximum record size of

4,000 bytes.

Creating indexes for frequently used expressions will improve query

performance. For XML columns, create the index on XML UDF: extract() and

extractvalue() to speed up xpath queries. Please note the primary differences

between extract() and extractvalue(). Extract() allows multi-value, one value,

or zero value results, however, asc/desc and unique index are not allowed.

Extractvalue() only allows UDF results having one value or zero values. If the

UDF result is multi-value, then the create index fails for the existing tuple and

the insert data fails for the newly inserted tuple, however, asc/desc and

unique index are allowed with extractvalue().

Filtered Indexes (Conditional Index) is an index with the WHERE clause. A

filtered index is an optimized index especially suited to cover queries that

select from a well-defined subset of data. That is to say, Filtered Index is

inserted into index page before filter, filtered index’s data not include all rows,

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-114

it can be partial of rows defined by filter condition (WHERE clause). It uses a

filter predicate to select a portion of rows in the table. A well-designed filtered

index can improve query performance as well as reduce index maintenance

and storage costs compared with full-table indexes.

The WHERE clause can be any combination of the following predicate,

includes:

• any columns of the table

• constant values

• comparison: =, >, >=, <, <=, !=. ex: c1>=3

• like, ex: c3 like 'abc'

• is null, is not null. ex: c4 is null

• in list, ex: c5 in (1,3,5)

• operator: +, -, *, / : ex: c1+c2>5

• UDF, ex: abs(c6)>5

• blob operator: match, contain

• combination of AND, ex: c1=3 and c2=5 and c3=7

• combination of OR, ex: c1=3 or c2=5 or c3=7

The WHERE clause can NOT allow the following statements:

• sub-query

• host variable

• mix of AND and OR, ex: c1=3 or c2=5 and c3=7

The following XPath rules help build useful indexes. The XPath:

• should not include a predicate

• should not include a function

• should include an absolute location path.

SQL Commands 3

3-115

@Copyright 1995-2024 CASEMaker Inc.

• may only allow 'child' axis

• should have a result nodeset containing only leaf nodes (simple type

element node or attribute node)

• the qname must be identical for all element nodes

• the name of each attribute must be identical for all attribute nodes

• must be base on an attribute node or an element leaf node

• cannot be a complex non-leaf node or a comment node, for example,

'/order/items/item/@product' or '/order/date'

• should not allow position '/order/items/item[1]/@product'

• may allow the function 'count(/order/items/item)'

• should not allow expressions

The UNIQUE keyword is optional. This keyword specifies whether an index is

unique. In a unique index, no more than one row can have the same key value

and cannot contain duplicate values. Each NULL value in an index is treated, as

a unique value making it possible to have multiple rows with NULL values in a

unique index. When creating an index on a non-empty table, DBMaker checks

whether all existing keys are distinct. If duplicate keys exist, DBMaker returns

an error message and does not create the index. Whenever you insert or

update a record in a table that has a unique index, DBMaker checks to ensure

there is no existing record that already has the same key values as the new or

updated record. DBMaker does not create unique indexes by default. When

creating a unique index, specify using the UNIQUE keyword.

The AUTO keyword is optional. This keyword specifies whether an index can

be auto performed by auto index daemon. It's behavior is similar to non-

unique index, but it can be automatically created or dropped by the auto index

daemon. If the option AUTOCOMMIT is set ON, DBMaker only requires

Update(U) lock when creating an auto index, which means DBMaker allows

other users to query the table simultaneously.When creating an auto index,

users need to specify the AUTO keyword.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-116

The ASC/DESC keywords are optional. These keywords specify whether the

sort order of the index is ascending or descending. You can specify the sort

order on a column-by-column basis, so it is possible to have some index

columns in ascending order while others are in descending order. The sort

order of an index may affect the order of query output in some cases. If an

index is in descending order, it is possible the output will appear in

descending order even though you did not specify this in the query. If have a

specific sort order for a query, specify it using the ORDER BY clause. The

default sort order for columns in an index is ASC.

The FILLFACTOR keyword is optional. This keyword specifies the percentage

of an index page that can be filled. This allows the database to optimize the use

of index pages by reserving space for updates for existing records. The

number parameter can have a value from 1 to 100, which represents a

fillfactor of 1% to 100%. For frequently updated tables, after indexing the

table set a low fillfactor value (e.g., 50) to reserve free space for inserting new

key values. If you plan to update the table infrequently, leave the fillfactor at

the default value of 100.

The DISABLE keyword is optional. This keyword specifies whether to disable

index or not when it is created. A disabled index will be unavailable. Insert,

delete, update on column won’t affect the index. Users can disable index when

it is created or use DISABLE INDEX statement to disable index after.

When you load data into a table, DBMaker updates all indexes on that table

each time a new record is inserted. For this reason, try to load all data before

creating an index on a table. It is much more efficient to create an index after

loading a large amount of data than to create an index before loading the data.

Index names must be unique for each table. Index names have a maximum

length of 128 characters and may contain numbers, letters, underscore

characters, and symbols $ and #. The first character may not be a number.

Indexes can also be created in tablespaces different from where their master

tables reside.

index_name Name of the new index to create

SQL Commands 3

3-117

@Copyright 1995-2024 CASEMaker Inc.

table_name Name of the table you are creating the index on

column_name Name of the column(s) created on the index

expression Expression created on the index

number Value to use for the fillfactor

tablespace_name Name of the tablespace where the index is created

Figure 3-46 CREATE INDEX syntax

 Example 1

The following creates an index named NameIndex on the FName and LName

columns of the Employeesinfo table; the index is not unique and may contain

duplicate values.

dmSQL> CREATE INDEX NameIndex ON Employeesinfo (FName, LName);

 Example 2

The following creates an index named NameIndex on the FName and LName

columns of the Employeesinfo table, both sorted in descending order.

dmSQL> CREATE INDEX NameIndex ON Employeesinfo (FName DESC, LName DESC);

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-118

 Example 3

The following example creates a unique index named ClassIndex on the

Course and Section columns of the Classes table; index may not contain

duplicate values.

dmSQL> CREATE UNIQUE INDEX ClassIndex ON Classes (Course, Section);

 Example 4

The following creates a unique index named ClassIndex on the Course and

Section columns of the Classes table; the index may not contain duplicate

values and has a fillfactor of 80.

dmSQL> CREATE UNIQUE INDEX ClassIndex ON Classes (Course, Section) FILLFACTOR 80;

 Example 5

The following creates a unique index named ExprIndex on the

concat(Course, Section) columns of the Classes table; the index may not

contain duplicate values and has a fillfactor of 80.

dmSQL> CREATE UNIQUE INDEX ExprIndex ON Classes (concat(Course,Section))

FILLFACTOR 80;

 Example 6

The following creates an auto index named AUTO_1D_2 on the column ID and

NAME of the table tb_staff (sorted in descending order).

dmSQL> CREATE AUTO INDEX AUTO_ID_2 ON tb_staff (ID DESC, NAME);

 Example 7

The following creates an auto index named AUTO_1DX_expr on the

expression basepay+bonus of the table tb_salary (sorted in descending

order).

dmSQL> CREATE AUTO INDEX AUTO_IDX_expr ON tb_salary (basepay+bonus DESC);

 Example 8

The following creates a filtered index named FILIDX_ income using the

where clause for table tb_salary.

SQL Commands 3

3-119

@Copyright 1995-2024 CASEMaker Inc.

dmSQL> CREATE INDEX FILIDX_income ON tb_salary(basepay+bonus,tax)WHERE ID>30;

 Example 9

The following example creates a disabled index named ClassIndex on the

Course and Section columns of the Classes table.

dmSQL> CREATE INDEX ClassIndex ON Classes (Course, Section) DISABLE;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-120

3.41 CREATE PROCEDURE

The CREATE PROCEDURE command generates a new stored procedure. Using

stored procedures allows the database engine to bypass repeatedly compiling

and optimizing SQL commands. This provides increased performance of

frequently repeated tasks. Users with security privileges of RESOURCE level or

higher and also having security and object privileges necessary to execute the

SQL statement may use the CREATE PROCEDURE command.

A stored procedure is a compiled SQL data-manipulation statement

permanently stored in a database in executable format. It is executed as a

command in interactive SQL, or invoked from application programs, trigger

actions or by other stored procedures.

When creating a stored procedure, specify the procedure's name and a valid

SQL data-manipulation statement of SELECT, INSERT, UPDATE, or DELETE.

Use host variables as placeholders for column values in the SQL statement.

Later when executing the command actual values are assigned to the column.

To use host variables in a stored command, replace any data or column value

with a question mark (?).

FROM FILE

OR REPLACE: specify OR REPLACE to re-create the procedure if it already

exists, that is to say, you can use this clause to change the definition of an

existing procedure.

File_-name File name of procedure to create
OR REPLACE

PROCEDURE file_nameCREATE FROM

Figure 3-47 CREATE PROCEDURE FROM FILE syntax

 Example: create or replace procedure

dmSQL> CREATE PROCEDURE FROM 'file-name';

dmSQL> CREATE OR REPLACE PROCEDURE FROM 'file-name';

SQL Commands 3

3-121

@Copyright 1995-2024 CASEMaker Inc.

ESQL SP

OR REPLACE: specify OR REPLACE to re-create the procedure if it already

exists, that is to say, you can use this clause to change the definition of an

existing procedure.

module_name The module name of procedure to create

procedure_name Name of procedure to create

procedure_paramter Parameters of procedure to create

procedure_return_result…Rreturn a result set from the procedure to create

NOTE Not support create or replace command syntax in execute procedure

or set autocommit off, it will throw error while call sp to replace the

command.

procedure_parameter

CREATE

OR REPLACE

PROCEDURE

(

,

)

procedure_name

module_name. procedure_name

procedure_return_result

Figure 3-48 CREATE PROCEDURE syntax

. parameter_namedata_type

IN

OUT

INPUT

OUTPUT

.

Figure 3-49 CREATE PROCEDURE: procedure_parameter syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-122

. .STATUS

RETURNS
,

data_tupe result_nameSTATUS

Figure 3-50 CREATE PROCEDURE: procedure_return_result syntax

 Example: create or replace procedure.

- CREATE ESQL SP FROM FILE:

dmSQL> CREATE OR REPLACE PROCEDURE FROM 'proc1.ec';

- Write the ec file:

EXEC SQL CREATE OR REPLACE PROCEDURE proc1 (char(10) i1, char(10) i2 output)

 returns char(10) o1, char(10) o2;

{

EXEC SQL BEGIN CODE SECTION;

EXEC SQL select FName from tb_staff where LName =:i1 into:i2;

EXEC SQL returns select * from tb_staff into :o1,:o2;

EXEC SQL END CODE SECTION;

}

JAVA SP

OR REPLACE: specify OR REPLACE to re-create the procedure if it already

exists, that is to say, you can use this clause to change the definition of an

existing procedure.

module_name The module name of procedure to create

procedure_name Name of procedure to create

procedure_parameter ... Parameters of procedure to create

date_type Date type of return variable

variable_name Name of return variable

SQL Commands 3

3-123

@Copyright 1995-2024 CASEMaker Inc.

package.class.method ... The java method of procedure to create

argtype The argument type of java method

java_sourcecode_jar_file… The physical jar files of java source code

related_jar_file Logical jar file

CREATE

OR REPLACE

PROCEDURE

(

,

)

procedure_name

module_name procedure_name

procedure_parameters

RETURNS STATUS

LANGUAGE JAVA

RETURNS STATUS

data_type - variable_name

,

FROM

(

,
)

argtype

package class method ’ ,

java_sourcecode_jar_file

owner.java_sourcecode_jar_file

,

related_jar_file

owner.releated_jar_file

‘

;

Figure 3-51 CREATE JavaSP syntax

 Example: create or replace procedure.

- Write a java file AddStaff.java

package staff;

import java.sql.*;

public class AddStaff

{

// Add an row into the tb_staff table

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-124

public static void addStaff(String fName, String lName)

throws Exception

{

// Register DBMaker JDBC Driver

Class.forName("dbmaker.sql.JdbcOdbcDriver");

// Connect to database

Connection conn =

DriverManager.getConnection("jdbc:default:connection");

// Prepare SQL statement

PreparedStatement pstmt =

conn.prepareStatement("insert into tb_staff values(?,?)");

// Set values of the dynamic SQL argument

pstmt.setString(1, fName);

pstmt.setString(2, lName);

// Execute the dynamic SQL statement

pstmt.execute();

// Close the dynamic SQL statement

pstmt.close();

// Close the connection

conn.close();

}

}

- Compile the AddStaff.java file in DOS command line, then it will create the

AddStaff.class file in the current directory.

javac AddStaff.java

- Copy AddStaff.class to current_dir\staff.

- Zip the class, It will create the addStaff.jar file in the current directory.

SQL Commands 3

3-125

@Copyright 1995-2024 CASEMaker Inc.

jar cvf addStaff.jar staff\AddStaff.class

- Make directory jar\SYSADM in <DB_SpDir>, and then move the addStaff.jar

file into <DB_SpDir>\jar\SYSADM.

- Add jarfile

dmSQL> ADD JARFILE addStaff addStaff.jar;

- Execute to create or replace the Java SP:

dmSQL> CREATE OR REPLACE PROCEDURE addStaff(char(12) fname,char(12) lname)

RETURNS STATUS LANGUAGE JAVA FROM

 'staff.AddStaff.addStaff(String,String)',addStaff;

SQL SP

OR REPLACE: specify OR REPLACE to re-create the procedure if it already

exists, that is to say, you can use this clause to change the definition of an

existing procedure.

module_name The module name of procedure to create

procedure_name Name of procedure to create

procedure_parameter Parameters of procedure to create

date_type Date type of return variable

variable_name Name of return variable

sp_declare_main The main declare variable section of procedure to create

sp_statement_main The main statement section of procedure to create

NOTE Not support create or replace command syntax in execute procedure

or set autocommit off, it will throw error while call sp to replace the

command.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-126

CREATE

OR REPLACE

PROCEDURE

(

,

)

procedure_name

module_name.procedure_name

procedure_parameters

RETURNS

LANGUAGE SQL

BEGIN

sp_declare_ main

; ;

sp_statement_main

END ;

Figure 3-52 CREATE SQL SP syntax

 Example: create or replace procedure:

- CREATE SQL SP FROM FILE:

dmSQL> CREATE OR REPLACE PROCEDURE FROM 'proc1.sp';

- Write the sp file:

dmSQL> CREATE OR REPLACE PROCEDURE proc1

LANGUAGE SQL

BEGIN

 DECLARE cur CURSOR WITH RETURN FOR select * from tb_staff;

 OPEN cur;

END;

SQL Commands 3

3-127

@Copyright 1995-2024 CASEMaker Inc.

3.42 CREATE REPLICATION

The CREATE REPLICATION command generates a new table replication for a

table. Replications, synonyms, or views may not be created on a temporary

table. Only the table owner, a DBA, a SYSDBA or a SYSADM can execute the

CREATE REPLICATION command.

A table replication creates a full or partial copy of a table in a remote location.

This allows users in remote locations to work with a local copy of data. The

local copy remains synchronized with the databases in other locations. This

way each database can service data requests immediately and efficiently,

without having to go to another machine over a slower network connection.

This is not the same as backing up the database to a remote location, since the

synchronization is done on a transaction-by-transaction basis by the DBMS

itself, without any intervention from users.

There are two primary types of table replication, synchronous and

asynchronous. Synchronous table replication modifies the remote table at the

same time it modifies the local table. Asynchronous table replication stores

changes to the local table and modifies the remote table based on a schedule.

Use the CREATE REPLICATION command to create synchronous and

asynchronous table replications.

Synchronous table replication in DBMaker uses a global transaction model, in

which the replication of data to the remote table is treated as an integral part

of the local transaction. This means that if the replication of data to the remote

database fails, the transaction on the local table will also fail.

Asynchronous table replication in DBMaker uses transaction logs to replicate

data to the remote table. Modifications to the local table are stored in the

transaction log, and are replicated to the remote table according to a

predefined schedule. Using the transaction log enables DBMaker to treat the

local transaction and the remote transaction independently, permitting

updates to local tables normally even if the remote connection is not available.

This allows asynchronous table replications to tolerate network and remote

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-128

database failures, since the replication will keep trying until any failures are

corrected.

When creating a table replication specify the replication name, the local table

name, and the names of the remote destination tables. Both the local table and

the remote tables must already exist in their respective databases. DBMaker

will automatically drop any replications when dropping a table.

DBMaker will replicate the entire table unless using a column list. When

replicating an entire table without a column list, the columns in the local table

and corresponding columns in the remote table must have the same names

and data types. Columns in the local table (from left to right) will replicate to

the corresponding columns named in the column list for the remote table.

Specify which columns in the local table correspond to columns in the remote

table by providing a column list for both the local and remote tables. In all

cases, include the primary key columns in the replication and the number and

data types of primary key columns in both tables must match.

DBMaker does not identify replications using fully qualified names, but

associates them with tables instead. All replication names on the same table

must be unique. Synchronous table replications operate with the same

security and object privileges as the creator, unless the remote table is

specified using links. In this case, the replication operates with the same

security and object privileges as the link. Asynchronous replications operate

with the same security and object privileges as the user specified in the

IDENTIFIED BY clause of the CREATE SCHEDULE command that is associated

with the database containing the remote table.

The ASYNC keyword is optional. This keyword specifies that the replication

being created is an asynchronous table replication. Before creating an

asynchronous table replication, create a replication schedule for the remote

database that contains the remote table. If this keyword is not used, DBMaker

creates a synchronous table replication by default.

The optional keyword "WHERE" clause specifies the search condition used

when replicating data to a remote table. DBMaker only replicates rows that

SQL Commands 3

3-129

@Copyright 1995-2024 CASEMaker Inc.

satisfy the search condition. See the WHERE clause in the description of the

SELECT command for more information.

The CLEAR DATA/FLUSH DATA/CLEAR AND FLUSH DATA keywords are

optional. These keywords specify the operations that take place when creating

a replication. The CLEAR DATA keywords delete all data from the remote table

when generating the replication. The FLUSH DATA keywords copy all data

that matches a search condition into the remote table. The CLEAR AND FLUSH

DATA keywords clear all data from the remote table, and then copy all data

that matches a search condition into the remote table.

The NO CASCADE keywords are optional. It takes action only when the

replication's type is asynchronous. The keyword specifies if it is a cascade

replication. Let us use an example to describe cascade replications. Commands

flow in most organizations, from the highest level to the basic level. This is

similar to replicating data from A to B, and then to C. This is a typical kind of

cascade replication. The no-cascade model replicates data to B and B

replicates data to A. If your data model works like this, you can turn on the NO

CASCADE option. The default specification is CASCADE.

If you drop a table or a column that is referenced by an asynchronous table

replication, alter a table and modify the column definition, or alter a table and

add a column using the BEFORE and AFTER keywords, the synchronous

replication becomes invalid and cannot be used again. Altering a table and

adding a column without using the BEFORE and AFTER keywords has no

impact on a synchronous replication. Asynchronous table replications are not

affected when you alter a table. Drop an invalid replication to remove it from

the database. Any replications created on a table are dropped automatically

when dropping a table.

Replication names have a maximum length of 128 characters, and may contain

numbers, letters, the underscore character, and the symbols $ and #. The first

character may not be a number.

replication_name ... Name of the table replication to create

local_table_name Name of the local table to replicate

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-130

column_name 1. Name of a column in the local table

 2. Name of a column in the remote table

search_condition Conditions a row must meet to be replicated

remote_table_name Name of the table in the remote database

local_table_name

REPLICATE TO

CREATE

WITH PRIMARY AS

column_name

,

)(

WHERE search_condition

,

remote_table_name

column_name

,

)(

CLEAR DATA

FLUSH DATA

CLEAR AND FLUSH DATA

ASYNC

REPLICATION replication_name

Figure 3-53 CREATE REPLICATION syntax

SQL Commands 3

3-131

@Copyright 1995-2024 CASEMaker Inc.

 Example 1

The following creates a replication named EmpRep for the local table named

Employeesinfo. The remote database is identified in the database

configuration section named FieldOffice in the local dmconfig.ini file. The

remote table is also named Employeesinfo and all column names and data

types in both tables are the same.

dmSQL> CREATE REPLICATION EmpRep WITH PRIMARY AS Employeesinfo

 REPLICATE TO FieldOffice:Employeesinfo;

 Example 2

The following is similar to the above example, but all data in the remote table

is deleted and any data in the local table is replicated to the remote table.

dmSQL> CREATE REPLICATION EmpRep WITH PRIMARY AS Employeesinfo

 REPLICATE TO FieldOffice:Employeesinfo

 CLEAR AND FLUSH DATA;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-132

3.43 CREATE SCHEDULE

The CREATE SCHEDULE command creates a replication schedule for

asynchronous table replications. Synchronous table replications do not use

schedules, so the CREATE SCHEDULE command has no effect on a

synchronous table replication. Only users with DBA, SYSDBA or SYSADM

security privileges can execute the CREATE SCHEDULE command.

A table replication creates a full or partial copy of a table in a remote location.

This allows users in remote locations to work with a local copy of data. The

local copy remains synchronized with the databases in other locations. This

way each database can service data requests immediately and efficiently,

without having to go to another machine over a slower network connection.

This is not the same as backing up the database to a remote location, since the

synchronization is done on a transaction-by-transaction basis by the DBMS

itself, without any intervention from users.

The NO CASCADE keywords are optional. It takes action only when the

replication type is asynchronous. The keyword specifies cascade replication.

Let us use an example to describe cascade replications. Commands flow in

most organizations from the highest level to the basic level. This is similar to

replicating data from A to B, and then to C. This is typical cascade replication.

The no-cascade model replicates data to B and B replicates data to A. If your

data model works like this, you can turn on the NO CASCADE option. The

default specification is CASCADE.

DBMaker not only allows asynchronous table replication to other DBMaker

databases, but also to Oracle, SYBASE, INFORMIX, and Microsoft SQL Server

databases. This type of replication is known as heterogeneous table

replication. Heterogeneous table replication allows DBMaker to coexist with

other databases in a heterogeneous environment. Since DBMaker needs to

preprocess the replicated data before sending it to a third-party remote

database, specify the type of DBMS replicating to when creating a schedule in

a heterogeneous environment. Do this with the ORACLE, SYBASE, INFORMIX,

SQL Commands 3

3-133

@Copyright 1995-2024 CASEMaker Inc.

and MICROSOFT keywords, where ORACLE indicates a remote Oracle

database, SYBASE indicated a remote SYBASE database, INFORMIX indicated a

remote INFORMIX database, and MICROSOFT represents a remote Microsoft

SQL Server database.

When creating a heterogeneous table replication, the CLEAR DATA, FLUSH

DATA, or CLEAR AND FLUSH DATA keywords cannot be used. Manually delete

or insert data in the third-party remote database to put the table in its initial

state before the replication begins. In addition, performing schema checking

on the third-party remote database cannot be done. Check schema to ensure

that columns and data types in the remote table are compatible with the

columns and data types in the local table. When creating a schedule for a

heterogeneous table replication, use the WITH NO CHECK keywords to

prevent DBMaker from performing schema checking (See the description for

the WITH NO CHECK keyword later in this section). DBMaker makes use of the

ODBC Driver Manager to perform heterogeneous table replication; the

DBMaker server must be located on Windows platforms. The third-party

remote databases may be located on either Windows or UNIX platforms.

BEGIN AT specifies the date and time of the first replication for an

asynchronous table replication. The date must be in yyyy/mm/dd format,

where yyyy is the year in the range 1970 to 2038, mm is the month in the

range from 01 to 12, and dd is the date in the range 01 to 31. The time must be

in hh:mm:ss format, where hh is the hour in the range from 00 to 23, mm is the

number of minutes in the range from 00 to 59, and ss is the number of seconds

in the range from 00 to 59. The value for the year must be in the range from

1970 to 2038. Include the date and time when using the BEGIN AT keyword. If

you change the date or time of the first replication to a date in the future after

a replication is already running, any table data that has not been replicated to

the remote database will wait until the new time for replication.

The EVERY command defines the interval between successive replications for

an asynchronous table replication. The interval may be provided as

hours/minutes/seconds, days, or a combination of both. To specify the

number of hours/minutes/seconds, use EVERY hh:mm:ss. Specify the number

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-134

of days with EVERY d DAYS, where d is the number of days in the range from 1

to 365. To specify a combination of both, use EVERY d DAYS AND hh:mm:ss.

RETRY indicates how many times DBMaker should try replicating table data if

there is an error while trying to process a single SQL statement, such as a lock

time-out error, or rollback to save point due to a full Journal. To specify the

number of times to try, use RETRY n TIMES, where n is the number of times to

try in the range from 0 to 2,147,483,647. The default value is 0. DBMaker

waits until the next scheduled replication to send any table data that was not

replicated successfully when not using the RETRY keyword and an error

occurs while processing a statement, encounters a network error, remote

database error, or any error, which requires a transaction rollback.

The AFTER keyword is optional. This keyword is used together with the

RETRY keyword to specify the interval between successive retries in the event

of an error. To specify the interval use the AFTER s SECONDS, where s is the

number of seconds in the range from 0 to 2,147,483,647. The default value is

5.

The STOP ON ERROR keywords are optional. These keywords specify the

action DBMaker should take when data in the remote database has been

updated in such a way that the replication could not take place. This could

include situations where DBMaker tries to delete a previously deleted record

from the remote table or tries to insert a record into the remote table that

already exists. DBMaker provides two options when encountering this type of

error, STOP ON ERROR and IGNORE ON ERROR. STOP ON ERROR indicates

DBMaker will stop replicating data when an error of this type occurs, and

IGNORE ON ERROR indicates that DBMaker will ignore the data that caused

the error and continue replicating the remaining data. The default behavior is

IGNORE.

The WITH NO CHECK keywords are optional. Since DBMaker cannot currently

perform schema checking on a third-party database, use this keyword when

creating a heterogeneous table replication. When using the WITH NO CHECK

keywords, users must take responsibility for schema checking, and ensure

that columns and data types in the remote table are compatible with the

SQL Commands 3

3-135

@Copyright 1995-2024 CASEMaker Inc.

columns and data types in the local table. The WITH NO CHECK keywords are

not necessary if performing a homogeneous table replication (e.g., from one

DBMaker database to another DBMaker database).

The IDENTIFIED BY keywords specify the user name and password to use

when connecting to the remote database. The user name provided must be an

existing user in the remote database with sufficient privileges on the remote

table to perform INSERT, DELETE, and UPDATE operations. When replicating

table data to the remote database, the operations you can perform on the

remote table depend on the security and object privileges granted to that user.

remote_database_name…Name of the table in the remote database to create

the replication schedule for; cannot be a database link.

yyyy/mm/dd Date to begin replication

hh:mm:ss 1. Time to begin replication

 2. Replication time interval

d Day interval for replication to the remote table

n times to retry in the event of a failure

s seconds to wait before retrying in the event of a failure

user_name remote database account User name

password remote database account Password

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-136

CREATE SCHEDULE FOR REPLICATION TO remote_database_name

BEGIN AT yyyy/mm/dd hh:mm:ss

EVERY d DAYS AND hh:mm:ss

EVERY d DAYS

EVERY hh:mm:ss

STOP ON ERROR

RETRY n TIMES

AFTER s SECONDS

,

user_nameIDENTIFIED BY

password

WITH NO CHECK

()

ORACLE

MICROSOFT

Figure 3-54 CREATE SCHEDULE syntax

 Example 1

The following creates a replication schedule for the asynchronous replication

named EmpRep. The date and time of the first replication is set to a new date

SQL Commands 3

3-137

@Copyright 1995-2024 CASEMaker Inc.

in the future, with a replication interval of 7 days and 12 hours, the date is in

the future; any table data that has not been replicated will wait until the new

date before it is replicated.

dmSQL> CREATE SCHEDULE FOR REPLICATION TO EmpRep

 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00;

 Example 2

The following example creates the same schedule as the previous example but

also sets the times to retry after an error, lock time-out and a rollback to save

point due to a full Journal to 3 times with an interval of 5 seconds between

successive tries.

dmSQL> CREATE SCHEDULE FOR REPLICATION TO EmpRep

 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00

 RETRY 3 TIMES AFTER 5 SECONDS;

 Example 3

The following creates the same schedule as the example above and sets the

action DBMaker should take when data in the remote database has been

updated in such a way that the replication cannot take place to STOP:

dmSQL> CREATE SCHEDULE FOR REPLICATION TO EmpRep

 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00

 RETRY 3 TIMES AFTER 5 SECONDS

 STOP ON ERROR;

 Example 4

The following creates the same schedule as the example above and sets the

user name and password to use when connecting to the remote database to

RepUser and rdejpe88.

dmSQL> CREATE SCHEDULE FOR REPLICATION TO EmpRep

 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00

 RETRY 3 TIMES AFTER 5 SECONDS

 STOP ON ERROR

 IDENTIFIED BY RepUser rdejpe88;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-138

 Example 5

This is a heterogeneous table replication; specify the WITH NO CHECK

keywords to prevent DBMaker from performing schema checking on the

remote database. Ensure that columns and data types in the remote table are

compatible with the columns and data types in the local table the following

creates the same schedule as the example above and uses the ORACLE

keyword to indicate that the remote table is in an Oracle 8.0 database.

dmSQL> CREATE SCHEDULE FOR REPLICATION TO EmpRep (ORACLE)

 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00

 RETRY 3 TIMES AFTER 5 SECONDS

 STOP ON ERROR

 WITH NO CHECK

 IDENTIFIED BY RepUser rdejpe88;

SQL Commands 3

3-139

@Copyright 1995-2024 CASEMaker Inc.

3.44 CREATE SCHEMA

The CREATE SCHEMA command creates and enters a new schema into the

current database system. A schema is essentially a namespace: it contains

named objects, also known as schema objects, (tables, view, index, synonym,

trigger, domain, command, procedure) whose names may duplicate those of

other objects existing in other schemas. Schema objects are accessed by

qualifying their names with the schema name as a prefix.

Only users with RESOUCE privileges or above can create a schema. If the

user_name is omitted when creating a schema, the schema creator becomes

the default user. Only users with DBA authority may create schemas owned by

users other than themselves.

When a user is granted connect privileges to DBMaker, DBMaker will create a

default schema for the user. The schema name will be the user's name. The

schema name must be unique. If a schema in the database, with the same

name, already exists an error will be returned.

The owner of the schema is determined as follows:

• If an AUTHORIZATION clause is specified, the specified user-name is the

schema owner. If the schema-name is omitted, the specified user-name is

used as the schema name.

• If an AUTHORIZATION clause is not specified, the user that issued the

CREATE SCHEMA statement is the schema owner.

schema_name Name of the new schema to create

user_name Name of the owner of the newly created schema

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-140

CREATE SCHEMA schema_name

AUTHORIZATION user_name

Figure 3-55 CREATE SCHEMA syntax

 Example 1

A user YUBIN, with RESOURCE authority, creates schema schm_def. YUBIN is

the default owner of the schema.

dmSQL> CREATE SCHEMA schm_def;

 Example 2

A user, with DBA authority, creates a schema with the user YUBIN as the

owner. YUBIN becomes the default schema name because no schema name

was specified when the schema was created.

dmSQL> CREATE SCHEMA AUTHORIZATION YUBIN;

NOTE It is import to remember that when a user is granted connection status

DBMaker automatically creates a schema for the user with the schema

name being the user's name. If a schema already exists in the database

with the same name an error message will be returned.

 Example 3

A user, with DBA authority, creates schema schm_auth with the user YUBIN

as the owner.

dmSQL> CREATE SCHEMA schm_auth AUTHORIZATION YUBIN;

 Example 4

A user, with DBA authority, creates schema inventory. The user then creates

the schema objects inventory.part and partind for the schema. The user then

SQL Commands 3

3-141

@Copyright 1995-2024 CASEMaker Inc.

grants full user authority to the user YUBIN on the table created. The user

YUBIN does not have any privileges on the schema inventory.

dmSQL> CREATE SCHEMA inventory;

dmSQL> CREATE TABLE inventory.part (partNo smallint not null, quantity int);

dmSQL> CREATE INDEX partind ON inventory.part (partNo);

dmSQL> GRANT ALL ON inventory.part TO YUBIN;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-142

3.45 CREATE SYNONYM

The CREATE SYNONYM command creates a new synonym on an existing table

or view. You cannot create a synonym on a temporary table or on another

synonym. Only the table or view owner, a DBA, a SYSDBA or a SYSADM have

the privileges to execute the CREATE SYNONYM command on a table or view.

DBMaker normally identifies tables and views with fully qualified names that

are a composite of the owner name and object name. To help simplify

statements that use fully qualified table and view names, DBMaker provides

synonyms.

A synonym is an alias that can be used for a table or view. It requires no

storage space other than its definition in the system catalog. Using synonyms,

users can access a table or view through the corresponding synonym without

having to use the fully qualified name.

Create more than one synonym for a table or view using unique synonym

names. This allows users to refer to synonym names without prefixing an

owner name. If a user owns a table with the same name as a synonym,

DBMaker always uses the table and ignores the synonym with the same name.

To use the table referenced by the synonym, provide the fully qualified name

for that table. All synonyms on a table or view are dropped automatically

when dropping the referenced table or view.

Synonym names have a maximum of 128 characters, and may contain

numbers, letters, underscore characters, and symbols $ and #. The first

character may not be a number.

OR REPLACE: specify OR REPLACE to re-create the synonym that already

exists, that is to say, you can use this clause to change the definition of an

existing synonym..

synonym_name Name of the new synonym to create

table_name Name of the table to create the synonym on

SQL Commands 3

3-143

@Copyright 1995-2024 CASEMaker Inc.

view_name Name of the view to create the synonym on

CREATE

OR REPLACE

SYNONYM synonym_name

view_ name

table_ name
FOR

Figure 3-56 CREATE SYNONYM syntax

 Example 1

The following creates a synonym named AllEmp for the AllEmployees table

owned by User1; use the synonym AllEmp in place of the fully qualified table

name User1.AllEmployees in subsequent SQL statements.

dmSQL> CREATE SYNONYM AllEmp FOR User1.AllEmployees;

 Example 2

The following creates a synonym named SalesEmp for the SalesEmployees

view owned by User2. Use the synonym SalesEmp in place of the fully

qualified view name User2.SalesEmployees in subsequent SQL statements.

dmSQL> CREATE SYNONYM SalesEmp FOR User2.SalesEmployees;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-144

3.46 CREATE TABLE

The CREATE TABLE command creates a new table. You should specify a

tablespace when creating the table. DBMaker will create a table in the system

tablespace by default. Any user with RESOURCE or higher security privileges

can execute the CREATE TABLE command.

Tables are the primary unit of data storage in a relational database, and any

information you enter in a database is stored in tables. Each table represents a

single type of real-world object and contains information on individual objects

of that type. These can be real objects, customers or products, and abstract

objects, orders or transactions. Each table in a database is given a unique

name and this name normally identifies the type of object stored in the table.

Tables store the information about the objects they represent in rows and

columns.

Rows, also called records or tuples, contain information that defines a single

type of entity having common characteristics. Each row represents an

individual occurrence of that type of entity. The rows are identified using one

or more of the characteristics of the entity. They do not have any particular

order and there is no guarantee that the rows will be listed in the same order

twice.

Columns, also called fields or attributes, contain information that defines the

characteristics of an entity. Each column represents one characteristic or item

of data that is stored for each individual occurrence of an entity. They are

identified using a descriptive name and a data type. Each column is referenced

using a unique column name. Columns in a table can be rearranged without

affecting SQL queries.

Ensure data integrity by applying constraints or rules. When creating a table,

apply domain and column integrity constraints on individual columns, and

table integrity constraints.

SQL Commands 3

3-145

@Copyright 1995-2024 CASEMaker Inc.

Domain constraints are defined as part of the domain definition and are

applied to all columns based on the domain. When inserting a new row or

updating an existing row, each domain constraint is evaluated. Domain

constraints can include NULL/ NOT NULL constraints, default values, and

CHECK constraints.

Column constraints are defined on a specific column and do not affect other

columns in the same table. Whenever inserting a new row or updating an

existing row, each column constraint is evaluated. Column constraints can

include NULL or NOT NULL constraints, default values, and CHECK

constraints.

Table constraints are defined on a set of columns. Whenever inserting a new

row or updating an existing row, each table constraint is evaluated after, all

domain and column constraints are evaluated as true. Only after the table

constraint is also evaluated as true will the statement be processed. Table

constraints can include UNIQUE and CHECK constraints, primary keys, and

foreign keys.

To create a table, provide at least the table name and column definitions.

Tables must have at least one column and can have as many as 2,000 columns.

Please note, the maximum number of table columns also depends on the page

size.

DBMaker identifies each table by a unique combination of schema name and

table name, known as the fully qualified name. Table names have a maximum

length of 128 characters, and may contain numbers, letters, the underscore

character, and the symbols $ and #. The first character may not be a number.

Table names must be unique among all tables in a database. Only users with

DBA privileges can create a table with another user's table schema name. The

specified table schema name must exist in the database. The default schema

name is the creator of the table. Table names are case-insensitive.

To specify a column definition, provide at least a column name and a data type

or domain. The syntax and usage of keywords used in column definitions are

shown on the following pages.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-146

table_name ……Name of the new table to create

column_definition .. ……Definition for a column

primary_key_defintion…...Definition for a primary key

foreign_key_definition…...Definition for a foreign key

constraint_name ……Name of the constraint to be applied to the table

tablespace_name ……Name of the tablespace to create the table in

boolean_expression …...Expression that evaluates true or false conditions

number The fillfactor value

table_nameTABLECREATE TEMPORARY

LOCAL TEMPORARY

MEMORY

LOCK MODE

TABLE

PAGE

ROW

IN tablespace_name

FILLFACTOR number NO CACHE

as_select_statement

table_column_definition

Figure 3-57 CREATE TABLE syntax

SQL Commands 3

3-147

@Copyright 1995-2024 CASEMaker Inc.

Figure 3-58 CREATE TABLE: table_column_definition syntax

()

select_statementAS

column_name

,

(

)

Figure 3-59 CREATE TABLE: as_select_statement syntax

Column Definitions

DBMaker identifies columns in a table by a unique combination of owner

name, table name, and column name, known as the fully qualified name.

Column names have a maximum length of 128 characters, and may contain

numbers, letters, the underscore character, and the symbols $ and #. The first

character may not be a number. Column names must be unique among all

columns in the same table. Column names are case insensitive.

DBMaker supports the following data types: BIGINT, BIGSETIAL, BINARY,

CHAR, DATE, DECIMAL, DOUBLE, FLOAT, FILE, INTEGER, BLOB, CLOB, OID,

SERIAL, SMALLLINT, TIME, TIMESTAMP, VARCHAR and JSONCOLS.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-148

Optionally, use a domain for a column instead of a data type. Domains are a

combination of data type, default value, and constraints that are applied to a

column when it is defined using a domain as the data type. See the column

definition DEFAULT and CHECK keywords below for a description of default

values and constraints. Default values and constraints provided in the column

definition will override those of the domain. Column definitions can also

provide constraints in addition to those of the domain.

The NULL/NOT NULL keywords are optional. These keywords specify

whether a column can contain a NULL value when inserting a new row. The

NULL keyword specifies that a column may contain an undefined value when a

new row is inserted, while the NOT NULL keyword specifies that a value must

be provided when a new row is inserted. The NULL/NOT NULL keyword,

NULL is used by default.

The USER/SYSTEM keywords are optional. These keywords specify whether

users can modify value of the column with a default value by using the

INSERT/UPDATE statement. USER is used by default. The USER keyword

specifies that users can modify its value, and the SYSTEM keyword specifies

that users cannot modify its value.

The DEFAULT keyword is optional. This keyword is used to specify a default

value that will be inserted into a column if no value is provided when inserting

a new row. Constants, results from built-in functions, or the NULL keyword

may be used as the default value. You can only use built-in functions that have

no argument like PI(), NOW(), or USER(), when defining a column. If using

the NULL keyword as the DEFAULT value, the column cannot be defined with

the NOT NULL keyword.

The ON UPDATE keyword is optional. This keyword specifies that value of the

column with a default value can be automatically updated when other

columns' value is changed.

The CHECK keyword, in the column definition, is optional. This keyword is

used to specify a range of acceptable values that may be entered in a column.

The expression that specifies the range of acceptable values may be any

SQL Commands 3

3-149

@Copyright 1995-2024 CASEMaker Inc.

expression that evaluates to true or false. The VALUE keyword may be used in

the expression in conjunction with the CHECK keyword to represent the value

of the column. If an SQL statement does not satisfy the CHECK conditions, it

will not be processed.

The ENCRYPT keyword is optional only when column encryption is opened.

This keyword specifies the column will be an encrypt column. When the

column encryption is closed, an encrypt column can prevent unauthorized

access and ensure data completeness. Users can create and access encrypt

column only when SYSADM/SYSDBA opens column encryption.

column_name Name of the column to create

data_type Name of the data type to use for the column

domain_name Name of the domain to use in place of a data type

literal A literal value to use if no value is inserted

constant Constant value to use if no value is inserted

function_name Built-in function to use if no value is inserted

constraint_name Name of the constraint to be created

boolean_expression Expression that evaluates true or false conditions

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-150

data_type

domain_ name

NULL

NOT NULL

column_name

DEFAULT
constant

NULL

function_name

literal

CONSTRAINT constraint_name

CONSTRAINT constraint_name CHECK boolean_expression

USER

SYSTEM

ON UPDATE

Figure 3-60 Column Definitions syntax

Primary Key and Unique Definitions

A key is a column or combination of columns that help identify specific rows in

a table. The columns that make up a key are known as key columns. A unique

key is a key in which no two records have the same value or the key field.

A primary key is a key that uniquely identifies each row in a table. Without a

primary key, it is impossible to distinguish between specific rows in a table

because rows may contain duplicate values. The DBMS does not permit

defining a primary key on columns that contain duplicate values or to enter a

duplicate value in a primary key that already exists.

Primary keys ensure data integrity in a table by requiring unique key values in

each record of the primary key. This means columns in a primary key may not

contain duplicate or null values, define the key columns with the NOT NULL

SQL Commands 3

3-151

@Copyright 1995-2024 CASEMaker Inc.

constraint. Primary keys may be built on up to 32 columns, providing the size

of the columns does not exceed 4,000 bytes.

Each table may only have one primary or unique key. A primary key cannot be

renamed. Instead, DBMaker automatically creates and maintains a unique,

internally managed index named PrimaryKey for the primary key in each

table. Since DBMaker builds an index on the primary key, it is not necessary to

build another index on the columns in the primary key to increase the

performance of query operations.

constraint_name Name of the constraint to be created

column_name Name of the column to create the primary key on

column_name

,

()

CONSTRAINT constraint_name PRIMARY KEY

CONSTRAINT constraint_name UNIQUE

Figure 3-61 Primary Key and Unique Definitions syntax

Foreign Key Definitions

A foreign key is a key that corresponds to the primary key or a unique index of

another table. This establishes a parent-child relationship between two tables

that is represented by common data values stored in the tables. The parent

table contains the primary key or unique index, and the child table contains

the foreign key whose columns correspond to columns in the parent table.

Referential integrity ensures that every value in a child key has a

corresponding value in the parent key. Referential integrity is enforced

between tables using the parent-child relationship established with foreign

keys. DBMaker has automatic support for referential integrity constraints

between tables through the definition of foreign keys. When adding a record

to a child table, the value in the child key must also exist in the parent key.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-152

Similarly, when deleting a record from the parent table, all records in the child

key with the same value must be deleted first.

Referential actions provide a means to update or delete a parent key when

referential integrity would not normally allow it. The referential actions define

the operation DBMaker should perform on all matching rows in the child key

when you update or delete a parent key. DBMaker supports four referential

actions for both updates and deletes: CASCADE, SET NULL, SET DEFAULT, and

NO ACTION.

The ON UPDATE/ON DELETE keywords are optional. These keywords specify

the referential action DBMaker should perform when you update or delete a

value in a parent key that is referenced by a child key. The referential actions

for these keywords are: CASCADE, SET NULL, SET DEFAULT, and NO ACTION.

CASCADE performs an update or delete on all matching values in the child key

when updating or deleting the parent key. This will set the value of the child

key to the same value as the parent key when update or delete a row in the

parent key.

SET NULL sets all matching values in the child key to NULL when updating or

deleting a row in the parent key. The SET NULL action cannot be used when

the child key was defined with the NOT NULL constraint.

SET DEFAULT sets all matching values in the child key to the default value of

the column when updating or deleting a row in the parent key. You cannot use

the SET DEFAULT action when the default value is NULL and the child key was

defined with the NOT NULL constraint.

NO ACTION enforces normal referential integrity rules. DBMaker uses NO

ACTION by default.

There is no practical limit to the number of foreign keys in a table. The parent

key may be the primary key or any other unique index of a table, but a parent

key must be created before adding the child key. The number of columns and

column type or length must be the same in the parent key and the child key.

The column order of corresponding keys may be different in each table,

SQL Commands 3

3-153

@Copyright 1995-2024 CASEMaker Inc.

provided they are listed in corresponding order in the foreign key definition.

The primary key of the parent table is used by default.

Columns in a foreign key may contain null values. If a foreign key contains a

null value, it satisfies referential integrity automatically. A foreign key may not

be created on a view, but may be created on a synonym. Foreign key names

have a maximum length of 128characters, and may contain numbers, letters,

the underscore character, and the symbols $ and #. The first character may

not be a number.

constraint_name Name of the constraint to be created

key_name Name of the foreign key to be created

column_name 1. Name of the column the foreign key is created on

 2. Name of the column referenced by the foreign key

parent_table_name Name of the table the foreign key references

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-154

REFERENCES parent_table_name

foreign_key_name

CONSTRAINT constraint_name

ON UPDATE

CASCADE

SET DEFAULT

SET NULL

NO ACTION
column_name

,

)(

ON DELETE

CASCADE

SET DEFAULT

SET NULL

NO ACTION

column_name

,

()

FOREIGN KEY

Figure 3-62 Foreign Key Definitions syntax

Table Options

DBMaker provides a number of optional features that can be used when

creating a table. Specify the behavior of these options using:

TEMPORARY/TEMP/MEMORY, IN, CHECK, LOCK MODE, NOCACHE, and

FILLFACTOR keywords.

The TEMPORARY/TEMP keywords are optional. These keywords specify that

a table should be created as a temporary table instead of a permanent table.

Data access is faster in temporary tables since no locks are used and no

SQL Commands 3

3-155

@Copyright 1995-2024 CASEMaker Inc.

Journal records are written for temporary tables. However, temporary tables

can only be used by the table owner, and are automatically deleted when you

disconnect from the database. Also, drop a temporary table at any time while

still connected to the database using the DROP TABLE command.

The MEMROY keywords are optional. Memory tables, for almost all intents

and purposes, function in the same manner as a regular table in DBMaker. The

differences lie in the fact that memory tables are temporary tables, their life

cycle being connection based. This means that when user create a memory

table, it ill be dropped when the user drop it or when user disconnected from

the database. Unlike a regular table, memory table are only stored in the

memory of the connection that created them. They cannot be used by other

connection and they can only have data selected or inserted, their data cannot

be updated or deleted. Memory tables do support the transaction controls:

commit, rollback, define save point and rollback to save point.

These keywords specify that a table should be created as a temporary table

instead of a permanent table. Data access is faster in temporary tables since

no locks are used and no Journal records are written for temporary tables.

However, temporary tables can only be used by the table owner, and are

automatically deleted when you disconnect from the database. Also, drop a

temporary table at any time while still connected to the database using the

DROP TABLE command.

The IN keyword is optional. This keyword specifies the name of the tablespace

the table will be created in. Tablespaces are the logical areas of storage used to

partition information in a database into manageable areas. Permits separate

tables according to logical groupings, or to place frequently used tables in

different storage locations .The table is created in the system tablespace by

default.

The CHECK keyword, in the table definition, is optional. This keyword behaves

in a manner similar to the CHECK keyword used in the column definition. It

normally is used to ensure data from multiple columns falls into an acceptable

range of values. The expression of acceptable values may be any expression

that evaluates to true or false. Column names may be used in the expression in

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-156

conjunction with the CHECK keyword to represent the value of a column. If an

SQL statement does not satisfy the CHECK conditions, it is not processed.

The LOCK MODE keyword is optional. This keyword specifies the lock level

DBMaker uses when accessing data in a table. DBMaker includes the table,

page, and rowlock modes. Page lock mode is used by default. To determine the

lock mode of a table, examine the LOCKMODE column of the SYSTABLE system

table.

LOCK MODE TABLE locks an entire table. This mode decreases concurrency by

preventing other users from accessing the locked table at the same time. It

also uses fewer lock resources and requires less memory in the System

Control Area (SCA).

LOCK MODE PAGE locks a single data page. This mode is a trade-off between

concurrency and lock resources. It provides moderate concurrency since

other users may access data in other pages, but not access any data on the

same page.

LOCK MODE ROW locks a single row. This mode increases concurrency by

allowing other users to access any data except the locked row at the same

time. It also uses more lock resources and requires more memory in the SCA.

FILLFACTOR specifies the percentage of a data page that can be filled. This

allows the database to optimize the use of data pages, reserving space for

updates to records. The number parameter can have a value from 50 to 100,

which represents a fillfactor of 50% to 100%. To determine the fillfactor of a

table, examine the FILLFACTOR column of the SYSTABLE system table.

NOCACHE limits the number of page buffers used to cache data during a table

scan. DBMaker stores page buffers in a buffer chain with the most recently

used page at the beginning and the least recently used page end. When the

NOCACHE option is turned on, data pages read during a table scan are placed

at the end of the buffer chain. Since the end of the buffer chain will be flushed

before the beginning, subsequent data pages read during the table scan, will

replace the previous page. This effectively limits the page buffers used during

SQL Commands 3

3-157

@Copyright 1995-2024 CASEMaker Inc.

a table scan to one page buffer. To determine the cache mode of a table,

examine the CACHEMODE column of the SYSTABLE system table.

When creating a table, you are the table owner. You have all object privileges

on the table, and may assign object privileges for that table to other users. As

the table owner, you retain all object privileges on the table even if your

security privilege is reduced to CONNECT.

NOTE Both forms of the CHECK and CHECK VALUE syntaxes have been

updated in DBMaker to be SQL 99 compliant.

 Example 1

The following creates a table named Scores in the system tablespace with

StudentNo, Math, English, Science, and History columns, defined with the

INTEGER data type.

dmSQL> CREATE TABLE Scores (StudentNo INTEGER,

 Math INTEGER,

 English INTEGER,

 Science INTEGER,

 History INTEGER);

 Example 2

The following creates the same table from the example above in the

StudentRecords tablespace, columns may not contain NULL values, and a

default value of zero is assigned to the Math, English, Science, and History

columns with the table owner name Madison.

dmSQL> CREATE TABLE Madison.Scores

 (StudentNo INTEGER NOT NULL,

 Math INTEGER NOT NULL DEFAULT 0,

 English INTEGER NOT NULL DEFAULT 0,

 Science INTEGER NOT NULL DEFAULT 0,

 History INTEGER NOT NULL DEFAULT 0)

 IN StudentRecords;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-158

 Example 3

The following creates the same table from the example above and the Math,

English, Science, and History columns must contain values from 0 to 100.

dmSQL> CREATE TABLE Scores (StudentNo INTEGER NOT NULL,

 Math INTEGER NOT NULL DEFAULT 0

 CHECK VALUE >= 0 AND VALUE <= 100,

 English INTEGER NOT NULL DEFAULT 0

 CHECK VALUE >= 0 AND VALUE <= 100,

 Science INTEGER NOT NULL DEFAULT 0

 CHECK VALUE >= 0 AND VALUE <= 100,

 History INTEGER NOT NULL DEFAULT 0

 CHECK VALUE >= 0 AND VALUE <= 100)

 IN StudentRecords;

 Example 4

The following creates the same table from the example above and defines a

table constraint to ensure: the sum of the Math, English, Science and History

columns is less than 400, the lock mode is set to PAGE, specifies a

FILLFACTOR of 90, and turns on the NOCACHE option.

dmSQL> CREATE TABLE Scores (StudentNo INTEGER NOT NULL,

 Math INTEGER NOT NULL DEFAULT 0

 CHECK VALUE >= 0 AND VALUE <= 100,

 English INTEGER NOT NULL DEFAULT 0

 CHECK VALUE >= 0 AND VALUE <= 100,

 Science INTEGER NOT NULL DEFAULT 0

 CHECK VALUE >= 0 AND VALUE <= 100,

 History INTEGER NOT NULL DEFAULT 0

 CHECK VALUE >= 0 AND VALUE <= 100)

 IN StudentRecords

 CHECK Math + English + Science + History <= 400;

SQL Commands 3

3-159

@Copyright 1995-2024 CASEMaker Inc.

 Example 5

The following creates the same table from the example above, but sets the lock

mode to PAGE, specifies a FILLFACTOR of 90, and turns on the NOCACHE

option.

dmSQL> CREATE TABLE Scores (StudentNo INTEGER NOT NULL,

 Math INTEGER NOT NULL DEFAULT = 0

 CHECK VALUE >= 0 AND VALUE <= 100,

 English INTEGER NOT NULL DEFAULT = 0

 CHECK VALUE >= 0 AND VALUE <= 100,

 Science INTEGER NOT NULL DEFAULT = 0

 CHECK VALUE >= 0 AND VALUE <= 100,

 History INTEGER NOT NULL DEFAULT = 0

 CHECK VALUE >= 0 AND VALUE <= 100)

 IN StudentRecords

 CHECK Math + English + Science + History <= 400

 LOCK MODE PAGE

 FILLFACTOR 90

 NOCACHE;

 Example 6a

dmSQL> CREATE TABLE computer(id INT, buy_time TIMESTAMP DEFAULT '2012-03-04

12:12:12', price int); //now attributes of buy_time is USER

dmSQL> INSERT INTO computer VALUES(1, '2012-10-10 10:10:20', 3400); //value of

buy_time will be replaced with '2012-10-10 10:10:20' which is specified by the

user

1 rows inserted

dmSQL> INSERT INTO computer VALUES(2, '2012-10-11 10:10:20', 5400);

1 rows inserted

dmSQL> select * from computer;

 ID BUY_TIME PRICE

=========== =========================== ===========

 1 2012-10-10 10:10:20 3400

 2 2012-10-11 10:10:20 5400

2 rows selected

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-160

dmSQL> UPDATE computer SET price=3200 WHERE id=1; //value of buy_time will not be

updated

1 rows updated

dmSQL> select * from computer;

 ID BUY_TIME PRICE

=========== =========================== ===========

 1 2012-10-10 10:10:20 3200

 2 2012-10-11 10:10:20 5400

2 rows selected

 Example 6b

dmSQL> ALTER TABLE computer MODIFY (buy_time TO buy_time TIMESTAMP DEFAULT '2012-

03-04 12:12:12' ON UPDATE); //now attributes of buy_time is USER and ON UPDATE

dmSQL> UPDATE computer SET price=3000 WHERE id=1; //value of buy_time will be

replaced with the default value'2012-03-04 12:12:12'

1 rows updated

dmSQL> select * from computer;

 ID BUY_TIME PRICE

=========== =========================== ===========

 1 2012-03-04 12:12:12 3000

 2 2012-10-11 10:10:20 5400

2 rows selected

dmSQL> UPDATE computer SET price=3000, buy_time='2012-10-10' WHERE id=1;//value

of buy_time will be replaced with '2012-10-10' which is specified by the user

1 rows updated

dmSQL> select * from computer;

 ID BUY_TIME PRICE

=========== =========================== ===========

 1 2012-10-10 00:00:00 3000

 2 2012-10-11 10:10:20 5400

2 rows selected

SQL Commands 3

3-161

@Copyright 1995-2024 CASEMaker Inc.

 Example 6c

dmSQL> ALTER TABLE computer MODIFY (buy_time TO buy_time TIMESTAMP SYSTEM DEFAULT

'2012-03-04 12:12:12'); //now attributes of buy_time is SYSTEM

dmSQL> INSERT INTO computer VALUES(3, '2012-11-10 10:10:20', 4700); //value of

buy_time will not be replaced with '2012-11-10 10:10:20' which is specified by

the user.

1 rows inserted

dmSQL> INSERT INTO computer VALUES(4, '2012-12-11 10:10:20', 2800);//value of

buy_time will not be replaced with '2012-12-11 10:10:20' which is specified by

the user.

1 rows inserted

dmSQL> select * from computer;

 ID BUY_TIME PRICE

=========== =========================== ===========

 1 2012-10-10 00:00:00 3000

 2 2012-10-11 10:10:20 5400

 3 2012-03-04 12:12:12 4700

 4 2012-03-04 12:12:12 2800

4 rows selected

dmSQL> UPDATE computer SET price=4500 WHERE id=3; //value of buy_time will not be

updated.

1 rows updated

dmSQL> select * from computer;

 ID BUY_TIME PRICE

=========== =========================== ===========

 1 2012-10-10 00:00:00 3000

 2 2012-10-11 10:10:20 5400

 3 2012-03-04 12:12:12 4500

 4 2012-03-04 12:12:12 2800

4 rows selected

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-162

 Example 6d

dmSQL> ALTER TABLE computer MODIFY (buy_time TO buy_time TIMESTAMP SYSTEM DEFAULT

'2012-03-04 12:12:12' ON UPDATE); //now attributes of buy_time is SYSTEM and ON

UPDATE

dmSQL> UPDATE computer SET price=4000, buy_time='2015-01-01' WHERE id=3; //value

of buy_time will be replaced with the default value'2012-03-04 12:12:12'

1 rows updated

dmSQL> select * from computer;

 ID BUY_TIME PRICE

=========== =========================== ===========

 1 2012-10-10 00:00:00 3000

 2 2012-10-11 10:10:20 5400

 3 2012-03-04 12:12:12 4000

 4 2012-03-04 12:12:12 2800

4 rows selected

CREATE TABLE AS SELECT

Use the CREATE TABLE AS SELECT syntax to create a table and the column

definition and data derived from the select_statement. It will create the table's

column definition like CREATE VIEW and insert data like SELECT INTO.

 Example

The following creates the table from the query that selects the Math score >

70's StudentNo from the Scores table.

dmSQL> CREATE TABLE Scores70 AS SELECT StudentNo, Math FROM Score

WHERE Math > 70 IN tablespace1;

SQL Commands 3

3-163

@Copyright 1995-2024 CASEMaker Inc.

3.47 CREATE TABLESPACE

The CREATE TABLESPACE command generates a new tablespace. A new

tablespace permits increasing the physical storage available to the database.

Only users with DBA, SYSDBA or SYSADM security privileges can execute the

CREATE TABLESPACE command.

DBMaker uses the relational data model to hide the details of the physical

storage model and present data using a logical storage model. In the DBMaker

physical storage model, files are physical storage structures that contain the

data in the database. Files are managed by the operating system, with the

exception of raw UNIX devices, while data in the files is managed by the DBMS.

DBMaker uses three types of files during normal operation Data, BLOB, and

Journal.

Data files and BLOB files store user and system data. Although they have

similar characteristics, DBMaker manages these two file types in different

ways to improve performance. Data files store table and index data, while

BLOB files store only Binary Large OBjects (BLOBs).

Journal files are special files that provide a real-time, historical record of all

changes made to a database and the status of each change. This allows the

database to undo changes made by a transaction that fails, or redo changes

made successfully but not written to disk after a database crashes. Journal

files are used only by the database management system, and are not used to

store user data.

In the DBMaker logical storage model, tablespaces are the logical storage

structures used to partition information in a database into manageable areas.

Each tablespace may contain several tables and indexes. Data in the

tablespace is managed by the DBMS, but is physically stored in data and BLOB

files. The three types of tablespaces included are regular, autoextend, and

system.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-164

Regular tablespaces are tablespaces that have a fixed size and contain one or

more data or BLOB files. Manually extend a regular tablespace by enlarging

existing files or adding new files. A regular tablespace may contain a

maximum of 32,767 files, with a maximum cumulative size of 8 TB. On UNIX

platforms, regular tablespaces may be placed on raw devices.

NOTE For more information on raw devices, see your UNIX system

documentation.

Autoextend tablespaces are tablespaces that automatically increase in size to

hold additional data as required. Regular and autoextend tablespaces may

contain one or many data files, and BLOB files. It is possible for an autoextend

tablespace to run out of space. The maximum file size is 8 TB and or the disk

may be full. Add files to autoextend tablespaces manually to extend an

autoextend tablespace by enlarging existing files. Do this to pre-allocate space

for improved performance when inserting a large amount of data into an

autoextend tablespace. Autoextend tablespaces cannot be used with raw

devices.

System tablespaces are tablespaces generated by DBMaker when creating a

database. Each database has one system tablespace, which contains the

system catalog tables used to store schema, security, and status information

about the entire database. The system tablespace is a special type of

autoextend tablespace. System tablespaces contain one data and one BLOB file

created automatically with the tablespace and not used to store user data.

System tablespaces may be converted to regular tablespaces and may not be

used with raw devices.

The AUTOEXTEND keyword is optional. This keyword specifies whether a

tablespace is created as an autoextend tablespace. An autoextend tablespace

can extend its size automatically as when requiring additional space. An

autoextend tablespace may be changed to a regular tablespace at any time. It

may also be changed back to an autoextend tablespace at any time.

The BACKUP BLOB keyword is optional. This keyword specifies whether

DBMaker will back up BLOB data in this tablespace when the database is in

SQL Commands 3

3-165

@Copyright 1995-2024 CASEMaker Inc.

BACKUP_DATA_AND_BLOB mode. DBMaker backs up all BLOB data in the

tablespace when the database is in BACKUP_DATA_AND_BLOB mode and

BACKUP BLOB is ON. When BACKUP BLOB is set to OFF, DBMaker does not

back up any BLOB data in the tablespace, regardless of the backup mode.

To ensure data independence within the database, operating system files

cannot be referenced directly within a database. To work around this, each

database file has two names, a physical file name and a logical file name. The

physical file name is the name used by the operating system, while the logical

file name is the name used by the database. These two names are related by an

entry in the dmconfig.ini file. Before executing the CREATE TABLESPACE

command, make an entry in the dmconfig.ini specifying the logical file name,

the physical file name, and the initial size of each physical file in the

appropriate database configuration section. After version 5.4.6, users can

define the physical file name and file page/size in the CREATE TABLESPACE

command and don’t need to entry dmconfig.ini first. Please see the following

examples.

The DATAFILE keyword specifies the logical file name and the type of files to

create when creating the tablespace. Specify multiple files up to a maximum of

32,767; providing the type of tablespace permits it and there is sufficient disk

space. Tablespaces must contain at least one data file. Add more files to a

tablespace using the ALTER TABLESPACE command.

The TYPE keyword specifies whether DBMaker will create a new file as a data

file or a BLOB file. Use TYPE = DATA to create a new data file, and TYPE =

BLOB to create a new BLOB file. When not specifying the type of file using the

TYPE keyword, the default file will be created as a data file.

DBMaker creates all physical files in the default database directory specified

by the DB_DbDir keyword in dmconfig.ini, unless a directory or path for the

file is specified. The initial file size is specified as a number of data pages for

data files, or a number of BLOB frames for BLOB files.

Specify an initial file size for data files by specifying a value from 2 to

2,147,483,647 pages. To calculate the actual size of the file in kilobytes,

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-166

multiply this value by the value of DB_PgSiz as specified in dmconfig.ini.

Specify an initial file size for BLOB files by specifying a value from 2 to

524,287 frames. To calculate the actual size of the file in kilobytes, multiply

this value by the value of DB_BfrSz from the dmconfig.ini file.

The files in a tablespace do not have to be located on the same disk; you may

specify a different disk or different path on the same disk for each file in the

tablespace. If using UNIX, also allocate files in a regular tablespace on raw

devices. Using raw devices allows faster access and performance

improvements over regular operating system files. DBMaker writes to raw

device files directly instead of relying on operating system calls.

Tablespace names and logical file names have a maximum of 128characters

and may contain numbers, letters, underscore characters and symbols $ and #.

The first character may not be a number. Tablespace names are case-sensitive.

Physical file names have a maximum length, including drive and path names,

of 255 characters, and may contain any characters and symbols permitted by

the operating system, except spaces. The case-sensitivity of physical file

names is dependent on the operating system.

tablespace_name Name of the new tablespace to create

tsfilename Logical name of the physical tablespace files

physical_file_name ………… After version 5.4.6, users can define the physical file

name and file size in the CREATE/ALTER

TABLESPACE, the format is same as defining in

dmconfig.ini

unsigned_integer[M|G] ………… The pages of the data/blob file, the file size is

page number*DB_PgSiz, or users can define M/G

to represent megabytes or gigabytes

SQL Commands 3

3-167

@Copyright 1995-2024 CASEMaker Inc.

Figure 3-63 CREATE TABLESPACE syntax

 Mapping 1

Before executing example 1, add a line to the dmconfig.ini file to map the

logical file names to the physical file names, and indicate the initial physical

file size in pages for data files or frames for BLOB files. The size of the data file

will be 800 KB using the default Page Size of 8 KB and the size of the BLOB

file will be 3200 KB, using the default BLOB frame size of 32 KB.

datafile = c:\dbmaker\database\ts_reg_df.db 100

blobfile = c:\dbmaker\database\ts_reg_bf.bb 100

 Example 1

The following creates a regular tablespace named ts_reg with one logical data

file named datafile and one logical BLOB file named blobfile and permits

adding additional data or BLOB files to the tablespace, up to a maximum of

32767 files.

dmSQL> CREATE TABLESPACE ts_reg DATAFILE datafile TYPE=DATA, blobfile TYPE=BLOB;

 Mapping 2

Before executing example 2, add a line to the dmconfig.ini file to map the

logical file names to the physical file names, and indicate the initial physical

file size in pages for data files or frames for BLOB files. The size of the data file

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-168

will be 800 KB using the default Page Size of 8 KB and the size of the BLOB

file will be 3200 KB using the default BLOB frame size of 32 KB.

datafile = c:\dbmaker\database\ts_ext_df.db 100

blobfile = c:\dbmaker\database\ts_ext_bf.bb 100

 Example 2

The following creates an autoextend tablespace named ts_ext with one logical

data file named datafile, and one logical BLOB file named blobfile; additional

data or BLOB files may not be added to this tablespace.

dmSQL> CREATE AUTOEXTEND TABLESPACE ts_ext DATAFILE datafile TYPE=DATA,

 blobfile TYPE=BLOB;

 Example 3

The following example shows users how to create a new tablespace ts1 with

CREATE TABLESPACE command. The logical file name is f1, the size is 10M

and the physical file name is C:\DBMaker\5.4\TESTDB.F1.

dmSQL> CREATE TABLESPACE ts1 DATAFILE f1='C:\DBMaker\5.4\TESTDB.F1 10M';

SQL Commands 3

3-169

@Copyright 1995-2024 CASEMaker Inc.

3.48 CREATE TEXT INDEX

Two types of index may be created with DBMaker, a signature text index or an

inverted file (IVF) text index. Signature text indexes are built in the same

tablespace as the column for which the index is being built. IVF indexes are

built in a separate file and exhibit better performance for larger indexes.

The CREATE TEXT INDEX command creates a new text index on a column or

columns. Use text indexes to increase the performance of full-text queries by

quickly locating specific words in columns containing text without examining

the entire table. Only the table owner, a DBA, a SYDBA, a SYSADM, or a user

with the INDEX privilege on that table may execute the CREATE TEXT INDEX

command.

A text index is a mechanism that provides fast access to rows that contain one

or more words or phrases in columns containing text. Text indexes contain a

representation of all the text found in the text columns they are based on. The

data is encoded and structured to make retrieval much faster than directly

from the table. An index's operation is transparent to users and the DBMS uses

it to improve full-text query performance.

When creating a text index, specify an index name, the name of the table, and

the name of the column or columns. Text indexes may be created on columns

defined with the CHAR, VARCHAR, CLOB, NCHAR, NVARCHAR, NCLOB, or FILE

data types. Text indexes may not be created on system tables, temporary

tables, or views.

The Order By clause supports a search for a word or words in a column and

ranks the results in another column. After creating a text index with Order By

Column, the result will be output ranked by the Order By Column

automatically while DBMaker processes a query on the text index, speeding up

the query. For example, to search the content column and order by post time

column, add an Order By Post Time clause at the end of select statement.

DBMaker must have a sorting on the result for the order by clause. The sorting

will take a lot of time. If you have created the text index with Order By Post

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-170

Time column, you can get a sorted result without adding the Order By Clause.

Specify the ASC or DESC keyword to denote the ranking as ascending or

descending. The default order is ascending. The Order By Column attribute

can also take affect on the increment part of the rebuild index command.

However, it cannot re-order the records across old data or increment data.

When loading data into a table, DBMaker does not update any text indexes on

that table. Load all data before creating a text index on a table, when possible.

Rows containing matching text entered into a table after the text index was

created will not be returned with the full-text search results. To include these

rows in the search results, rebuild the text index using the REBUILD TEXT

INDEX command.

Text index names must be unique for the each table. Text index names have a

maximum length of 128 characters, and may contain numbers, letters, the

underscore character, and the symbols $ and #. The first character may not be

a number.

Signature Text Index

Signature text indexes can be built on all character type columns, including

CHAR, VARCHAR, LONG VARCHAR, NCHAR, NVARCHAR, NCLOB, and FILE

types. A table can have multiple text indexes, and text indexes can be built on

multiple columns.

TOTAL TEXT SIZE is the estimated total size of all documents in the columns

on which the text index will be built in MB. The range is from 1 to 200, and the

default value is 32. This value is used for estimation and performance

optimization by DBMaker and does not actually place a constraint on the

number of documents allowed in a column. If the estimated total size exceeds

200 MB, use 200 MB or create an inverted file (IVF) index for significantly

improved query performance.

SCALE is the expected ratio of index size to total column size. If you set the

TOTAL TEXT SIZE to 20 and expect the index to use approximately 10 MB of

storage, then you should set the scale to 50 (50%). Search performance

SQL Commands 3

3-171

@Copyright 1995-2024 CASEMaker Inc.

increases as the scale increases. You can enter a range is from 10 to 200. The

default value is 40.

text_index_name Name of the text index to create

table_name Name of the table to create the text index on

column_name Name of the column to create the index on

order_column_name Name of the column to start with

number value used with parameters SCALE and TOTAL TEXT SIZE

ON table_name ()

TEXT INDEX text_index_name

TOTAL TEXT SIZE number MB

SIGNATURE
CREATE

ORDER BY

DESC

ASC

,

SCALE number

column_name

,

column_name

Figure 3-64 CREATE SIGNATURE TEXT INDEX syntax

 Example 1

The following creates a signature text index named TxtIdx on the FName

column of the Employeesinfo table, using the default values for all

parameters, and order by Emp_ID column.

dmSQL> CREATE SIGNATURE TEXT INDEX TxtIdx ON Employeesinfo(FName) ORDER BY

Emp_ID;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-172

 Example 2

The following command creates a signature text index named TxtIdx on the

FName column of the Employeesinfo table, estimating the total size of the

column at 20 MB, and creating an index that scales to 50% of the size of the

actual text index.

dmSQL> CREATE SIGNATURE TEXT INDEX TxtIdx ON Employeesinfo(FName) TOTAL TEXT SIZE

20 MB SCALE 50;

Inverted File Text Index

The CREATE IVF TEXT INDEX command creates a new inverted file (IVF) text

index on a specified column. An IVF text index can be used in place of a

standard index to increase the performance of queries, particularly on

columns that contain more than 200 MB of data.

A table owner or a user with DBA, SYSDBA or SYSADM security privilege can

create an IVF text index.

IVF indexes are sorted in the operating system's file system, and are

administered through the database. The location where the IVF index should

be stored is specified when the index is created. DBMaker manages the

creation of sub-directories within the IVF index root directory.

text_index_name Name of the text index to create

table_name Name of the table to create the text index on

column_name Name of the column to create the index on

path Full directory path for storing the index

order_column_name Name of the column to start with

number Value used with parameters SCALE and TOTAL TEXT SIZE

SQL Commands 3

3-173

@Copyright 1995-2024 CASEMaker Inc.

ON table_name ()

text_index_name

ORDER BY

DESC

ASC

,

STORAGE PATH path

column_ name

,

TOTAL TEXT SIZE number MB

CREATE IVF TEXT INDEX

column_name

Figure 3-65 CREATE IVF TEXT INDEX syntax

 Example 1

The following creates an IVF text index named TxtIdx on the LName column

of the Employeesinfo table, and using the default values for all parameters.

dmSQL> CREATE IVF TEXT INDEX TxtIdx ON Employeesinfo(LName);

 Example 2

The following command creates an IVF text index named TxtIdx on the

LName column of the Employeesinfo table, and stores the IVF text index in

the logical file DB_IvfDir, while estimating the total size of the column at 100

MB.

dmSQL> CREATE IVF TEXT INDEX TxtIdx ON Employeesinfo(LName) STORAGE PATH

DB_IVFDIR TOTAL TEXT SIZE 100 MB ORDER BY Emp_ID ASC;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-174

3.49 CREATE TRIGGER

The CREATE TRIGGER command creates a new trigger on a table. Use triggers

to customize a database in ways that would not be possible with standard SQL

commands. Only the table owner, a DBA, a SYSDBA, or a SYSADM with all

security and object privileges necessary to execute the SQL statement that

defines the trigger action may execute the command.

A trigger is a database server mechanism that automatically executes

predefined commands in response to specific events. This allows a database to

perform complex or unconventional operations. Triggers are under the

control of the database server and ensure that data is handled consistently,

regardless of the source. A trigger on a table is transparent to users.

When creating a trigger, specify a name, trigger action time (when a trigger

should fire relative to the trigger event), the trigger event (the event that

causes the trigger to fire), a trigger table (the table the trigger is being created

for), trigger type (type of trigger to be fired), and the trigger action (the action

the database should perform when the trigger fires). Any triggers created on a

table are dropped automatically when dropping the table.

DBMaker associates triggers using tables instead of fully qualified names. All

trigger names on the same table must be unique. The trigger action operates

with the same security and object privileges as the owner of the trigger table,

and not with the privileges of the user executing the trigger event.

The BEFORE/AFTER keywords specify when the database server should

perform the trigger action relative to the trigger event. This is known as the

trigger action time. The BEFORE keyword specifies the database server to

perform the trigger action before the trigger event. The AFTER keyword

specifies that the database server should perform the trigger action after the

trigger event.

The INSERT/DELETE/UPDATE keywords specify the event that fires a trigger.

This is known as the trigger event. The INSERT keyword specifies that a

SQL Commands 3

3-175

@Copyright 1995-2024 CASEMaker Inc.

trigger fires whenever inserting a row into a table, and the DELETE keyword

specify that a trigger fire whenever deleting a row from a table. The UPDATE

keyword specifies that a trigger fire after updating any column in a table. Use

UPDATE OF to instruct a column list when to fire a trigger after updating

specific columns. Using UPDATE OF to specify a column list limits the use of

each column name to on instance on all UPDATE triggers for that table.

The ON keyword specifies the name of the table to create the trigger on,

known as the trigger table. The trigger table must be a permanent table in the

database, not a temporary table, a view, or a synonym. Only specify a single

trigger table for each trigger.

OR REPLACE: specify OR REPLACE to re-create the trigger that already exists,

that is to say, you can use this clause to change the definition of an existing

trigger.

trigger_name Name of the trigger to create

column_name Name of the column to create the trigger on

table_name Name of the table to create the trigger on

sql_statement Statement to execute when the trigger fires

CREATE

OR REPLACE

TRIGGER

UPDATE

OF

ON

cloumn _name

trigger_name
BEFORE

AFTER

(-sql_statement -)

DELETE

INSERT

,

table_name

for_each_statement_clause

for_each_row_clause

Figure 3-66 CREATE TRIGGER syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-176

For Each Row Clause

The REFERENCING keyword specifies an alias for the OLD and NEW

keywords. You usually need to indicate in the action, when creating a row

trigger, to reference the value of a column before or after the trigger fires. Use

the OLD and NEW keywords to refer to values from the trigger table, in cases

where tables named OLD and NEW already exist in a database, use the alias

specified by the REFERENCING keyword.

The FOR EACH ROW keyword specifies a trigger to fire once for each row the

trigger event modifies. Triggers defined using the FOR EACH ROW keyword do

not fire if the statement firing the trigger does not process rows.

The WHEN keyword specifies that only rows satisfying the search condition

will cause the trigger to fire. The WHEN clause is evaluated for each row the

trigger event modifies. If the search condition is true, the trigger fires for that

row. If the search condition is false, the trigger does not fire. The result of the

WHEN condition only affects the execution of the triggered action, it has no

effect on the statement that fires the trigger.

old_name Alias for referencing the values, as they existed in the

trigger table before the trigger action fires

new_name Alias for referencing the values, as they existed in the

trigger table after the trigger action fires

search_condition ... Conditions a row must meet for a trigger to fire

SQL Commands 3

3-177

@Copyright 1995-2024 CASEMaker Inc.

REFERENCING

NEW AS new_name

OLD AS old_name

NEW AS new_name

OLD AS old_name

FOR EACH ROW

WHEN (search_condition)

Figure 3-67 For Each Row Clause syntax

For Each Statement Clause

The FOR EACH STATEMENT keyword specifies that a trigger will fire once for

each statement firing it. Triggers defined using the FOR EACH STATEMENT

keyword will fire even if the statement firing it does not process rows.

The statement that the trigger executes when it fires is known as the trigger

action. The trigger action may be an INSERT, UPDATE, DELETE, or EXECUTE

PROCEDURE statement. If you want to use built-in functions when specifying

the trigger action, only use functions that have no argument, such as PI(),

NOW(), or USER(). Stored procedures executed by a trigger cannot contain

any transaction control statements COMMIT, ROLLBACK, or SAVEPOINT.

It is possible to create multiple triggers for each trigger event on the trigger

table using the trigger action time, BEFORE and AFTER keywords, in

combination with the trigger type, FOR EACH ROW and FOR EACH

STATEMENT keywords. For example, combine the trigger action time and the

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-178

trigger type to create four triggers for the INSERT trigger event BEFORE/FOR

EACH STATEMENT, BEFORE/FOR EACH ROW, AFTER/FOR EACH ROW,

AFTER/FOR EACH STATEMENT. The same combinations for the UPDATE and

DELETE trigger events may be performed.

Using the UPDATE OF instead of UPDATE will create at most, one trigger for

each column in the table for each time/trigger type combination. This means

that a table with four columns can have four UPDATE OF triggers for each

combination BEFORE/FOR EACH STATEMENT, BEFORE/FOR EACH ROW,

AFTER/FOR EACH ROW, and AFTER/FOR EACH STATEMENT. When using

UPDATE OF to specify a trigger, the use of UPDATE is not permitted.

Trigger names must be unique for each table, have a maximum of 128

characters, and may contain numbers, letters, the underscore character and

symbols $ and #. The first character may not be a number.

FOR EACH STATEMENT

Figure 3-68 For Each Statement Clause syntax

 Example 1

The following creates an UPDATE trigger named Trig_update on the

Employeesinfo table that places the values before and after the update, into

another table called NameChange. The trigger fires before the trigger action

for each row updated in the table and fires regardless of the sequence of

columns updated.

dmSQL> CREATE TRIGGER Trig_update BEFORE UPDATE ON Employeesinfo

 FOR EACH ROW

 (INSERT INTO NameChange

 VALUES (OLD.FName, OLD.LName,

 NEW.FName, NEW.LName));

SQL Commands 3

3-179

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

The following creates an INSERT trigger named Trig_insert on the

Employeesinfo table that executes the stored procedure called SendMail

when inserting a new row in the Employeesinfo table and uses the

REFERENCING keyword to provide an alias for the OLD and NEW keywords.

The trigger will fire after the trigger action for each row inserted into the

table.

dmSQL> CREATE TRIGGER Trig_insert AFTER INSERT ON Employeesinfo

 REFERENCING OLD AS pre NEW AS post

 FOR EACH ROW

 (EXECUTE PROCEDURE SendMail(pre.FName,

 pre.LName,

 WelcomeMessage));

 Example 3

The following creates an UPDATE trigger named Trig_update on the Orders

table that executes the stored procedure called LogTime when updating the

Orders table, and will fire before the trigger action only once, regardless of

how many rows the trigger action updates.

dmSQL> CREATE TRIGGER Trig_update BEFORE UPDATE ON Orders

 FOR EACH STATEMENT

 (EXECUTE PROCEDURE LogTime);

 Example 4

Suppose that the database have two table tb_staff and tb_change as follow:

dmSQL> CREATE TABLE tb_staff (FName char(10), LName char(10));

dmSQL> CREATE TABLE tb_change (new_FName char(10), new_LName char(10), old_FName

 char(10), old_LName char(10));

Create or replace trigger trig_update.

dmSQL> CREATE OR REPLACE TRIGGER trig_update BEFORE UPDATE ON tb_staff

 FOR EACH ROW (INSERT INTO tb_change VALUES (NEW.FName, NEW.LName,

 OLD.FName, OLD.LName));

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-180

3.50 CREATE VIEW

The CREATE VIEW command creates a new view based on existing tables or

views. Only the owner of the base table with the RESOURCE privilege or users

with, view, or SELECT privilege for the table may execute the command.

A view is a virtual table based on existing tables or views. Views appear to

users like a real table with named columns and rows of data. Unlike a real

table, the view is not stored permanently in the database. The data visible

through a view is not physically stored in the database, but is instead stored in

the original tables. Views are stored in the database as a definition and a user-

defined view name. The view definition is an SQL query that DBMaker uses to

access data from the original tables whenever using a view.

Use a view to tailor the appearance of a database to provide each user with a

personalized view of a database. Provide security and restricted access to data

by allowing users to see only the data they are authorized to see. Views also

isolate users from changes to the underlying structure of the database. They

present a consistent image of the database even if the underlying tables have

changed.

Views can simplify the organization of a database by joining or grouping

related data from several tables and presenting it as a single table. Use views

to provide a subset of rows stored in the base table by having a condition on

the returned results.

There are two disadvantages to using views instead of a real table, the

performance, and the restrictions on updates. Performance is not as good for

queries on a view as it is for queries directly on the source tables. The

database must first retrieve the view definition, build it into the original

query, perform the query, and then display the results. There are also update

restrictions imposed by using views, since the database may not be able to

manage updates on complicated views.

SQL Commands 3

3-181

@Copyright 1995-2024 CASEMaker Inc.

The SELECT statement that defines the view cannot contain INTO clauses.

Currently DBMaker can update a view if that view is based on a single table.

Specify a list of column names for a view. The number of column names that

are specified must match the number of columns in the SELECT statement. If

not specifying a list of column names, the view inherits the column names

from the underlying tables.

View names and column names have a maximum of 128 characters and may

contain numbers, letters, underscore characters, and symbols $ and #. The

first character may not be a number.

OR REPLACE: specify OR REPLACE to re-create the view that already exists,

that is to say, you can use this clause to change the definition of an existing

view.

view_name Name of the new view to create

column_name Name of a column in the view

select_statement Select statement that specifies view contents

CREATE. OR REPLACE

VIEW view_name

(

,

)

AS

Select_statement

(select_statement) .
cloumn_name

Figure 3-69 CREATE VIEW syntax

 Example 1

To create a view named View_Emp on the Employeesinfo table, you can use

the following syntax:

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-182

dmSQL> CREATE VIEW View_Emp AS SELECT Name, Salary from Employeesinfo WHERE

Salary > 50000;

or:

dmSQL> CREATE OR REPLACE VIEW View_Emp AS SELECT Name, Salary from Employeesinfo

WHERE Salary >= 100000;

 Example 2

To create a view named cv1 that uses stored procedure result set to build a

cross join between T1, T2, T3, T4.

dmSQL> CREATE VIEW cv1 AS SELECT * FROM (call t1) AS t1 CROSS JOIN t2,t3 CROSS

JOIN t4 WHERE t1c1=t2c1 AND t3c1=t4c1 AND t1c1 IN(1,4,10);

SQL Commands 3

3-183

@Copyright 1995-2024 CASEMaker Inc.

3.51 DECLARE SET

The DECLARE SET command defines a connection variable used in local

connection. Only the user in this local connection can execute the command

and the variable is enabled only in local connection.

CV is a connection variable that only can be defined in local connections.

Connection variables in a connection are independent of those in other

connections, that is to say, the connection variables only can be used by the

connection that owned them and cannot be got or used by other connections.

For users, a connection variable is a global variable of sql command in the

local connection, and the connection variables can be used in the dmsql

command line tool and sqlsp. Once connection to the database disconnects, all

connection variables will be automatically freed.

Executing this command can store a value defined by type and value. The CV

can replace the expression value in every SQL command.

To use the CV, users must add the symbol @ before the variable name,

otherwise the dmsql will recognized the variable name as a column name or

other identifier. CV name is not case sensitive.

data_type Data types except for SERIAL, BIGSERIAL, FILE, OID, LONG

VARCHAR, LONG VARBINARY and Media types to use for the CV.

@variable_name Variable name

expression The result of the expression is a value of the variable name

The expression includes not only the assignment value in simple expression,

but also C and Lua functions, such as build-in functions and user-defined

functions.

 . @ variable_ name expressionDECLARE SET .data_type =

Figure 3-70 DECLARE SET syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-184

 Example 1

To create a connection variable named aa and set the value to 1, the type to

int.

dmSQL> DECLARE SET INT @aa = 1;

dmSQL> SELECT @aa;

 @AA

========================

1

 Example 2

To create a connection variable named bb and set the value to 'syscom', the type

to char(20).

dmSQL> DECLARE SET CHAR(20) @bb = 'syscom';

dmSQL> SELECT @bb;

 @BB

========================

SYSCOM

 Example 3

To create a connection variable named cc and set the value to an expression.

dmSQL> DECLARE SET INT int @cc1 = 100+200;

dmSQL> DECLARE SET INT @cc2 = @cc1+300;

dmSQL> SELECT @cc1;

 @CC1

========================

300

dmSQL> SELECT @cc2;

 @CC2

========================

600

 Example 4

To create a connection variable named dd and set the value to an expression.

SQL Commands 3

3-185

@Copyright 1995-2024 CASEMaker Inc.

dmSQL> DECLARE SET CHAR(40) @dd = CONCAT('abcd','efgh');

dmSQL> SELECT @dd;

 @DD

========================

abcdefgh

 Example 5

To create a connection variable named ee and set the value to an expression.

dmSQL> DECLARE SET DOUBLE @ee = 9.999999*100;

dmSQL> SELECT @EE;

 @EE

========================

9.99999900000000e+002

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-186

3.52 DELETE

The DELETE command deletes all rows matching the search condition from a

table. Only rows from a single table may be deleted. Rows from the system

tables may not be deleted. Only the table owner, a DBA, a SYSDBA, a SYSADM,

or a user with the delete privilege on the table may execute the command.

DBMaker only deletes rows that satisfy the search condition. Cursors are only

available within ODBC programs.

See the WHERE clause in the SELECT command for more information on the

search condition.

table_name Name of the table you want to delete rows from

search_condition Conditions a row must meet to be deleted

cursor_name Name of the cursor to use for a positioned delete

WHERE

search_condition

CURRENT OF cursor_name

DELETE FROM table_name

Figure 3-71 DELETE syntax

 Example 1

The following deletes the employee number 1234 from the Employeesinfo

table.

dmSQL> DELETE FROM Employeesinfo WHERE Emp_ID = '1234';

SQL Commands 3

3-187

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

The following deletes all employee names that begin with "John" from the

Employeesinfo table.

dmSQL> DELETE FROM Employeesinfo WHERE FName LIKE 'John%';

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-188

3.53 DISABLE INDEX

The DISABLE INDEX command disables an existing index on table, disable an

index won’t delete it, only makes the index deactivated. Insert, delete, update

on column won’t affect the disabled index, disable an index can speed up the

data efficiency. DISABLE INDEX supports index, auto index, primary key,

unique index. Doesn’t support text index, IVF text index, HASH index. Only the

table owner, a DBA, a SYSDBA, a SYSADM, or a user with the INDEX privilege

for that table may execute the DISABLE INDEX command.

Indexes may be disabled using JDBA Tool, or dmSQL DISABLE INDEX

statement. Disable an index will make the index deactivated, a disabled index

will not work until it’s rebuilt. REBUILD INDEX command can rebuild the

disabled index. User can also create disabled index, please refer to CREATE

INDEX.

Users can use keyword “ALL” to represent all the index when using

DISABLE/REBUILD INDEX statement.

There are some constraints using DISABLE/REBUILD index statement.

1. Users may not disable an index with a foreign key referring to it.

2. If a primary key/unique index is disabled, users may insert repeated data,

when data in disabled primary key/unique index is not unique, users may not

rebuild the primary key/unique index.

index_name.............The name of index which need to disable

table_name.............The name of table which need to disable the index

 . .

 Figure 3-72 DISABLE INDEX syntax

DISABLE INDEX

Index_name

ALL

FOR table_name

SQL Commands 3

3-189

@Copyright 1995-2024 CASEMaker Inc.

 Example 1

The following example disables the index named NameIndex on the

Employeesinfo table.

dmsql> DISABLE INDEX NameIndex FOR Employeesinfo;

 Example 2

The following example disables all the indexes on the Employeesinfo table.

dmsql> DISABLE INDEX all FOR Employeesinfo;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-190

3.54 DROP COMMAND

The DROP COMMAND removes an existing stored command from the

database. Only the stored command owner or a user with DBA, SYSDBA or

SYSADM security privilege may execute the DROP COMMAND command.

A stored command is an SQL data-manipulation statement that is compiled

and permanently stored in the database in executable format. This permits

repeat execution of the stored command without waiting for DBMaker to

compile and optimize the command each time. Stored commands are similar

to stored procedures, except they can only contain a single command and

cannot contain program logic.

The stored command becomes invalid and cannot be used again when

dropping a table or a column that is referenced by a stored command, alter a

table and modify the column definition, or alter a table and add a column

using the BEFORE and AFTER keywords. Altering a table and adding a column

without using the BEFORE and AFTER keywords has no impact on a stored

command. Drop an invalid stored command to remove it from the database.

IF EXISTS: It will ensure that not throw an error while the stored command

does not exist.

command_name Name of the stored command to remove from the database

DROP COMMAND. IF EXISTS

command_name .

Figure 3-73 DROP COMMAND syntax

 Example

Drop the stored command named sc_select with the following syntax:

dmSQL> DROP COMMAND sc_select;

SQL Commands 3

3-191

@Copyright 1995-2024 CASEMaker Inc.

or:

dmSQL> DROP COMMAND IF EXISTS sc_select;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-192

3.55 DROP DATABASE LINK

The DROP DATABASE LINK command removes an existing public or private

database link from the database. Only the owner of a private link may drop his

or her own private link and only a user with DBA, SYSDBA or SYSADM security

privilege can drop a Public link.

A database link creates a connection to a remote database to provide access to

remote data. Links provide the benefit of security information, allowing

connections to a remote database with a user name different from a local one,

or connect to a remote database using a public link with no account.

The PUBLIC/PRIVATE keywords are optional. These keywords specify the

type of database link to drop, public or private. Public links are available to all

users in a database. Private links are available only to the user that creates

them. When no specific type of link is specified, DBMaker tries to drop a

private link by default.

link_name Name of the link to remove from the database

DROP link_name

PRIVATE

PUBLIC

DATABASE LINK

Figure 3-74 DROP DATABASE LINK syntax

 Example 1

The following drops the private link named FieldLink.

dmSQL> DROP PRIVATE DATABASE LINK FieldLink;

SQL Commands 3

3-193

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

The following drops the public link named FieldLink.

dmSQL> DROP PUBLIC DATABASE LINK FieldLink;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-194

3.56 DROP DOMAIN

The DROP DOMAIN command removes an existing domain from the database.

Only the domain owner or a user with DBA, SYSDBA or SYSADM security

privilege can execute the DROP DOMAIN command.

A domain is a user-defined data type that brings together a data type, default

value, and value constraint. Use a domain in the column definition of CREATE

TABLE or ALTER TABLE ADD COLUMN statements in place of a data type to

define the set of valid values that can be entered into the column.

A domain cannot be dropped if there are existing columns in a table that were

defined using the domain. To drop a domain that is referenced by existing

columns, first drop all columns that reference the domain. Do this by dropping

the entire table and then recreating the table without the domain, or by

dropping a single column using the ALTER TABLE DROP COLUMN command.

The CASCADE/RESTRICT keywords are optional. These keywords denote

whether to remove or check dependent objects refered to in the the dropped

domain. When the CASCADE keyword is specified, it will remove all the

dependent objects with the domain and replace the column definition with the

domain definition. When the RESTRICT keyword is specified, it will not drop a

domain that is referred in any table definition. The RESTRICT keyword

ensures that only a domain with no dependent objects can be deleted.

domain_name Name of the domain to remove from the database

DROP DOMAIN domain_name

CASCADE

RESTRICT

Figure 3-75 DROP DOMAIN syntax

 Example

The following example removes the domain named ValidDate.

SQL Commands 3

3-195

@Copyright 1995-2024 CASEMaker Inc.

dmSQL> DROP DOMAIN ValidDate;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-196

3.57 DROP GROUP

The DROP GROUP command removes an existing group from the database.

Only users with DBA, SYSDBA or SYSADM security privileges can execute the

DROP GROUP command.

Groups simplify the management of object privileges in a database with a

large number of users. Use a group to collect users that require the same

object privileges. Any object privileges granted to the group are automatically

granted to all members in the group. DBMaker also provides support for

nested groups, a group as a member of another group, provided there are no

circular references from the member group to the other group.

When a group is removed from a database, all members lose privileges

granted to that group. Members retain all other privileges granted to them

directly or to other groups they are members of. The PUBLIC group cannot be

removed; DBMaker manages this group internally.

group_name Name of the group to remove from the database

DROP GROUP group_name

Figure 3-76 DROP GROUP syntax

 Example

The following removes the group named Manager from the database.

dmSQL> DROP GROUP Manager;

SQL Commands 3

3-197

@Copyright 1995-2024 CASEMaker Inc.

3.58 DROP INDEX

The DROP INDEX command removes an existing index on a table from the

database. Only the table owner, a DBA, a SYSDBA, a SYSADM, or a user with

the INDEX privilege for that table may execute the DROP INDEX command.

An index is a mechanism that provides fast access to specific rows in a table

based on the values of one or more columns from the table, known as the key.

Indexes contain the same data as the key columns from the table they are

based on, but the data is structured and sorted to make retrieval much faster

than the table. Once creating an index, its operation is transparent to users;

the DBMS uses the index to improve query performance whenever possible.

Drop an index from any table in the database except the system tables. If an

index has foreign keys that refer to it, drop those foreign keys before dropping

the index. Drop an index if it becomes fragmented, which reduces its

efficiency. Rebuilding the index creates a denser, unfragmented index.

index_name Name of the index to remove

table_name Name of the table to remove the index from

DROP INDEX index_name FROM table_name

Figure 3-77 DROP INDEX syntax

 Example

The following drops the index named NameIndex from the Employeesinfo

table; if there are any foreign keys, which refer to NameIndex, drop them

before dropping NameIndex.

dmSQL> DROP INDEX NameIndex FROM Employeesinfo;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-198

3.59 DROP PROCEDURE

The DROP PROCEDURE command removes an existing procedure from the

database. Only the table owner, a DBA, a SYSDBA, a SYSADM, or a user with

the PROCEDURE privilege for that table may execute the DROP PROCEDURE

command.

IF EXISTS: It will ensure that no error is throwed if the store procedure does

not exist.

procedure_name Name of the procedure to remove from the database

. .DROP PROCEDURE

 IF EXISTS

procedure_ name

Figure 3-78 DROP PROCEDURE syntax

 Example

Drop the stored procedure sp_proc1 with the following syntax:
dmSQL> DROP PROCEDURE sp_proc1;

or:
dmSQL> DROP PROCEDURE IF EXISTS sp_proc1;

SQL Commands 3

3-199

@Copyright 1995-2024 CASEMaker Inc.

3.60 DROP REPLICATION

The DROP REPLICATION command removes an existing table replication from

the database. Only the table owner or a user with DBA, SYSDBA or SYSADM

security privilege can execute the DROP REPLICATION command.

A table replication creates a full or partial copy of a table in a remote location.

This allows users in remote locations to work with a local copy of data. The

local copy remains synchronized with the databases in other locations. This

way each database can service data requests immediately and efficiently,

without having to go to another machine over a slower network connection.

This is not the same as backing up the database to a remote location, since the

synchronization is done on a transaction-by-transaction basis by the DBMS

itself, without any intervention from users.

There are two primary types of table replication, synchronous and

asynchronous. Synchronous table replication modifies the remote table at the

same time it modifies the local table, while asynchronous table replication

stores changes to the local table and modifies the remote table based on a

schedule. Use the DROP REPLICATION command to drop both synchronous

and asynchronous table replications.

replication_name Name of the table replication to remove

table_name Name of the table to remove the replication from

DROP REPLICATION replication_name FROM table_name

Figure 3-79 DROP REPLICATION syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-200

 Example

The following example drops the replication named EmpRep from the

Employeesinfo table.

dmSQL> DROP REPLICATION EmpRep FROM Employeesinfo;

SQL Commands 3

3-201

@Copyright 1995-2024 CASEMaker Inc.

3.61 DROP SCHEDULE

The DROP SCHEDULE command removes an existing replication schedule to a

remote database. Drop all associated asynchronous table replications before

dropping a replication schedule. Only the local table owner or a user with

DBA, SYSDBA or SYSADM security privilege can execute the DROP SCHEDULE

command.

Use the DROP SCHEDULE command to drop a replication schedule for

asynchronous table replications. Drop all associated asynchronous table

replications before dropping a replication schedule. This would include any

asynchronous table replication that replicates data to the remote database

specified in the schedule.

remote_database_name….Name of the remote database to remove the

replication schedule from

DROP SCHEDULE FOR REPLICATION TO remote_database_name

Figure 3-80 DROP SCHEDULE syntax

 Example

The following drops the replication schedule for the remote database named

DivOneDb.

dmSQL> DROP SCHEDULE FOR REPLICATION TO DivOneDb;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-202

3.62 DROP SCHEMA

The DROP SCHEMA command removes a schema from the current database

system. A schema is essentially a namespace: it contains named objects, also

known as schema objects, (tables, view, index, synonym, trigger, domain,

command, procedure) whose names may duplicate those of other objects

existing in other schemas. Schema objects are accessed by qualifying their

names with the schema name as a prefix.

Only users who created the schema or users with DBA authority can drop a

schema from the database.

The schema to be removed must be empty. A schema containing schema

objects cannot be dropped. Before attempting to drop a schema, drop all

schema objects contained in the schema.

The CASCADE/RESTRICT keywords are optional. These keywords denote

whether to remove or check dependent objects refered to in the schema to be

dropped. When the CASCADE keyword is specified, it will remove all the

dependent objects with the schema. When the RESTRICT keyword is specified,

it will ensure that only a schema with no dependent objects can be deleted.

schema_name The name of the schema to be removed

DROP SCHEMA schema_name

CASCADE

RESTRICT

Figure 3-81 DROP SCHEMA syntax

SQL Commands 3

3-203

@Copyright 1995-2024 CASEMaker Inc.

3.63 DROP SYNONYM

A synonym is an alias that can be used for a table or view. A synonym requires

no storage space, other than its definition in the system catalog. More than one

synonym can be created for a table or view, but all synonym names must be

unique. The DROP SYNONYM command removes a synonym from a table or

view. Only the synonym owner or a user with DBA, SYSDBA or SYSADM

security privilege can execute the DROP SYNONYM command.

DBMaker normally identifies tables and views with fully qualified names that

are a composite of the owner name and object name. To help simplify

statements that use fully qualified table and view names, DBMaker provides

the usage of synonyms.

This allows users to refer to synonym names without prefixing an owner

name. DBMaker will always use the table name and ignore a synonym with the

same name. To use the table referenced by a synonym, provide the fully

qualified name. All synonyms on a table or view are automatically dropped

when a referenced table or view are dropped.

A synonym from any table in the database may be dropped, except for system

tables. DBMaker internally manages all synonyms on the system tables, and

does not permit dropping them.

IF EXISTS: It will ensure that not throw an error while the synonym does not

exist.

synonym_name Name of the synonym to remove from the database

DROP SYNONYM

 IF EXISTS

synonym_name

Figure 3-82 DROP SYNONYM syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-204

 Example

Drops the synonym named Staff created on the Employeesinfo table with the

following syntax:

dmSQL> DROP SYNONYM Staff;

or:

dmSQL> DROP SYNONYM IF EXISTS Staff;

SQL Commands 3

3-205

@Copyright 1995-2024 CASEMaker Inc.

3.64 DROP TABLE

The DROP TABLE command removes a table. Only the table owner or a user

with DBA, SYSDBA or SYSADM security privilege can execute the DROP TABLE

command.

When dropping a table, DBMaker also drops all indexes and primary keys on

the table. If the table has a primary key that is referenced by one or more

foreign keys, drop all foreign keys that reference the primary key before

dropping the table.

The CASCADE/RESTRICT keywords are optional. These keywords denote

whether to remove or check dependent objects refered to in the table to be

dropped. When the CASCADE keyword is specified, it will remove all the

dependent objects with the table. When the RESTRICT keyword is specified, it

will ensure that only a table with no dependent objects can be deleted.

IF EXISTS: It will ensure that no error is throwed if the table does not exist.

table_name Name of the table to drop from the database

CASCADE It will remove the dependent objects as index, foreign key,

synonym, view and trigger with the table

RESTRICT It will ensure that only a table with no dependent objects

as index, foreign key, synonym, view and trigger can be deleted

. .DROP TABLE

 IF EXISTS

table_ name

RESTRICT

CASCADE

Figure 3-83 DROP TABLE syntax

 Example

Drops the Employeesinfo table with the following syntax:

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-206

dmSQL> DROP TABLE Employeesinfo;

or:

dmSQL> DROP TABLE IF EXISTS Employeesinfo;

SQL Commands 3

3-207

@Copyright 1995-2024 CASEMaker Inc.

3.65 DROP TABLESPACE

The DROP TABLESPACE command removes a tablespace. Only users with

DBA, SYSDBA or SYSADM security privilege can execute the DROP

TABLESPACE command.

When dropping a tablespace, DBMaker automatically drops all logical files in

the tablespace. Use operating system commands to manually remove the

physical files that correspond to logical files and free the disk space. If a

tablespace contains tables, drop all tables in the tablespace before dropping

the tablespace.

tablespace_name Name of the tablespace to drop from the database

DROP TABLESPACE tablespace_name

Figure 3-84 DROP TABLESPACE syntax

 Example

The following drops the ts_emp tablespace, drop all tables in the tablespace

before dropping the tablespace.

dmSQL> DROP TABLESPACE ts_emp;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-208

3.66 DROP TEXT INDEX

The DROP TEXT INDEX command removes an existing signature or IVF text

index on a column in a table from the database. Only the table owner, a DBA, a

SYSDBA, a SYSADM, or a user with the INDEX privilege for the table may

execute the DROP TEXT INDEX command.

A text index is a mechanism that provides fast access to rows in a table that

contains one or more words or phrases in columns containing text. Text

indexes contain a representation of all the text found in the text columns they

are based on, but the data is encoded and structured to make retrieval much

faster than directly from the table. Once a text index is created for a table, its

operation is transparent to users of the database; the DBMS uses the index to

improve full-text query performance whenever possible.

text_index_name Name of the text index to remove

table_name Name of the table to remove the text index from

DROP TEXT INDEX text_index_name FROM table_name

Figure 3-85 DROP TEXT INDEX syntax

 Example

The following drops the text index named TxtIdx from the Employeesinfo

table.

dmSQL> DROP TEXT INDEX TxtIdx FROM Employeesinfo;

SQL Commands 3

3-209

@Copyright 1995-2024 CASEMaker Inc.

3.67 DROP TRIGGER

The DROP TRIGGER command removes a trigger. Only the table owner or a

user with DBA, SYSDBA or SYSADM security privilege can execute the DROP

TRIGGER command.

A trigger is a database server mechanism that automatically executes

predefined commands in response to specific events. This allows a database to

perform complex or unconventional operations that might not be possible

using standard SQL commands. Since triggers are under the control of the

database server, they can ensure data is handled consistently regardless of the

source. A trigger operation is transparent to users of the database DBMaker

fires the trigger every time a user or application program generates a trigger

event.

When dropping a table or a column that is referenced by a trigger, altering a

table and modify the column definition, or altering a table and adding a

column using the BEFORE and AFTER keywords, the trigger becomes invalid

and cannot be used again. Altering a table and adding a column without using

the BEFORE and AFTER keywords has no impact on a trigger. Drop an invalid

trigger to remove it from the database. Any triggers created on a table are

dropped automatically when a table is dropped.

IF EXISTS: It will ensure that no error is throwed if the trigger does not exist.

trigger_name Name of the trigger to remove

table_name Name of the table to remove the trigger from

DROP TRIGGER. IF EXISTS

trigger_name .table_ nameFROM

Figure 3-86 DROP TRIGGER syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-210

 Example

Drops the trigger named Trig_emp from the Employeesinfo table with the

following syntax:

dmSQL> DROP TRIGGER Trig_emp FROM Employeesinfo;

or:

dmSQL> DROP TRIGGER IF EXISTS Trig_emp FROM Employeesinfo;

SQL Commands 3

3-211

@Copyright 1995-2024 CASEMaker Inc.

3.68 DROP VIEW

The DROP VIEW command removes a view. Only the view owner or a user

with DBA, SYSDBA or SYSADM security privilege can execute the DROP VIEW

command.

When a view is dropped, DBMaker will invalid all views based on that view.

System views may not be dropped.

The CASCADE/RESTRICT keywords are optional. These keywords denote

whether to remove or check dependent objects refered to in the view to be

dropped. When the CASCADE keyword is specified, it will remove all the

dependent objects with the view. When the RESTRICT keyword is specified, it

will not drop view that is referred in any view definition or synonym. The

RESTRICT ensures that only a view with no dependent objects can be deleted.

IF EXISTS: It will ensure that no error is throwed if the view does not exist.

view_name Name of the view to remove from the database

DROP VIEW. IF EXISTS

view_ name .
RESTRICT

CASCADE

Figure 3-87 DROP VIEW syntax

 Example 1

Drops the view named SalesStaff with the following syntax:

dmSQL> DROP VIEW SalesStaff;

or:

dmSQL> DROP VIEW IF EXISTS SalesStaff;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-212

 Example 2

The following will not drop the view named SalesStaff when any synonym or

view references it.

dmSQL> DROP VIEW SalesStaff RESTRICT;

SQL Commands 3

3-213

@Copyright 1995-2024 CASEMaker Inc.

3.69 END BACKUP

The END BACKUP command ends the backup state DBMaker places the

database in during an online backup. Only users with DBA, SYSDBA or

SYSADM security privileges can execute the END BACKUP command.

To perform an online full backup, start the database in NON-BACKUP,

BACKUP-DATA, or BACKUP-DATA-AND-BLOB mode. To begin the backup,

issue the BEGIN BACKUP command. Use operating system commands or

backup utilities to back up all data and BLOB files to the backup device. After

these files have been backed up, issue the END BACKUP DATAFILE command.

Then use operating system commands or backup utilities to back up all

Journal files. After these files have been backed up, issue the END BACKUP

JOURNAL command to complete the backup and return the database to

normal operation. Using an online full backup, can restore a database from the

point in time the END BACKUP DATAFILE command was executed to the point

in time the currently active Journal file was copied.

BEGIN BACKUP; //copy all data files by manually

END BACKUP DATAFILE; //copy all journal files by manually

END BACKUP JOURNAL; //thus, a full backup completed

To perform an online differential backup, start the database in NON-BACKUP,

BACKUP-DATA, or BACKUP-DATA-AND-BLOB mode. Users can do the

differential backup without the manual backup method. Please note, a

differential backup is based on the most recent full backup and contains only

the data that has changed since the time the differential base was created.

To perform an online incremental backup or an online incremental backup to

current, the database must have been started in BACKUP-DATA or BACKUP-

DATA-AND-BLOB mode.

Abort an online backup at any time by issuing the ABORT BACKUP command;

for more information, see the ABORT BACKUP command. After executing the

ABORT BACKUP command, the files from this backup may not be used to

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-214

restore the database. Delete these backup files so they will not be confused

with files from valid backups when you are restoring your database.

END BACKUP

DATAFILE

JOURNAL

Figure 3-88 END BACKUP syntax

 Example

The following shows the steps involved in a full online backup. To begin, issue

the BEGIN BACKUP command to notify DBMaker that a full backup is in

progress, and then copy all data and BLOB files to the backup location. Once

the files are copied, issue the END BACKUP DATAFILE command. Then copy

all Journal files to the backup location. Once the files are copied, issue the END

BACKUP JOURNAL command. Following this command the database will

return to normal operation.

BEGIN BACKUP

 Copy data and BLOB files to backup location using OS commands

 Change backup mode if desired

 Abort the backup if desired

END BACKUP DATAFILE

 Copy Journal files to backup location using OS commands

 Change the backup mode if desired

 Abort the backup if desired

END BACKUP JOURNAL

SQL Commands 3

3-215

@Copyright 1995-2024 CASEMaker Inc.

3.70 EXECUTE COMMAND

The EXECUTE COMMAND executes a stored command. Use stored commands

to quickly execute frequently used SQL data-manipulation statements without.

Only a DBA, a SYSDBA, a SYSADM, or a user with the EXECUTE privilege may

execute the EXECUTE COMMAND command.

A stored command is an SQL data-manipulation statement that is compiled and

permanently stored in the database in an executable format. This permits

repeated execution of the stored command without waiting for DBMaker to

compile and optimize it. Stored commands are similar to stored procedures,

except they can only contain a single command and cannot contain program

logic.

Use host variables as placeholders for column values in the SQL statement of a

stored command. This permits assigning actual values to the column executing

the command, instead of when creating it. To use host variables in a stored

command, replace any data or column value with a question mark symbol (?).

To execute a stored command that has host variables use constants: results

from built-in functions, the NULL keyword, the DEFAULT keyword, or another

host variable. Only use built-in functions that have no argument, RAND(),

PI(), CURDATE(), or NOW(), when providing a value for a host variable. Use a

NULL value for the host variable. The value represented by the host variable

must be capable of accepting NULL values. The number of parameters

provided when executing a stored command must equal the number of host

variables in the command definition.

command_name Name of the stored command to execute

value Input parameter that corresponds to a host variable in the

stored command

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-216

EXECUTE COMMAND command_name

value

,

)(

Figure 3-89 EXECUTE COMMAND syntax

 Example 1

The following executes the stored command named sc_select. This stored

command has no input parameters.

dmSQL> EXECUTE COMMAND sc_select;

 Example 2

The following executes the stored command named sc_input; the command

has two input parameters that provide a value.

dmSQL> EXECUTE COMMAND sc_input(10002, 10006);

SQL Commands 3

3-217

@Copyright 1995-2024 CASEMaker Inc.

3.71 GRANT (Execute Privileges)

The GRANT command grants execute privileges on executable database

objects to individual users. Only the object owner or a user with DBA, SYSDBA

or SYSADM security privilege can execute the command.

EXECUTE privileges control which executable database objects a user can use.

DBMaker has three types of executable objects: stored commands, stored

procedures, and projects.

The COMMAND keyword specifies the object as a stored command. Only users

with all security and object privileges necessary to execute the SQL statement

that makes up the stored command and the EXECUTE privilege may use this

command.

The PROCEDURE keyword specifies an object being granted the EXECUTE

privilege as a stored procedure. Only the EXECUTE privilege on the stored

procedure is required.

The PROJECT keyword specifies an object being granted the EXECUTE

privilege as a project containing one or more stored procedures. Granting

EXECUTE privilege on a project automatically grants EXECUTE privileges on

all procedures in that project.

The user who creates an executable database object is the owner of that

object. The owner and any DBA, SYSDBA or SYSADM automatically have

EXECUTE privileges on that object. To grant the EXECUTE privilege to all users

grant the privilege to PUBLIC. All current and future users will then have the

EXECUTE privileges on the executable database object.

executable_name Name of the executable object to grant execute privileges

on

user_name Grant execute privileges to user user_name

group_name Grant execute privileges to group group_name

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-218

GRANT executable_name

TO

EXECUTE ON

COMMAND

PROCEDURE

PROJECT

,

user_name

PUBLIC

group_name

Figure 3-90 GRANT (Execute Privileges) syntax

 Example 1

The following grants the EXECUTE privilege on the stored command named

ListUserTables to the user named Vivian.

dmSQL> GRANT EXECUTE ON COMMAND ListUserTables TO Vivian;

 Example 2

The following grants the EXECUTE privilege on the stored procedure named

ShowUsers to the users named Jenny and John, and the group Managers.

dmSQL> GRANT EXECUTE ON PROCEDURE ShowUsers TO Jenny, John, Managers;

 Example 3

The following grants the EXECUTE privilege on all stored procedures in the

InternetFunc to all users using the PUBLIC keyword.

dmSQL> GRANT EXECUTE ON PROJECT InternetFunc TO PUBLIC;

SQL Commands 3

3-219

@Copyright 1995-2024 CASEMaker Inc.

3.72 GRANT (Object Privileges)

The GRANT command grants access privileges on database objects to

individual users. Only the object owner or a user with DBA, SYSDBA or

SYSADM security privilege can execute the command.

Object privileges control which database objects a user can access and the

actions they can perform. There are seven object privileges: SELECT, INSERT,

DELETE, UPDATE, INDEX, ALTER, and REFERENCE. The keywords ALL and

ALL PRIVILEGES can also be used to simultaneously grant privileges on an

object.

• SELECT privilege selects data in a database object. It applies to the entire

object and cannot be granted to specific columns.

• INSERT privilege inserts new data into a database object. It can be

restricted to specific columns.

• DELETE privilege deletes data from a database object. It applies to the

entire object and cannot be granted on specific columns.

• UPDATE privilege updates data in a database object. It can be restricted to

specific columns.

• INDEX privilege creates an index on a database object. It applies to the

entire object and cannot be granted on specific columns.

• ALTER privilege alters the schema of a database object. It applies to the

entire object and cannot be granted on specific columns.

• REFERENCE privilege creates referential constraints, such as foreign keys,

on a database object. It can be restricted to specific columns.

The user who creates a schema object is the owner of that object. The owner

and any DBA, SYSDBA or SYSADM is automatically granted all object

privileges. System catalog tables belong to a special virtual user called

SYSTEM. All users including the SYSADM have only SELECT privilege on

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-220

system catalog tables. Additional object privileges on the system catalog tables

may not be added.

Privileges on specific columns and on the entire database object cannot be

granted at the same time. Use the command twice, once to grant privileges on

specific columns, and once to grant privileges on the entire table. It is possible

to grant object privileges to all users simultaneously by granting the privileges

to PUBLIC. All current and future users will then have those privileges for the

database object.

column_name Name of the column to grant object privileges on

table_name Name of the table to grant object privileges on

user_name Name of the user to grant object privileges to

group_name Name of the group to grant object privileges to

SQL Commands 3

3-221

@Copyright 1995-2024 CASEMaker Inc.

GRANT column_name

,

)(

,

UPDATE

REFERENCE

INSERT

,

DELETE

INDEX

UPDATE

SELECT

REFERENCE

ALTER

INSERT

ALL

PRIVILEGES

ON table_name TO

,

user_name

PUBLIC

group_name

Figure 3-91 GRANT (Object Privileges) syntax

 Example 1

The following grants SELECT, INSERT, and UPDATE object privileges on the

Checks table to the user named Vivian.

dmSQL> GRANT SELECT, INSERT, UPDATE ON Checks TO Vivian;

 Example 2

The following grants INSERT, UPDATE, and REFERENCE privilege on the

Amount, PayDate columns of the Checks table to the user named Jenny.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-222

dmSQL> GRANT INSERT, UPDATE, REFERENCE (Amount, PayDate) ON Checks TO Jenny;

 Example 3

The following grants all object privileges on the table Checks to the user

named John.

dmSQL> GRANT ALL ON Checks TO John;

SQL Commands 3

3-223

@Copyright 1995-2024 CASEMaker Inc.

3.73 GRANT (Security Privileges)

The GRANT command creates new users or changes the security privileges of

existing users. Only users with SYSADM or SYSDBA security privileges may

execute the command. When creating a database DBMaker will create the

SYSADM default user with no password. Change the SYSADM password

immediately after creating the database to prevent unauthorized access. The

SYSADM user is the only authorized user in the database until security

privileges are granted to other users.

The SYSADM can grant CONNECT, RESOURCE, DBA, SYSDBA and ACCESS

security privileges to a user. Granting CONNECT security privilege effectively

adds a new user name to the database. Once a user name exists, the SYSADM

may grant higher security to that user. Users with higher authority have all

privileges of users with lower authority. Only users with SYSADM or SYSDBA

security privilege can grant security privileges to other users. The SYSADM

has all privileges of the SYSDBA authority level, and the SYSDBA authority

must be granted by users with SYSADM authority.

CONNECT security privilege is necessary before a user can connect to a

database. Once a user is granted the CONNECT security privilege they have

been added to the database as a user. All users must be granted CONNECT

security privilege before they can be granted any other security privileges. A

user with CONNECT security privilege may create temporary tables in a

database, or perform queries on any data they have been granted permission.

RESOURCE security privilege allows a user to create, alter, and drop tables,

domains, and indexes. As the owner of any objects they create, users with

RESOURCE privilege may grant and revoke object privileges to other users

and create synonyms and views for any objects they own.

The DBA privilege has the same capabilities as the RESOURCE privilege, but

may also create tablespaces and files. Users with the DBA privilege can also

grant or revoke object privileges for schema objects owned by other users,

except system schema objects.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-224

The SYSDBA privilege has the same capabilities as the DBA privileges, but can

also grant CONNECT, RESOURCE, DBA and ACCESS security privileges to a

user, grant, change, or revoke privileges of objects owned by users with DBA

authority, and change other users' passwords except SYSADM and other

SYSDBA.

User names have a maximum length of 128 characters and passwords have a

maximum length of 16 characters. Passwords can contain letters, numbers,

the underscore character, and the symbols $ and #, but the first character

cannot be a number.

The ACCESS/ALLOW privilege allows a user to connect to database from

certain IPs. This can protect your database and avoid malicious connections.

The IP is a standard Internet Protocol format. It only contains numbers and '*'.

The BLOCK privilege forbids a user to connect to database from certain IPs.

This can protect your database and avoid malicious connections. The IP is a

standard Internet Protocol format. It only contains numbers and '*'.

user_name Name of the user to grant security privileges to

password Password of the user when connecting to the database

ip_address Address of the user to grant security privileges from

SQL Commands 3

3-225

@Copyright 1995-2024 CASEMaker Inc.

GRANT

DBA

SYSDBA

TO

,

user_name

RECOURCE

ACCESS ,

ip_address

,

user_name
BLOCK

ALLOW TO

user_name
password

,

CONNECT TO

Figure 3-92 GRANT (Security Privileges) syntax

 Example 1

The following grants the CONNECT privileges to users named vivian and

jenny with no password.

dmSQL> GRANT CONNECT TO vivian, jenny;

 Example 2

The following grants the CONNECT privilege to a user named vivian with the

password shuka828 and a user named jenny with the password grala833.

dmSQL> GRANT CONNECT TO vivian shuka828, jenny grala833;

 Example 3

The following grants the RESOURCE privilege to users vivian and jenny.

dmSQL> GRANT RESOURCE TO vivian, jenny;

 Example 4

The following grants the DBA privilege to users vivian and jenny.

dmSQL> GRANT DBA TO vivian, jenny;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-226

 Example 5

The following grants the ACCESS privilege to the users vivian and jenny with

the addresses 192.4.55.3 and 219.3.44.*.

dmSQL> GRANT ACCESS TO vivian,jenny '192.4.55.3','219.3.44.*';

SQL Commands 3

3-227

@Copyright 1995-2024 CASEMaker Inc.

3.74 INSERT

The INSERT command inserts new rows in a table. Rows may not be inserted

into the system catalog tables. Only the table owner, a DBA, a SYSDBA, a

SYSADM, or a user with the INSERT privilege for the entire table or for the

specific column may execute the INSERT command.

Use this command to insert a single row by providing values using the

VALUES keyword. The values provided may be constants, the results of built-

in functions, or bound variables in a program using the ODBC API. Also, use

this command to insert a set of rows using data selected from other tables

using a SELECT statement. The rows selected must have columns with data

types compatible the table.

When specifying columns to provide values for, name the columns in any

order when executing the INSERT command. Omitting the column list

specifies to use all columns, in the order created. In this case, provide a value

for each column in the table, even if the value is empty. If the values provided

do not match the data type of the column, DBMaker converts the values to the

proper data type. The default value for a column is used when a value is not

provided.

Use the referential integrity rules when inserting data into a child table that

has a foreign key linking it to a parent table. Do not try to insert a value into a

child key that does not exist in the parent key, unless it is a NULL value. Insert

a new row in the parent key first.

To insert a string that contains a single quote, replace the single quote in the

string with two consecutive single quotes. Have an even number of single

quotes in a value, or DBMaker will wait for another single quote to close the

string value. To insert the default value in a row, leave the value empty or

specify the default value using the DEFAULT keyword.

OR REPLACE: The OR REPLACE option is optional. This option is used to

ensure that DBMaker will replace the old row with the new row if the two

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-228

rows have the same value for some columns. That is to say, if the row that

users will insert into a table already exists in the table (judged with the

primary key or the unique index), the old row will be deleted from the table

and then the new row will be inserted into the table, if not, the new row will

be inserted directly into the table.

To use the option OR REPLACE, users must own privilege both INSERT and

DELETE at the same time.

The INSERT statement with the option OR REPLACE would return a count to

indicate the number of affected rows. This is the sum of the deleted rows and

the inserted rows.

Please note that the option OR REPLACE makes sense only when the table

owns the primary key or the unique index. If the primary key or the unique

index both of which are used to confirm whether the new row duplicates the

old row, does not exist, the INSERT statement with the option OR REPLACE

becomes equivalent to that without the option OR REPLACE, and the new row

will be inserted directly into the table when it is executed, which would result

in duplicate records in the table. We do not recommend this option if the

inserted rows are the query result of other tables and contain a large number

of data, because this would reduce insertion efficiency.

In addition, we also do not recommend that users create the unique index on

column containing a large number of data, because it not only does not work

in quick query, but also may returns an error message 8332: 'expression or

predicate needs too large memory' when users execute the INSERT OR

REPLACE statement to insert data.

table_name Name of the table to insert a new row into

column_name Name of the column to insert a value for

literal Literal value to be inserted

constant Constant value to insert

bind_variable Name of the bound variable to insert, with ODBC only

SQL Commands 3

3-229

@Copyright 1995-2024 CASEMaker Inc.

select_statement Statement to be selected

VALUES)

,

constant

NULL

bind_variable

(

select_statement

OR REPLACE

INSERT table_name

column_name

,

)(

INTO

Figure 3-93 INSERT syntax

 Example 1

The following inserts a row into the Employeesinfo table.

dmSQL> INSERT INTO Employeesinfo VALUES (1234, 'John', '01/01/1998', 2500);

 Example 2

The following inserts values into Emp_ID, FName, and HireDate columns.

dmSQL> INSERT INTO Employeesinfo (Emp_ID, FName, HireDate)

 VALUES (1234, 'John', '01/01/1998');

 Example 3

The following inserts rows into the Employeesinfo table that were selected

from the TempStaff table where the Emp_ID column has values greater than

10567.

dmSQL> INSERT INTO Employeesinfo (Emp_ID, FName, HireDate)

 SELECT Emp_ID, FName, HireDate FROM TempStaff WHERE Emp_ID > 10567;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-230

 Example 4

The following inserts a row into a CHAR column containing a single quote

with the values inserted into all other columns set to the default value using

the DEFAULT keyword.

dmSQL> INSERT INTO TB_TMP VALUES ('Joe''s Diner', DEFAULT, DEFAULT);

 Example 5

The following inserts a row into the Employeesinfo table that owns a primary

key Emp_ID and a unique index idx2 on column FName.

dmSQL> INSERT INTO Employeesinfo VALUES (1,'BB', '01/01/1986');

or

dmSQL> INSERT OR REPLACE INTO Employeesinfo VALUES (1,'BB', '01/01/1986');

SQL Commands 3

3-231

@Copyright 1995-2024 CASEMaker Inc.

3.75 KILL CONNECTION

The KILL CONNECTION command terminates a user connection to a database.

Only a user with DBA, SYSDBA or SYSADM security privilege can execute the

KILL CONNECTION command.

Executing this command frees all lock resources held by this user. Use this

command when a user is holding resources needed by other users for high

priority operations, or when the database administrator must shut down the

database and not all users have logged off.

connection_ID Connection number to kill

KILL CONNECTION connection_ID

Figure 3-94 KILL CONNECTION syntax

 Example

The following kills the connection for the user connection ID 12345.

dmSQL> KILL CONNECTION 12345;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-232

3.76 LOAD STATISTICS

The LOAD STATISTICS command loads statistics from a text file containing

statistical data for a DBMaker database. Create a statistics file for a database

using the UNLOAD STATISTICS command. This file may be edited using any

ASCII text editor and can be modified to provide any statistical data for testing

or other purposes. Only users with DBA, SYSDBA or SYSADM security

privileges can execute the LOAD STATISTICS command.

file_name Name of the file containing the statistical data to load

LOAD STATISTICS FROM file_name

Figure 3-95 LOAD STATISTICS syntax

 Example

The following example loads the statistics file stat.dat into the database.

dmSQL> LOAD STATISTICS FROM stat.dat;

SQL Commands 3

3-233

@Copyright 1995-2024 CASEMaker Inc.

3.77 LOCK TABLE

The LOCK TABLE command controls access to a table by other users. Only the

table owner, a DBA, a SYSDBA, a SYSADM, or a user with the SELECT privileges

(to lock the table in SHARE mode) or the UPDATE or DELETE privileges (to

lock the table in EXCLUSIVE mode may execute this command.

This command locks a table in SHARE or EXCLUSIVE mode to control access to

a table. SHARE mode allows other users read access to the table but denies

write access; other users cannot insert, update, or delete rows if the table is

locked in SHARE mode. EXCLUSIVE mode denies other users both read and

write access. Other users cannot select, insert, update, or delete rows if the

table is locked in EXCLUSIVE mode.

Use this command to reduce the number of locks acquired in a database

operation. If the default lock level on a table is page or row, use this command

to get a table level lock in order to avoid getting many lower level locks. In

general, there is no need to do this since DBMaker automatically upgrades the

lock level on a table if too many locks are acquired.

The WAIT/NO WAIT keywords are optional. These keywords specify whether

DBMaker should wait to acquire a lock if the lock is not available immediately.

If specifying the NO WAIT option, DBMaker does not wait to acquire a lock and

returns an error message stating the lock could not be acquired. The amount

of time DBMaker wait is determined by the DB_LTimO keyword in the

dmconfig.ini file. The default value is WAIT.

table_name Name of the table to change the lock settings for

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-234

MODE

SHARE

EXCLUSIVE

WAIT

NO WAIT

LOCK TABLE table_name IN

Figure 3-96 LOCK TABLE syntax

 Example 1

The following locks the Employeesinfo table in SHARE mode with the WAIT

option.

dmSQL> LOCK TABLE Employeesinfo IN SHARE MODE WAIT;

 Example 2

The following locks the Employeesinfo table in EXCLUSIVE mode with the

NO WAIT option.

dmSQL> LOCK TABLE Employeesinfo IN EXCLUSIVE MODE NO WAIT;

SQL Commands 3

3-235

@Copyright 1995-2024 CASEMaker Inc.

3.78 REBUILD COMMAND

The REBUILD COMMAND command rebuilds a stored command. Only users

with DBA, SYSDBA or SYSADM security privileges can execute the REBUILD

COMMAND command.

Rebuilding stored command can avoid stored command execution efficiency

turn bad. For example, if users created a stored command on a table with few

records, with the table records growing, the stored command execution

efficiency will become worse.

Rebuild Stored Command function support Rebuild Stored Command Syntax

and auto rebuild while update statistics.

command_name Name of the stored command to rebuild

REBUILD COMMAND command_name

Figure 3-97 REBUILD COMMAND syntax

 Example

The following example rebuilds the stored command named sc_select.

dmSQL> REBUILD COMMAND sc_select;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-236

3.79 REBUILD INDEX

The REBUILD INDEX command rebuilds an existing index on a table. Only the

table owner, a DBA, a SYSDBA, a SYSADM, or a user with the INDEX privilege

for that table may execute the REBUILD INDEX command.

An index is a mechanism that provides fast access to specific rows in a table

based on the values of one or more columns, known as the key. Indexes

contain the same data as the key columns from the table they are based on,

but the data is structured and sorted to make retrieval much faster than the

table. Its' operation is transparent to users of the database. The DBMS uses the

index to improve query performance whenever possible.

Users can use keyword “ALL” to represent all the index when using

DISABLE/REBUILD INDEX statement.

Rebuild an index for any table creating a denser unfragmented index and

increasing efficiency.

index_name The name of index which need to rebuild

table_name The name of table which need to rebuild the index

Figure 3-98 REBUILD INDEX syntax

 Example 1

The following example rebuilds the index named NameIndex from the

Employeesinfo table.

dmSQL> REBUILD INDEX NameIndex FOR Employeesinfo;

SQL Commands 3

3-237

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

The following example rebuilds all the index from the Employeesinfo table.

dmSQL> REBUILD INDEX ALL FOR Employeesinfo;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-238

3.80 REBUILD INDEX IN ANOTHER
TABLESPACE

REBUILD INDEX IN ANOTHER TABLESPACE command rebuilds an index on a

table in another tablespace, and the original index will automatically be

deleted. Only the table owner, a DBA, a SYSDBA or a user with both ALTER and

INDEX privileges for the table may execute the REBUILD INDEX IN ANOTHER

TABLESPACE command.

NOTE Users cann't rebuild indexs for permanent tables in TMPTABLESPACE.

NOTE Indexs on temporary tables only can be rebuilded in TEMTABLESPACE.

NOTE Indexs on system tables only can be rebuilded in SYSTABLESPACE.

index_name Name of the index to be rebuilded

table_name Name of the table which rebuilt index belongs to

tablespace_name Name of the tablespace which rebuilt index belongs to

REBUILD

INDEX
index_name table_name tablespace_nameFOR IN

Figure 3-99 REBUILD INDEX IN ANOTHER TABLESPACE syntax

 Example

The following example rebuild the index NameIndex on the table

Employeesinfo stored in the tablespace ts_mode in another tablespace

ts_new.

dmSQL> REBUILD INDEX NameIndex FOR Employeesinfo IN ts_new;

SQL Commands 3

3-239

@Copyright 1995-2024 CASEMaker Inc.

3.81 REBUILD TEXT INDEX

The REBUILD TEXT INDEX command rebuilds an IVF or signature text index

for a table. This updates the text index to include new data. Only the table

owner, a DBA, a SYSDBA, a SYSADM, or a user with the INDEX privilege for

that table may execute the REBUILD TEXT INDEX command.

A text index is a mechanism that provides fast access to rows in a table that

contains one or more words or phrases in columns containing text. Text

indexes contain a representation of all the text found in the text columns they

are based on, but the data is encoded and structured to make retrieval much

faster than directly from the table. An index operation is transparent to users.

The DBMS uses the index to improve full-text query performance.

When loading data into a table, DBMaker does not update any text indexes on

that table, thus loading all data before creating a text index. Rows containing

matching text entered into a table after the text index was created will not be

returned with the full-text query results. To include these rows in the search

results, rebuild the text index using the REBUILD TEXT INDEX command.

The incremental option is the default setting for the REBUILD TEXT INDEX

syntax. Incremental appends text entered into a table after the text index was

created, thus making the text available to be returned with full-text query

results. The full option rebuilds an entire text index by dropping and

rebuilding the index based on a new full-text query.

text_index_name Name of the text index to rebuild

table_name Name of the table to rebuild the text index on

incremental creates a partial index and appends it to the current index

full drops the current index and creates a new index

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-240

REBUILD TEXT INDEX text_index_name FOR

table_name

INCREMENTAL

FULL

Figure 3-100 REBUILD TEXT INDEX syntax

 Example

The following rebuilds the text index named TxtIdx on the Employeesinfo

table.

dmSQL> REBUILD TEXT INDEX TxtIdx FOR Employeesinfo;

SQL Commands 3

3-241

@Copyright 1995-2024 CASEMaker Inc.

3.82 REMOVE FROM GROUP

The REMOVE FROM GROUP command removes a user from an existing group.

The user will lose all object privileges that have been granted to the group, but

retain any privileges that have been granted to them directly. Only users with

SYSADM, SYSDBA or DBA security privileges may execute the REMOVE FROM

GROUP command.

Groups simplify the management of object privileges in a database with a

large number of users. Use a group to organize users and/or groups. Any

object privileges granted to the group are automatically granted to all

members in the group.

Members added to a group after object privileges have been granted gain

those object privileges in addition to the object privileges that have been

granted to them directly.

Specify a group name in place of the user name, as long as the group you are

trying to remove is not a part of the group that you are currently using. User

and group names have a maximum length of 128 characters, and may contain

letters, numbers, the underscore character, and the symbols $ and #. The first

character may not be a number.

user_name Name of the user to remove from the group

group_name Name of the group to remove the user from

REMOVE FROM GROUP group_name

user_name

,

Figure 3-101 REMOVE FROM GROUP syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-242

 Example 1

The following removes the user named Vivian from the group SalesStaff.

dmSQL> REMOVE Vivian FROM GROUP SalesStaff;

 Example 2

The following removes the group named NYSalesStaff from the group named

SalesStaff.

dmSQL> REMOVE NYSalesStaff FROM GROUP SalesStaff;

SQL Commands 3

3-243

@Copyright 1995-2024 CASEMaker Inc.

3.83 REMOVE TRACE

The REMOVE TRACE command removes trace from a single table that log the

detaile OLD/NEW data. Only the user with table owner, a DBA, a SYSDBA, or a

SYSADM security privileges can execute the REMOVE TRACE command.

table_name Name of an exisiting single table

REMOVE TRACE ON table_name

Figure 3-102 REMOVE TRACE syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-244

3.84 RESUME SCHEDULE

The RESUME SCHEDULE command resumes a suspended replication schedule

for an asynchronous table. Only the local table owner, a DBA, a SYSDBA, or a

SYSADM may execute the RESUME SCHEDULE command.

remote_database_name…. The name of remote database which need to resume

the replication schedule

RESUME SCHEDULE FOR REPLICATION TO remote_database_name

Figure 3-103 RESUME SCHEDULE syntax

 Example

The following resumes the replication schedule for the remote database

named DivOneDb.

dmSQL> RESUME SCHEDULE FOR REPLICATION TO DivOneDb;

SQL Commands 3

3-245

@Copyright 1995-2024 CASEMaker Inc.

3.85 REVOKE (Execute Privileges)

The REVOKE command revokes execute privileges on executable database

objects from individual users or groups. Only the object owner, a DBA, a

SYSDBA or a SYSADM may execute the command.

Execute privileges control which executable database objects a user can use.

DBMaker includes the stored command, stored procedure, and project

executable objects.

The COMMAND keyword specifies revoking of the EXECUTE privilege on a

stored command. Only users with all security and object privileges necessary

to execute the SQL statement that makes up the stored command in addition

to having EXECUTE privilege on the command may execute a stored

command.

The PROCEDURE keyword specifies revoking of the EXECUTE privilege on a

stored procedure. Only the EXECUTE privilege on the stored procedure is

required to execute this command.

The PROJECT keyword specifies revoking of the EXECUTE privilege on a

project containing one or more stored procedures. Revoking EXECUTE

privilege on a project automatically revokes EXECUTE privileges on all

procedures in that project.

Only the owner, a DBA, a SYSDBA or a SYSADM automatically have the

EXECUTE privilege. It is possible to revoke EXECUTE privileges from all users

simultaneously by revoking the privilege from PUBLIC. All current users will

lose EXECUTE privileges on the executable database object.

executable_name Name of the executable object to revoke execute privileges

on

user_name Name of the user to revoke execute privileges from

group_name Name of the group to revoke execute privileges from

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-246

REVOKE executable_name

FROM

,

user_name

PUBLIC

group_name

COMMAND

PROCEDURE

PROJECT

EXECUTE ON

Figure 3-104 REVOKE (Execute Privileges) syntax

 Example 1

The following revokes EXECUTE privilege on the stored command named

ListUserTables from the user named Vivian.

dmSQL> REVOKE EXECUTE ON COMMAND ListUserTables FROM Vivian;

 Example 2

The following revokes the EXECUTE privilege on the stored procedure named

ShowUsers from the users named Jenny and John, and the group Managers.

dmSQL> REVOKE EXECUTE ON PROCEDURE ShowUsers FROM Jenny, John, Managers;

 Example 3

The following revokes the EXECUTE privilege on all stored procedures in the

InternetFunc from all present and future users using the PUBLIC keyword.

dmSQL> REVOKE EXECUTE ON PROJECT InternetFunc FROM PUBLIC;

SQL Commands 3

3-247

@Copyright 1995-2024 CASEMaker Inc.

3.86 REVOKE (Object Privileges)

The REVOKE command revokes access privileges on database objects from

individual users or groups. Only the object owner, a DBA, a SYSDBA or a

SYSADM can execute the command.

Object privileges control which database objects a user can access and the

actions they can perform. There are seven object privileges SELECT, INSERT,

DELETE, UPDATE, INDEX, ALTER, and REFERENCE. The keywords ALL and

ALL PRIVILEGES can also be used to simultaneously revoke all privileges on

an object.

• SELECT privilege- permits selection of data in a database object, applies to

the entire object and cannot be granted on specific columns.

• INSERT privilege- permits insertion of new data into a database object.

The privilege can also be restricted to specific columns.

• DELETE privilege- permits the deletion of data from a database object,

applies to an entire database object, and cannot be granted on specific

columns.

• UPDATE privilege- permits updates of data in a database object. The

privilege can also be restricted to specific columns.

• INDEX privilege- permits creation of an index for a database object, which

cannot be granted on specific columns.

• ALTER privilege- permits altering the schema of a database object, applies

to the entire object and cannot be granted on specific columns.

• REFERENCE privilege- permits creation of referential constraints, foreign

keys, on a database object. The privilege can also be restricted to specific

columns.

System catalog tables belong to a special virtual user called SYSTEM. All users

including the SYSADM have only SELECT privilege on system catalog tables.

Object privileges on the system catalog tables may not be revoked.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-248

To privileges on specific columns and on the entire database object, use the

command twice, once to revoke privileges on specific columns, and once to

revoke privileges on the entire table. It is possible to revoke object privileges

to all users simultaneously by revoking the privileges from PUBLIC. All current

users will then lose those privileges on the database object.

column_name Name of the column to revoke object privileges on

table_name Name of the table to revoke object privileges on

user_name Name of the user to revoke object privileges from

group_name Name of the group to revoke object privileges from

SQL Commands 3

3-249

@Copyright 1995-2024 CASEMaker Inc.

REVOKE column_name

,

)(

,

UPDATE

REFERENCE

INSERT

,

DELETE

INDEX

UPDATE

SELECT

REFERENCE

ALTER

INSERT

ALL

PRIVILEGES

ON table_name FROM

,

user_name

PUBLIC

group_name

Figure 3-105 REVOKE (Object Privileges) syntax

 Example 1

The following revokes the SELECT, INSERT, and UPDATE object privileges on

the Checks table from the user named Vivian.

dmSQL> REVOKE SELECT, INSERT, UPDATE ON Checks FROM Vivian;

 Example 2

The following revokes the INSERT, UPDATE, and REFERENCE object

privileges on the Amount and PayDate columns of the Checks table from the

user named Jenny.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-250

dmSQL> REVOKE INSERT, UPDATE, REFERENCE (Amount, PayDate) ON Checks FROM Jenny;

 Example 3

The following revokes all object privileges on the table Checks from the user

named John.

dmSQL> REVOKE ALL ON Checks FROM John;

SQL Commands 3

3-251

@Copyright 1995-2024 CASEMaker Inc.

3.87 REVOKE (Security Privileges)

The REVOKE command removes a user from a database or changes the

security privileges of a user. Only users with SYSADM or SYSDBA security

privileges can execute the command

The SYSADM can revoke SYSDBA, DBA, RESOURCE, CONNECT and ACCESS

privileges from a user. Revoking the CONNECT privilege effectively removes a

user ID from the database. Once a user ID is removed, that user can no longer

connect to the database. Revoking lower security privileges does not revoke

higher ones, with the exception of the CONNECT security privilege. Revoking

the CONNECT security privilege revokes all higher security privileges.

The SYSDBA privilege has all of the same capabilities as the DBA privilege, but

it can execute the REVOKE command to revoke DBA, RESOURCE, CONNECT

and ACCESS privileges from a user, except SYSADM and SYSDBA privilege. If

revoking SYSDBA privilege from a user, it will retain the DBA privilege.

The DBA privilege has all of the same capabilities as the RESOURCE privilege,

but may additionally create tablespaces and files. Users with DBA privileges

can also grant or revoke object privileges for schema objects owned by other

users, except for system schema objects.

The RESOURCE privilege allows a user to create, alter, and drop all tables,

domains, and indexes. As the owner of any objects they create, users with

RESOURCE security privilege may grant and revoke object privileges to other

users and create synonyms and views for any objects they own.

The CONNECT privilege is necessary before a user can connect to a database.

Once a user is granted a CONNECT privilege, they have been added to the

database as a user. All users must be granted the CONNECT security privilege

before they can be granted any other security privileges. A user with the

privilege may create temporary tables in a database, or perform queries on

any data to which they have been granted permission.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-252

The ACCESS/ALLOW privilege allows a user to connect to database from

certain IPs. This can protect your database and avoid malicious connections.

The IP is a standard Internet Protocol format. It only contains numbers and '*'.

The BLOCK privilege forbids a user to connect to database from certain IPs.

This can protect your database and avoid malicious connections. The IP is a

standard Internet Protocol format. It only contains numbers and '*'.

To revoke all constraints of a user for the specified IP checking rule, use the

"REVOKE ALLOW/BLOCK FROM user_name ALL" statement. ALL indicates all

IP addresses.

If the REVOKE command is used to revoke RESOURCE, DBA or SYSDBA

authority from a user, it will not take effect until the next time the user

connects to the database.

user_name Name of the user to revoke security privileges from

ip_address Address of the user to revoke security privileges from

REVOKE

DBA

RESOURCE

SYSDBA

FROM

,

user_name

CONNECT

ACCESS ,

ip_address

,

r_name
BLOCK

ALLOW FROM

user_name
BLOCK

ALLOW
FROM ALL

su e

Figure 3-106 REVOKE (Security Privileges) syntax

 Example 1

The following revokes the DBA privilege from the users named vivian and

jenny.

dmSQL> REVOKE DBA FROM vivian, jenny;

SQL Commands 3

3-253

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

The following revokes the RESOURCE privilege from the users named vivian

and jenny.

dmSQL> REVOKE RESOURCE FROM vivian, jenny;

 Example 3

The following revokes the CONNECT privilege from the users named vivian

and jenny, revoking all privileges and removing the users from the database.

dmSQL> REVOKE CONNECT FROM vivian, jenny;

 Example 4

The following revokes the ACCESS privilege from the user named vivian and

jenny with the addresses 192.55.3.4 and 219.5.3.*.

dmSQL> REVOKE ACCESS FROM Vivian,jenny '192.55.3.4','219.5.3.*';

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-254

3.88 ROLLBACK

The ROLLBACK command rolls back the current transaction to the beginning

of the transaction or to a predefined savepoint. Any user with CONNECT or

higher privileges can execute the command.

Use the ROLLBACK command to roll back all changes made by commands in a

current transaction. Using the ROLLBACK command releases all locks

acquired by a transaction. This command does not function while a database is

running in the AUTOCOMMIT mode.

Also, use the ROLLBACK command to roll back a portion of the changes made

by commands in a current transaction. Commands executed after the

savepoint are rolled back, but no commands before the savepoint are. The

transaction remains active and no locks are released.

savepoint_name Name of the savepoint to roll back to

ROLLBACK

WORK

TO savepoint_name

Figure 3-107 ROLLBACK syntax

 Example 1

The following rolls back the entire active transaction, effectively aborting the

transaction. All locks acquired by the transaction are released.

dmSQL> ROLLBACK WORK;

SQL Commands 3

3-255

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

The following rolls back all commands executed after the savepoint,

SavePoint1, but retains commands executed before the savepoint; the

transaction remains active and locks are not released.

dmSQL> ROLLBACK TO SavePoint1;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-256

3.89 SAVEPOINT

The SAVEPOINT command sets a savepoint in the current transaction and

assigns a name. Only users with CONNECT or higher privileges can execute the

SAVEPOINT command.

The SAVEPOINT command can be used in conjunction with the ROLLBACK

command, to roll back a portion of the commands in a transaction. Specify a

savepoint name in the ROLLBACK command and DBMaker rolls back all

commands that were executed after the savepoint. The transaction remains

active and locks acquired by the transaction are not released.

When specifying a savepoint name that does not exist, DBMaker rolls back the

entire transaction and returns an error. The transaction is aborted and all

locks acquired by the transaction are released. If trying to assign the same

savepoint name twice in the same transaction, the first savepoint is canceled

and the name is assigned to the second savepoint.

savepoint_name Name to assign to the savepoint

SAVEPOINT savepoint_name

Figure 3-108 SAVEPOINT syntax

 Example

The following sets a savepoint named SavePoint1 in the active transaction.

dmSQL> SAVEPOINT SavePoint1;

SQL Commands 3

3-257

@Copyright 1995-2024 CASEMaker Inc.

3.90 SELECT

The SELECT command allows you to find, retrieve, and display data. Only the

table owner, a DBA, a SYSDBA, a SYSADM, or a user with the SELECT privilege

for that table can execute the SELECT command on a table.

The result of the SELECT command is a set of rows known as the result set,

which meets the conditions specified. Specify the tables or views in a database

to query; the condition data must meet to be returned in the result set, and the

sequence in which the data in the result set is output. A SELECT statement can

be a UNION of several single commands.

select SELECT clause lists the columns to retrieve data from

from FROM clause lists the tables the columns are located in

where........................... WHERE clause specifies criteria return values must match

group by GROUP BY clause specifies groups for summary results

having HAVING clause specifies filter conditions for summary

results

order by ORDER BY clause specifies the sort order

for browse FOR BROWSE clause specifies only shared locks should be

acquired on the data in the query

into INTO clause specifies the table where the result will be

inserted

limit LIMIT clause specifies the number of return records from

offset n for the entire return set

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-258

order by into for browse

UNION ALL

UNION

fromselect

having

group bywhere

Figure 3-109 SELECT (using FROM) syntax

SELECT WITHOUT FROM

The SELECT without the use of the FROM syntax is used to get UDF or

expression results. It does not require the user to use the FROM table clause in

the query. Thus, the user cannot specify a column or table name in the SELECT

without the use of the FROM query.

The following syntax cannot be used in conjunction with the SELECT without

the use of the FROM syntax: WHERE, GROUP BY, HAVING, ORDER BY,

DISTINCT, and UNION.

SELECT WITHOUT FROM expression

Figure 3-110 SELECT without the use of the FROM syntax

 Example

dmSQL> SELECT ABS(100), COS(100.0);

SQL Commands 3

3-259

@Copyright 1995-2024 CASEMaker Inc.

SELECT Clause

The SELECT clause contains the SELECT keyword and the list of database

objects or expressions to include in the result set. Use the ALL or DISTINCT

keywords to indicate whether duplicate values should be returned. DBMaker

returns all rows by default when either the ALL or DISTINCT keywords are

not specified.

The value in the result list may be a column name, an expression, a constant,

or an asterisk (*). An asterisk represents all columns from the source table.

Optionally prefix a source name in front of the column name or asterisk.

Use any of the four basic types of expressions column, constant, function, and

aggregate functions, in the select item list. If including a constant in the select

list, the same value is returned for every row. An aggregate function returns

one value for a set of rows. Aggregate functions are usually used in the GROUP

BY clause.

Use the OID associated with each row in a table as a column name by using the

name "OID" in the column list. The OID is essentially a virtual column whose

value uniquely identifies each row in a database. The OID values are not

necessarily sequential.

Use a display label to assign a temporary name to a column in the result set or

to values generated by an expression that do not come from a column. Use the

AS keyword to assign a display label to a column in the result set.

expression Expression that returns a value to include in the result set.

column_name Name of a column to retrieve data values from.

label Name for the result set column that is different from the

original name for the source column.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-260

,

*

expression

column_name AS label

SELECT

DISTINCT

ALL

Figure 3-111 SELECT Clause syntax

FROM Clause

The FROM clause lists table sources, views and stored procedures used to

select the data from. This identifies where the column name comes from if

there are ambiguities. The source may be a table name, a view name, a query

result, a synonym name or a stored procedure result set. A source may be a

single source, or an outer source which has the keyword OUTER followed by

one or more single sources.

Supply a correlation name for a table name to refer to the table in other

clauses of the SELECT statement. This may help make the statement more

readable. Correlation names are especially useful with self-joins.

SQL Commands 3

3-261

@Copyright 1995-2024 CASEMaker Inc.

 Example 1

The following query selects values from t2 that correspond to the maximum

value from column c1 and groups them by values from c2. Finally, the result

set is given the correlation name t3.

dmSQL> SELECT * FROM (SELECT MAX(c1) FROM t2 GROUP BY c2) AS t3 (c1);

Use the OUTER JOIN keyword OUTER, LEFT OUTER, JOIN, or LEFT JOIN to

form outer joins. There can be more than one OUTER JOIN keyword in a

SELECT statement. All sources before the OUTER keyword must be dominant

sources. All of the sources after the OUTER JOIN keyword must be subservient

sources. Specify all of the outer join table sequences in the FROM clause and

specify the outer join factor in the WHERE clause. The entire join factor in the

WHERE clause will be treated as the Outer Join factors. The other factors will

be evaluated before the Outer Join factors.

DBMaker also support ANSI and ODBC outer join syntax to specify the outer

join factors in the ON clause. The other factors in the WHERE clause will be

evaluated after the outer join factors.

A CROSS JOIN specifies the cross product of two tables and returns the same

rows as if no WHERE clause was specified in an old-style, non-SQL-92-style

join. The result is same as if a user specified ',' in the FROM table_list.

 Example 2

dmSQL> SELECT * FROM t1 CROSS JOIN t2 CROSS JOIN t3 WHERE t1.c1 = t2.c1 AND t2.c2

= t3.c3;

The result is same as the following query:

 Result

dmSQL> SELECT * FROM t1,t2,t3 WHERE t1.c1 = t2.c1 AND t2.c2 = t3.c3;

 Example 3

The following query selects values from stored procedure result set (call

spt1) that correspond to the value where the constraint condition

(sp1.spt1c1>0). The result set (call spt1) is given the alias name sp1:

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-262

dmSQL> SELECT * FROM (call spt1) AS sp1 WHERE sp1.spt1c1>0;

In DBMaker 3.5 and later version, manually specify the type of scan to use in a

query, and which index to use in a scan. In addition, the DBMaker query

optimizer now automatically determines the most efficient type of scan to use,

even if you have not recently updated database statistics.

source Name of the table to retrieve data from or query result.

alias Alternate name for the source used in other clauses

FROM

(

alias

source

,

)

()

ANSI Join

DBMaker Outer Join

ODBC Outer Join

Cross Join

Figure 3-112 FROM Clause syntax

SOURCE SUBCLAUSE

The SOURCE subclause is used in the FROM clause may be a table name, a

view name, a query result or a stored procedure result set.

table_name

(select_statement)

AS

(column)alias

view_name alias

(Call stored procedure)

alias

(column)

SOURCE

AS

AS

Figure 3-113 SOURCE subclause syntax

FORCED INDEX SCANS

Force an index scan with the following syntax.

SQL Commands 3

3-263

@Copyright 1995-2024 CASEMaker Inc.

table_name (INDEX [=] index_name [ASC|DESC]);

The value of 0 can be used to force a table scan or the value 1 can be used to

force a primary key index scan, may also be used.

Figure 3-114 Force Index Scans syntax

 Example 1

To force a table scan specify the value 0:

dmSQL> SELECT * FROM tb_tmp (INDEX=0);

 Example 2

To force an index scan on a primary key specify the value 1:

dmSQL> SELECT * FROM tb_tmp (INDEX=1);

 Example 3

To force an index scan on the index idx1:

dmSQL> SELECT * FROM tb_tmp (INDEX idx1);

 Example 4

Allows the query optimizer to decide what type of scan to use on table t1, but

forces an index scan on the idx1 index for table t2:

dmSQL> SELECT * FROM t1, t2 (INDEX idx1);

FORCED INDEX SCAN AND "ALIAS"

General syntax used to force an index scan and provide an alias for the table:

table_name (INDEX [=] index_name) alias_name

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-264

INDEX index_nametable_name aliasname

=

Figure 3-115 Force Index Scans and 'Alias' syntax

 Example

To force an index scan on the idx1 index, and provides an alias for the table:

dmSQL> SELECT * FROM t1 (INDEX idx1) a, t1 b WHERE a.c1 = b.c1;

FORCED INDEX SCAN AND "SYNONYM"

General syntax used to force an index scan using a synonym:

synonym_name (INDEX [=] index_name)

synonym_name INDEX

=
index_ name

Figure 3-116 Force Index Scans and 'Synonym' syntax

 Example

To force an index scan on the idx1 index using synonym s1:

dmSQL> SELECT * FROM s1 (INDEX idx1);

FORCED INDEX SCAN AND "VIEW"

General syntax used to force an index scan when creating a view:

View_name (INDEX [=] index_name)

=
INDEX index_nameview_name

Figure 3-117 Force Index Scans and 'View' syntax

SQL Commands 3

3-265

@Copyright 1995-2024 CASEMaker Inc.

 Example 1

To force an index scan on the idx1 index when creating view v1:

dmSQL> CREATE VIEW v1 as SELECT * FROM t1 (INDEX idx1);

You cannot force an index when selecting a view.

 Example 2

A wrong usage that will return errors:

dmSQL> SELECT * FROM v1 (INDEX idx1);

FORCED TEXT INDEX SCANS

General syntax used to force a text index scan:

table_name (TEXT INDEX [=] index_name)

=
table_name TEXTINDEX index_name

Figure 3-118 Force Text Index Scans syntax

 Example

To force a text index scan on the tidx1index:

dmSQL> SELECT * FROM t1 (TEXT INDEX tidx1);

WHERE Clause

Use the WHERE clause to specify the search condition and join criteria on the

data being selected. If a row satisfies the search conditions, it is returned as

part of the result set. Refer to the sub query topic to see how to use a SELECT

statement, sub query, within a WHERE clause.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-266

Use the percent symbol (%) and the underscore symbol (_) as wildcards in the

quoted strings. The percent symbol matches zero or more characters, and the

underscore symbol matches exactly one character. The ESCAPE clause is

optional and permits the defining of an escape character in order to include

the percentage sign and underscore characters in a quoted string without

having them interpreted as wildcards. Use two consecutive single-quotes to

include a single-quote character in a quoted string.

The predicate used in the WHERE clause may be a simple comparison using

the following:

• Relational Operators — these may be one of the following: >, >=, <=, <, =,

and <>. The relational operator condition is satisfied when the expression

on either side of the relational operator fulfills the relation set up by the

operator.

• BETWEEN — this comparison takes the form: x BETWEEN y AND z; the

BETWEEN condition is satisfied when the value or expression to the left of

the BETWEEN keyword lies in the inclusive range, denoted by the AND

keyword, of the two expressions on the right of the keyword.

• IN — this comparison takes the form: x IN (y, z, ...); the IN condition is

satisfied when the value or expression to the left of the IN keyword is

included in the list of values to the right of the keyword.

• IS NULL — this takes the form: x IS NULL; the IS NULL condition is

satisfied when the value or expression to the left of the IS NULL keywords

is a NULL value.

• IS NOT NULL — this takes the form: x IS NOT NULL; the IS NOT NULL

condition is satisfied when the value or expression to the left of the IS NOT

NULL keywords contains a value other than a NULL value.

• LIKE — this takes the form: x LIKE 'y' ESCAPE 'z'; the LIKE condition is

satisfied when the string value or expression to the left of the LIKE

keyword meets the criteria specified in the case-sensitive quoted string to

the right of the keyword.

SQL Commands 3

3-267

@Copyright 1995-2024 CASEMaker Inc.

• MATCH — this takes the form: x NOT CASE MATCH 'y'; the MATCH

condition is satisfied when the quoted string to the right of the MATCH

keyword matches the entire string value or expression to the left of the

keyword. The NOT keyword inverts the search results and CASE keywords

keyword makes the search case-sensitive, both are optional.

• CONTAIN — this takes the form x NOT CASE CONTAIN 'y'; the CONTAIN

condition is satisfied when the quoted string to the right of the CONTAIN

keyword matches any part of the string value or expression to the left of

the keyword. The NOT keyword inverts the search results and the CASE

keywords makes the search case-sensitive, both are optional.

• CONTAINS – the contains operator's condition is satisfied when the

concatenated string from concatenate columns matches the string pattern.

Can use the syntax: [NOT] CONTAINS (column || column [|| column]…,

'string pattern'[, option string])

 Example

The following select statement will select the record from c4 where

both c1 and c4 contain the string 'Mail Server'. The option CASE makes

the search case-sensitive.

dmSQL> SELECT c4 FROM mcol WHERE CONTAINS(c1 || c4, 'Mail Server',

'CASE');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-268

WHERE

AND

OR

predicate

predicate)(NOT

Figure 3-119 WHERE Clause syntax

CAST

CAST allows the output data to be converted to another data type. The chart

below illustrates valid conversions. The table denotes the behavior of data

types that are converted from row X to column Y.

The Numeric, Character, and Date/Time data types include multiple data

types. Numeric data types include; integer (int, serial), smallint, float, double,

and decimal. Character data types include char and varchar. Date/Time data

types include; date, time, timestamp.
Xy int

(serial)
smallint decimal double float (var)

char
(var)

binary
date time timestamp file blob clob

int(serial) Y Y Y Y Y Y N N N N N N N

smallint Y Y Y Y Y Y N N N N N N N

decimal Y Y Y Y Y Y N N N N N N N

double Y Y Y Y Y Y N N N N N N N

float Y Y Y Y Y Y N N N N N N N

(var)char Y Y Y Y Y Y Y Y Y Y N N N

(var)binary N N N N N Y N N N N N N N

date N N N N N Y N Y N Y N N N

time N N N N N Y N N Y N N N N

timestamp N N N N N Y N Y Y Y N N N

file N N N N N Y Y N N N Y N N

blob N N N N N Y Y N N N N Y Y

clob N N N N N Y Y N N N N Y Y

SQL Commands 3

3-269

@Copyright 1995-2024 CASEMaker Inc.

Table 3-1 CAST Conversion Table

 Example 1

Use CAST() in a WHERE predicate.

dmSQL> SELECT * FROM t1 WHERE CAST(c1 AS CHAR(20)) LIKE '2001%';

 Example 2

Use CAST() in an expression.

dmSQL> SELECT CAST(c1+c2 AS CHAR(10)) FROM t1;

 Example 3

Use a nested CAST() statement.

dmSQL> SELECT CAST(CAST(123 AS CHAR(10)) || CAST(45 AS CHAR(10)) AS INT) FROM t1;

CASE

CASE is an SQL 99 function.

CASE

CASE

WHEN
condition

expression WHEN condition

THEN

ELSE

expression END

expression

Figure 3-120 CASE Syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-270

 Example 1

CASE WHEN p1 THEN v1 ELSE CASE WHEN p2 THEN v2 ELSE… ELSE vn

END…END. This means that if p1 is true then v1 else if p2 is true then v2

else…else vn. This statement can be performed with the following:

dmSQL> SELECT CASE WHEN c1=3 THEN c2 ELSE CASE WHEN c1=5 THEN c3 ELSE c4 END END

FROM t1;

 Example 2

CASE c1 WHEN d1 THEN v1 ELSE CASE c1 WHEN d2 THEN v2 ELSE…ELSE vn

END…END. This means that if c1=d1 then v1 else if c1=d2 then v2 else…else

vn. This statement can be performed with the following:

dmSQL> SELECT CASE c1 WHEN 3 THEN c2 ELSE CASE c1 WHEN 5 THEN c3 ELSE c4 END END

FROM t1;

 Example 3

CASE WHEN p1 THEN v1 WHEN p2 THEN v2 WHEN…ELSE vn END. This

means that if p1 is true then v1 else if p2 is true then v2 else…else vn. This

statement can be performed with the following:

dmSQL> SELECT CASE WHEN c1=3 THEN c2 WHEN c1=5 THEN c3 ELSE c4 END FROM t1;

COALESCE

COALESCE is an SQL 99 function. COALESCE (v1, v2, v3, …, vn) is equivalent to

"if v1 IS NOT NULL then v1 else if v2 IS NOT NULL then v3 else………….else vn".

COALESCE expression()

expression,

Figure 3-121 COALESCE Syntax

 Example 1

dmSQL> SELECT COALESCE(c1, 7) FROM t1;

 Example 2

dmSQL> SELECT COALESCE(c1, c2, c3, 7) FROM t1;

SQL Commands 3

3-271

@Copyright 1995-2024 CASEMaker Inc.

NULLIF

NULLIF is an SQL 99 function. NULLIF(v1, v2) is the equivalent to "if v1 = v2

then NULL else v1".

NULLIF ()expression , expression

Figure 3-122 NULLIF Syntax

 Example 1

dmSQL> SELECT NULLIF(c1, 7) FROM t1;

 Example 2

dmSQL> SELECT NULLIF(t1.c1, t2.c1) FROM t1, t2;

IFNULL

IFNULL is an ODBC function. IFNULL (v1, v2) is the equivalent to

coalesce(v1,v2) and it's equivalent to "if v1 is not null, then v1 else v2".
IFNULL ()expression , expression

Figure 3-123 IFNULL Syntax

 Example 1

dmSQL> SELECT IFNULL(c1, 7) FROM t1;

 Example 2

dmSQL> SELECT IFNULL(t1.c1, t2.c1) FROM t1, t2;

Compound Comparisons

Combine simple conditions with the logical operators AND, OR, and NOT to

form compound conditions. Use the AND keyword to combine two search

conditions which must be both true. Use the OR keyword to combine two

search conditions when one or the other (or both) must be true. Finally, use

the NOT keyword to select rows where a search condition is false.

 Example 1

dmSQL> SELECT * FROM Customer

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-272

 WHERE City NOT IN ('LA', 'NY') AND Age > 40;

 Example 2

dmSQL> SELECT * FROM Orders

 WHERE Price > 10,000 OR Ship_Date = TODAY;

Join Conditions

A join condition is a relational operators comparison on two columns where

each column is from a different table (like: Orders.CusNum =

Customer.CusNum).

Join two tables when creating a relationship with a join condition in the

WHERE clause between columns from two tables. The effect of the join is to

create a temporary composite table in which each pair of rows, one from each

table, satisfying the join condition is linked to form a single row. There are

four table join types, two-table-joins, multiple table-joins, self-joins, and outer-

joins.

ON <SEARCH_CONDITION>

The ON <search_condition> specifies the condition on which the join is based.

The condition can specify any predicate, although columns and comparison

operators are often used.

 Example

dmSQL> SELECT ProductID, Suppliers.SupplierID

FROM Suppliers JOIN Products

ON (Suppliers.SupplierID = Products.SupplierID);

ANSI OUTER-JOIN

An outer join is a join of two or more tables with outer-join conditions for

pairs of tables. An outer-join condition is a comparison, relational operators,

on two columns from each table. All records of the left most table, will be

returned and the result of the right table will be NULL if the outer-join

condition is FALSE.

SQL Commands 3

3-273

@Copyright 1995-2024 CASEMaker Inc.

The following graph shows the ANSI JOIN and optimizer hint syntax:

FROM

(

,

source

,

alias

,

NATURAL

LOOP

MERGE

JOIN

source JOIN_CONDITION)

INNER

OUTER
LEFT

RIGHT

alias

SEQUENCE

SEQ

Figure 3-124 ANSI Join syntax

ON CONDITION

USING

,

column_name

)(

Figure 3-125 ANSI Join Condition syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-274

The SEQUENCE, SEQ, LOOP and MERGE keywords are used as optimizer hints,

it is not ANSI syntax. The optimizer will choose the execution plan if the

specified keyword could be used in the join execution. If it has no effect, the

optimizer will not return any error message.

When the SEQUENCE/SEQ keywords are specified they force the join

sequence like the table join order in the SQL command. The join table

execution sequence will not be changed by the optimizer. This keyword will

have no effect when used with an outer join.

 Example 1

dmSQL> SELECT * FROM SEQ t1 INNER JOIN t2 ON t1.c1=t2.c1 INNER JOIN t3 ON

t1.c2=t3.c2;

The LOOP/MERGE keywords specify the join execution method of the inner or

outer join. The join execution order of the joined table will not be changed

when specifying the join execution method. When the LOOP keyword is

specified, the optimizer will use a nested join for the inner or outer join. When

the MERGE keyword is specified, the optimizer will use the merge join for the

inner and the outer join with equal join.

 Example 2

dmSQL> SELECT * FROM t1 INNER MERGE JOIN t2 ON t1.c1=t2.c1;

DBMAKER OUTER-JOIN

The following syntax is old DBMaker syntax. The difference with the ANSI

outer- join syntax is the outer join factor is decided by the DBMaker optimizer.

The RIGHT-JOIN is not supported with the following syntax and users cannot

mix the following syntax with the ANSI outer-join syntax.

SQL Commands 3

3-275

@Copyright 1995-2024 CASEMaker Inc.

FROM

alias

source

,

alias

Source

,

Left Join

Outer

 Left Outer
Join

()

Figure 3-126 DBMaker Outer-Join Syntax

ODBC OUTER-JOIN

The ODBC Outer-Join uses the same syntax as the ANSI Outer-Join with the

exception that all of the options must be used.

FROM

,

source
,

alias

{ oj

,

Left Join

Right Join

source

,

alias

ON CONDITION

}

using
,

column_name
()

Figure 3-127 ODBC Outer-Join Syntax

SELF-JOIN

To join a table to itself, list the table name twice in the FROM clause and assign

it two different aliases. Use the aliases to refer to each of the "two" tables in

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-276

the WHERE clause. Suppose in the Employeesinfo table that there is a

Manager_ID field, which is an employee ID for managers.

 Example

To list all of the employee's names together with their manager's name, join

the Employeesinfo table with itself

dmSQL> SELECT e.FName AS Emp, m.Fname AS Manager

 FROM Employeesinfo e, Employeesinfo m

 WHERE e.Manager_Id = m.Emp_Id;

RIGHT-JOIN

Right-Join specifies that all rows from the right table not meeting the join

condition to be included in the result set, and output columns that correspond

to the other table are set to NULL, in addition to all rows returned by the

inner-join.

 Example

dmSQL> SELECT * FROM t1 RIGHT JOIN t2 ON t1.c1 = t2.c1;

FULL-JOIN

Full-Join includes all rows from both left and right tables, whether or not the

table has the matching row. If there’s no matching rows in the other table, the

columns of the other table will be set to NULL.

 Example

dmSQL> SELECT * FROM t1 FULL JOIN ON t1.c1=t2.c1;

INNER-JOIN

The usage of INNER JOIN specifies that all matching pairs of rows be returned.

It will discard unmatched rows from both tables. This is the default join type if

only the JOIN keyword is specified in a query.

 Example 1

dmSQL> SELECT * FROM t1 INNER JOIN t2 ON t1.c1 = t2.c1 ;

SQL Commands 3

3-277

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

dmSQL> SELECT * FROM t1 JOIN t2 ON t1.c1 = t2.c1;

 Result

dmSQL> SELECT * FROM t1, t2 WHERE t1.c1 = t2.c1;

NATURAL JOIN

When the NATURAL keyword is specified before the JOIN type, you cannot use

the ON condition or USING column list to specify the join condition or the join

column list. A NATURAL JOIN will perform an equal join on the common

column name of the joined table. The result of the NATURAL JOIN is same as

specifying all the common column names in the USING column list. The

projection list for "select *" will be the joined column followed by the rest of

the joined table's columns.

 Example 1

dmSQL> SELECT * FROM t1 NATURAL INNER JOIN t2;

 Example 2

dmSQL> SELECT * FROM t1 NATURAL LEFT JOIN t2;

ON CONDITION

The ON condition specifies the join condition for the joined table.

 Example 1

dmSQL> SELECT * FROM t1 INNER JOIN t2 ON t1.c1 = t2.c1;

 Example 2

dmSQL> SELECT * FROM t1 LEFT JOIN t2 ON t1.c1 = t2.c1;

USING COLUMN LIST

The USING column list is used to specify the joined column list of the joined

table. When USING is specified, every column name specified in the USING

column list should exist and be comparable in the joined table. The result will

be the same as specifying an equal join with the columns in the ON clause. The

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-278

projection list for "select *" will be the joined column followed by the rest of

the joined table's columns.

 Example 1

dmSQL> SELECT * FROM t1 INNER JOIN t2 USING (c1, c2);

 Example 2

dmSQL> SELECT * FROM t1 LEFT JOIN t2 USING (c1) LEFT JOIN t3 USING (c1);

TWO TABLE-JOIN

A two-table join combines two tables with join conditions.

 Example1

The following is a two table-join, which combines the Emp_Name with the

Dept_Name using Dept_id.

dmSQL> SELECT FName, Dept_Name FROM Employeesinfo, Department

 WHERE Employeesinfo.Dept_ID = Department.Dept_Id;

 Example2

The following is a two table outer join which selects all records of the

Department table and produce NULL for the project that does not belong to

this department

dmSQL> SELECT Dept_id, Dept_Name, Proj_Name FROM Department d outer Project p

WHERE d.Dept_id = e.Dept_Id;

MULTIPLE TABLE-JOIN

A multiple table-join is a join of more than two tables with join conditions for

pairs of tables. A join condition is a comparison, relational operators, on two

columns from each table.

 Example

The following is a three table-join, which selects all the projects engaged by

the employeesinfo in the Engineering department.

dmSQL> SELECT Dept_Name, Proj_Name FROM Department d, Project p, Employeesinfo e

SQL Commands 3

3-279

@Copyright 1995-2024 CASEMaker Inc.

 WHERE d.Dept_id = e.Dept_Id AND

 p.Emp_Id = e.Emp_Id AND

 Dept_Name = 'Engineering';

FORCED LOOP JOIN (NESTED JOIN)

General syntax used to force a Nested Join between two tables:

table_name { INNER | OUTER } LOOP JOIN table_name

table_name table_name

OUTER

INNER
LOOP

JOIN

Figure 3-128 Force Loop Join Syntax

A forced join of this type must use INNER JOIN or OUTER JOIN syntax.

 Example 1

dmSQL> SELECT * FROM t1 INNER LOOP JOIN t2 ON t1.c1=t2.c1;

 Example 2

dmSQL> SELECT * FROM t1 OUTER LOOP JOIN t2 ON t1.c1=t2.c1;

FORCED MERGE JOIN

General syntax used to force a Merge Join between two tables:

table_name { INNER | OUTER } MERGE JOIN table_name

table_name table_name

OUTER

INNER
MERGE

JOIN

 Figure 3-129 Force Merge Join Syntax

When join cannot use Merge Join then a Force Merge Join is useless, however,

an error message is not returned.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-280

 Example 1

dmSQL> SELECT * FROM t1 INNER MERGE JOIN t2 ON t1.c1=t2.c1;

 Example 2

dmSQL> SELECT * FROM t1 OUTER MERGE JOIN t2 ON t1.c1=t2.c1;

FORCED JOIN SEQUENCE

Force all tables join sequence, and then the join sequence cannot swap.

General syntax used to force Join Sequence:

SELECT ... FROM [SEQUENCE | SEQ] table_name_list

select from table_name_list

SEQ

SEQUENCE

 Figure 3-130 Force Join Sequence Syntax

 Example 1

dmSQL> SELECT * FROM SEQUENCE t1, t2, t3 WHERE t1.c1=t2.c1 AND t2.c2=t3.c2;

 Example 2

dmSQL> SELECT * FROM SEQ t1 INNER JOIN t2 ON t1.c1=t2.c1 INNER JOIN t3 ON

t1.c2=t3.c2;

GROUP BY Clause

Use the GROUP BY clause to produce summary data within a group. A group is

a set of rows that have the same values of group by columns. A single row of

aggregate results is produced for each group. The column to group results by

is identified by column name or display label.

Using the GROUP BY clause restricts can be entered in the SELECT clause. A

select item in a group by query must be one of the following:

• An aggregate function used to produce a single value to summarize the

rows contained in a group

SQL Commands 3

3-281

@Copyright 1995-2024 CASEMaker Inc.

• A grouping column, which is listed in the GROUP BY clause

• A constant

• An expression involving an above combination

In practice, a GROUP BY query always includes both a grouping column and an

aggregate function. Each row that contains a null value in a column, specified

by the GROUP BY clause, belongs to a single group; all null values are grouped

into one group.

The USING HASH/SORT clause is used as optimizer hint syntax. When the

USING HASH is specified, the optimizer will choose the hash method for

GROUP BY execution. The optimizer will not choose the hash method when

there are too many groups for GROUP BY when specifying USING HASH. When

USING SORT is specified, the optimizer will try to use an index scan if there are

any indexes with the same column as the GROUP BY clause or it will choose

the execution plan to sort by the GROUP BY column when executing GROUP

BY.

GROUP BY

,

HAVING

USING
HASH

SORT

,

column_ name

predicate

predicate

AND

OR

()NOT

Figure 3-131 GROUP BY Clause syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-282

 Example 1

The following uses SELECT to retrieve Dept_Id and AVG(salary) for each

employee and then adds the employees AVG(salary) to ID 1 to get an average

salary for the entire group.

dmSQL> SELECT Dept_Id, AVG(Salary) FROM Employeesinfo

 GROUP BY Dept_Id;

dmSQL> SELECT Dept_Id AS ID1, AVG(Salary) FROM Employeesinfo

 GROUP BY ID1;

 Example 2

The following uses SELECT to retrieve Dept_Id and AVG(salary) for each

department in the Employeesinfo table by HASH method.

dmSQL> SELECT Dept_Id, AVG(Salary) FROM Employeesinfo

 GROUP BY Dept_Id USING HASH;

FORCED GROUP BY METHOD

General syntax used to force a Join Sequence:

GROUP BY column_name_list [USING SORT | USING HASH] having ...

GROUP BY HAVING

USING HASH

USING SORT

columne_name_list

 Figure 3-132 Force Group by Method Syntax

 Example 1

dmSQL> SELECT c1,c2,COUNT(*) FROM tb_test GROUP BY c1,c2 USING HASH;

 Example 2

dmSQL> SELECT c1,c2,COUNT(*) FROM tb_test GROUP BY c1,c2 USING SORT HAVING

SUM(c3)>0;

SQL Commands 3

3-283

@Copyright 1995-2024 CASEMaker Inc.

HAVING Clause

The HAVING clause is used to select or reject a group. A sub-query can appear

in the having clause. Refer to the SUBQUERY section for more information.

 Example

The following example shows the average sales amount for departments with

total sales exceeding one million dollars.

dmSQL> SELECT Dept_Name, AVG(Amount) FROM Sales

 GROUP BY Dept_Name

 HAVING SUM(Amount) > 1000000;

ORDER BY Clause

The result rows of a query are not arranged in any particular order. Use the

ORDER BY clause to sort query results by the values contained in one or more

columns.

The ASC/DESC keywords specify the sort order of the results as ascending,

smallest value first, or descending order. The default order is ascending. NULL

values are treated as larger that non-null values for sorting purposes. Using

the ASC keyword to specify sort order, NULL values would come after any

non-null values.

column_name Name of the column or display label in the SELECT list to

sort

 the query results by

column_number Integer that represents the placement of a column or

expression

 in the SELECT list

expression To sort the result query by a specified expression

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-284

ORDER BY

,

ASC

DESC

column_name

column_number

expression

Figure 3-133 ORDER BY Clause syntax

 Example 1

The following sorts the results by name in ascending order by default, and age

in descending order.

dmSQL> SELECT Name, Address, Age FROM Customer

 ORDER BY Name, Age DESC;

 Example 2

The following uses a column number and display label in the ORDER BY

clause.

dmSQL> SELECT Dept_Id, Salary + Bounce AS Total_Com, FName

 FROM Employeesinfo

 ORDER BY 1, Total_Com;

UNION OPERATOR

Use the UNION operator to combine the results of two or more queries into

one result. Duplicate rows are removed from the combined results when using

the UNION operator and the combined results have distinct values for each

row. If certain that no duplicate rows exist in individual results, or to keep

duplicate rows, use the UNION ALL keywords. UNION ALL keeps the rows

from individual result sets and is faster than the UNION operator.

There are restrictions on results that can be combined by a UNION operator:

• The two results need to contain the same number of columns.

SQL Commands 3

3-285

@Copyright 1995-2024 CASEMaker Inc.

• The corresponding items in each result must have compatible data types,

not the same column names. The column name of the first result becomes

the column name of the combined result.

• Use an ORDER BY clause following the last SELECT clause and refer to the

ordered column by its position in the SELECT list column number.

 Example 1

The following shows the use of the UNION clause in a SELECT statement.

dmSQL> SELECT C1, C2 FROM T1

 UNION

SELECT C3, C4 FROM T2

 ORDER BY 2;

 Example 2

The following example shows the use of the UNION ALL clause in a SELECT

statement.

dmSQL> SELECT 'MOVIE', Event FROM Entertainment WHERE Type = 'MOVIE'

 UNION ALL

SELECT 'BOOK', Name FROM MyBook;

SUB-QUERIES

A sub-query is a query that appears within the WHERE or HAVING clause of

another SQL statement. A sub query is always enclosed in parentheses, but

otherwise it has the same form of a SELECT statement.

A sub-query must produce a single column of data as its query result. In

addition, when the query result is used in a simple relational operator

comparison, the sub query must only create a single row value.

 Example

The following is a sub query selects employees whose salary is greater than

the average.

dmSQL> SELECT Name FROM Employeesinfo

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-286

 WHERE Salary > (SELECT AVG(Salary) FROM Employeesinfo);

IN SUB-QUERY

The IN sub-query is a membership test. It is true if the value of the expression

matches one or more of the values selected by the sub query. In the IN,

membership test the sub query may return more than one row of one column

data.

 Example

The following selects all the employees whose department is located in NY.

dmSQL> SELECT FName FROM Employeesinfo

 WHERE Dept_Id

 IN (SELECT Dept_Id FROM Department WHERE City = 'NY');

EXISTS SUB-QUERY

The existence test checks whether a sub query produces any rows. In a sub-

query, sometimes it is necessary to refer to the value of a column in the

"current" row of the main query. This is called an outer reference. The

d.Dept_id column in the example is an outer-reference. There can be multiple

levels of sub-queries, and the outer reference can refer to the columns of

tables in any outer-level sub-query.

 Example

The following lists all departments with at least one EMPLOYEE in that

Department whose salary exceeds $500,000.

dmSQL> SELECT Dept_Name FROM Department d

 WHERE EXISTS

 (SELECT Dept_Id FROM EMPLOYEESINFO e

 WHERE e.Salary > 500000 AND d.Dept_Id = e.Dept_Id);

ANY/ALL/SOME SUB-QUERY

Use the ALL keyword in a sub query. The search condition is true if the

comparison is true for every value returned. If the sub query returns no value,

SQL Commands 3

3-287

@Copyright 1995-2024 CASEMaker Inc.

an empty set, the condition is true. If there is a NULL in the returning set, the

condition is false.

Use the ANY keyword in a sub query. The search condition is true if the

comparison is true for at least one of the value returned. If the sub query

returns no value, the condition is false.

 Example

The following example selects non-manager employees with a Salary greater

than at least one Manager.

dmSQL> SELECT FName FROM Employeesinfo

 WHERE Manager = 'N' AND Salary > ANY

 (SELECT Salary FROM EMPLOYEESINFO WHERE Manager = 'Y');

FOR BROWSE Clause

The FOR BROWSE keywords designate the browse mode to be used in the

selection. In browse mode, no locks are acquired so other users do not block

the selection. Since no locks are acquired, the read is not guaranteed to be

repeatable. Browse mode is useful for browsing data or producing reports.

FOR BROWSE

column

SELECT syntax FOR READ ONLY

FOR UPDATE

,

OF

Figure 3-134 FOR BROWSE Clause syntax

LIMIT

LIMIT specifies the number of returned records from offset n for the entire

return set.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-288

offset Offset from the first returned records in the result set

rows The number of returned rows

LIMIT

offset

rows

offsetrows OFFSET

Figure 3-135 LIMIT syntax

 Example 1

dmSQL> SELECT * FROM tb_test ORDER BY c1 LIMIT 10;

 Example 2

dmSQL> SELECT c1, (SELECT c2 FROM t2 WHERE t1.c1=t2.c1 ORDER BY c1 LIMIT 1) FROM

t1;

 Example 3

dmSQL> UPDATE t1 SET c1 = (SELECT t2.c2 FROM t1 LEFT JOIN t2 ON t1.c1 = t2.c1

LIMIT 1);

 Example 4

dmSQL> SELECT * FROM t2 WHERE (SELECT c1 FROM t1 WHERE c3<=3 ORDER BY c2 LIMIT 1)

= 1;

EXCEPT Clause

Use the EXCEPT clause to return all rows that are in the result of first query

but not in the result of second query. Duplicate rows will be removed from the

results when using EXCEPT operator, this is sometimes called the difference

between two queries.

basic-select-statement ………The basic select statement command. Users can

use WHERE, GROUP BY, UNION clauses in each select statement, ORDER BY

and LIMIT clauses in the last select statement

SQL Commands 3

3-289

@Copyright 1995-2024 CASEMaker Inc.

Figure 3-136 EXCEPT Clause syntax

 Example 1

The following example shows the use of EXCEPT clause in a SELECT

statement.

dmSQL> select * from taba;

 C1 C2

===================== ==========

 1.000000 aaa

 2.000000 bbb

2 rows selected

dmSQL> select * from tabb;

 C1 C2

===================== ==========

 1.000000 aaa

 2.000000 xxx

2 rows selected

dmSQL> select * from taba except select * from tabb;

 C1 C2

===================== ==========

 2.000000 bbb

1 rows selected

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-290

Aggregate Functions

Aggregate functions compute a single result from a set of input values.

DBMaker supports the following built-in aggregate functions:

• MIN

• MAX

• AVG

• COUNT

• SUM

• XMLAGG

• FIRST

• LAST

• STDDEV_POP

• STDDEV_SAMP

• VAR_POP

• VAR_SAMP

• BIT_AND

• BIT_OR

• BIT_XOR

• JSON_AGG

• JSON_OBJECT_AGG

• STRING_AGG

The MIN function returns the minimum value of all input values.

The MAX function returns the maximum value of all input values.

The AVG function returns the average (arithmetic mean) of all input values.

SQL Commands 3

3-291

@Copyright 1995-2024 CASEMaker Inc.

The COUNT function returns the number of records which meet the set

standards.

The SUM function returns the sum of all input values.

The XMLAGG function returns the concatenation of XML values.

The FIRST function returns the first data of all input values.

The LAST function returns the last data of all input values.

The STDDEV_POP function returns the population standard deviation of all

input values.

The STDDEV_SAMP function returns the sample standard deviation of all input

values.

The VAR_POP function returns the population variance of all input values.

The VAR_SAMP function returns the sample variance of all input values.

The BIT_AND function returns the bitwise AND of all bits in a given

expression.

The BIT_OR function returns the bitwise OR of all bits in a given expression.

The BIT_XOR function returns the bitwise XOR of all bits in a given expression.

The JSON_AGG function returns the concatenation as a JSON array of all input

JSON values.

The JSON_OBJECT_AGG function returns the concatenation as a JSON object of

all input JSON values.

The STRING_AGG function returns the concatenation of all input values.

The syntax is as follows:

{AVG|MAX|MIN|SUM|XMLAGG|FIRST|LAST} ([ALL|DISTINCT]

expression [,comparison-predicate])

|COUNT (* [,comparison-predicate])

|COUNT ([ALL|DISTINCT] expression [,comparison-predicate])

Comparison_predicate…….expression with comparison_operator.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-292

Figure 3-137 AGGREGATE FUNCTION syntax

 Example

dmSQL> SELECT COUNT(*) FROM tb_test;

An aggregate function can only be used as an expression in the result list,

HAVING clause, GROUP BY clause and ORDER BY clause of a SELECT

command. It is forbidden in other clauses, such as WHERE clause.

WINDOW Functions

A window function performs a calculation across a set of table rows that are

somehow related to the current row. This is comparable to the type of

calculation that can be done with an aggregate function. But unlike regular

aggregate functions, use of a window function does not cause rows to become

grouped into a single output row.

The syntax is as follows:

func_name() OVER ([PARTITION_BY_CLAUSE] ORDER_BY_CLAUSE)

PARTITION_BY_CLAUSE……. specify the columns used to divide the result set

into partitions. The window function is applied to each partition separately

and computation restarts for each partition.

ORDER_BY_CLAUSE…….. specify the columns used to specify the order to

apply the window function.

SQL Commands 3

3-293

@Copyright 1995-2024 CASEMaker Inc.

func_name

partition_by_clause

OVER)order_by_clause(

 Figure 3-138 WINDOW FUNCTION syntax

DBMaker supports the following window functions:

• ROW_NUMBER

• RANK

• DENSE_RANK

The row_number function returns the sequential number of a row within a

partition of a result set, starting at 1 for the first row in each partition.The

returned type is BIGINT.

The rank function returns the rank of a value in a group of values. It is very

similar to the dense_rank function. However, the rank function can cause non-

consecutive rankings if the tested values are the same. Whereas, the

dense_rank function always result in consecutive rankings.The two functions

returned type is BIGINT.

 Example

The following example shows ROW NUMBER,RANK and DENSE_RANK of the

sale quantity for the book category.

dmSQL> SELECT TITLE, BOOK_CATEGORY, SALE_QTY,

ROW_NUMBER() OVER (PARTITION BY BOOK_CATEGORY ORDER BY SALE_QTY) AS

ROW_NUMBER,

RANK() OVER (PARTITION BY BOOK_CATEGORY ORDER BY SALE_QTY) AS RANK,

DENSE_RANK() OVER (PARTITION BY BOOK_CATEGORY ORDER BY SALE_QTY) AS

DENSE_RANK

FROM BOOK_STORE;

The result as following:

TITLE CATEGORY SALE_QTY ROW_NUMBER RANK DENSE_RANK

======== ======== ======== ================ ================ ================

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-294

book3 business 20 1 1 1

book2 business 30 2 2 2

book1 business 40 3 3 3

book1 computer 10 1 1 1

book2 computer 20 2 2 2

book3 computer 20 3 2 2

book4 computer 30 4 4 3

There are some restrictions on using the three WINDOW functions:

• ORDER BY CLAUSE cannot use order by constant.

 Example

dmSQL> SELECT row_number() OVER (ORDER BY 1) FROM t1;

• OVER clause must be the same for all window function used in the query.

 Example

dmSQL> SELECT row_number() OVER (ORDER BY c1), row_number() OVER (ORDER

BY c2) FROM t1;

• GROUP BY or aggregate function is not supported with window function.

 Example

dmSQL> SELECT max(c1), row_number() OVER (GROUP BY c1) FROM t1;

• Window function are not supported in the INSERT, DELETE or UPDATE.

• Window function are not supported in the WHERE clause or subquery.

XML Functions

The xml function is a set of functions which produce xml content from SQL

data.

DBMaker support XML functions, which are parts of the SQL statement. Users

can use these functions via dmsql, odbc or jdbc interface.

DBMaker supports the following XML functions:

SQL Commands 3

3-295

@Copyright 1995-2024 CASEMaker Inc.

• xmlelement

• xmlforest

• xmlagg(xml)

• xmlcomment(text)

The syntax for xmlelement is as follows:

xmlelement(name name [, xmlattributes(value AS attname [, ...])] [,

content, ...])

The xmlelement expression produces an xml element with the given name,

attributes and content.

name xml element tag name. If the name contains invalid name

character, it will use hex format to replace it. For example, if name is 'phone

number'(there is a space between phone and number), the tag name would be

replaced as phone_x20_number.

attname attribute names.

content can be plain text, sub xml element, or xml comment.

 Example 1

dmSQL> SELECT XMLELEMENT(name foo, XMLATTRIBUTES(current_date as bar), 'cont',

'ent');

XMLELEMENT(NAME FOO, XMLATTRIBUTES(CURRENT_DATE AS BAR), 'CONT', 'ENT')

==

<foo bar="2011-08-18">content</foo>

1 rows selected

The syntax for xmlforest is as follows:

xmlforest(content [AS name] [, ...])

The xmlforest expression produces an XML forest (sequence) of elements

using the given name and content. If name is not specified and the content

value is a column reference, then the default would be the column name.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-296

 Example 2

dmSQL> SELECT XMLFOREST(empname, phone) FROM employee;

XMLFOREST(EMPNAME, PHONE)

===

<empname>Abby</empname><phone>123-1234</phone>

<empname>Alice</empname><phone>234-1234</phone>

<empname>Amber</empname><phone>567-1234</phone>

3 rows selected

The syntax for xmlagg(xml) is as follows:

xmlagg(xml)

Unlike the other functions, xmlagg is an aggregate function. It concatenates the

input values across rows. The input of xmlagg should be an xml fragment. The

output is CLOB type.If there is no content, then the xml element would be

displayed as an empty element like <ABC/>. No extra new line added after the

start or end tag.

 Example 3

dmSQL> SELECT XMLAGG(XMLELEMENT(name person, XMLELEMENT(name name, empname)))

FROM employee;

XMLAGG(XMLELEMENT(NAME PERSON, XMLELEMENT(NAME NAME, EMPNAME)))

===

<person><name>Abby</name></person><person><name>Alice</name></person><person><nam

e>Amber</name></person>

1 rows selected

The syntax for xmlcomment(text) is as follows:

xmlcomment(text) ...

Xmlcomment is an udf. The input is sql expression which can produce nchar or
char data. The output is a string in XML comment format which starts with <!--
and ends with -->.

SQL Commands 3

3-297

@Copyright 1995-2024 CASEMaker Inc.

text If the text contains any escape characters (eg, < > &), those

characters will be replaced with entity display.

 Example 4

dmSQL> SELECT XMLCOMMENT(empname) FROM employee;

XMLCOMMENT(EMPNAME)

===

<!--Abby-->

<!--Alice-->

<!--Amber-->

3 rows selected

There are restrictions on using the four XML functions:

• Always automatically cast input as char. Because udf's input type is

predefined.

• Output is char type, except xmlagg. The size is limited (related to page

size). For example, if DB_PgSiz = 8, then the output string size is limited as

8056. Oversize data will be truncated without warning.

• If input is nchar with characters which cannot be converted to lcode, the

output might be something invalid. For example, the original data is

stored in nchar column and the data contain both traditional Chinese

character and Japanese character. If lcode = 2, then those traditional

Chinese character cannot be converted properly.

• No new line will be added after end tag. No special xml format is provided.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-298

3.91 SET CONNECTION OPTIONS

The SET CONNECTION OPTIONS command provides syntax so users can set

connection options through SQL statements. Useful for users that use front-

end tools like Delphi to connect to the database and cannot get ODBC

connection handles, they can set connection options needed directly instead.

The following is the detailed description of all of the options used with this

command. The options fall into six categories: no value options, on/off options,

number options, string options, symbol options, and transaction options.

no_value_options Option which has no option value

on_off_options…………Option with a value of on or off

string_options…………Option whose value a single quoted string, such as 'FOB'

number_options………Option whose value is an integer

symbol_options…………Option whose value is one of a set of symbols, such as

{delete | close | preserve}

transaction_options……Option specifying transaction's actions

SET

no_value_options

symbol_options
string_ options

on_off_options

number_options

transaction_options

Figure 3-139 SET CONNECTION OPTIONS syntax

No Value Options

Options in this category have no option values and are simple commands.

SQL Commands 3

3-299

@Copyright 1995-2024 CASEMaker Inc.

SET FLUSH

The SET FLUSH is a replication server option that flushes replication to the

slave site(s).

SET SYSINFO CLEAR

Clear system information resets system table, SYSINFO.

SYSINFO CLEAR

FLUSH

Figure 3-140 No Value Options syntax

ON/OFF Options

In this category, all valid option values are ON or OFF. Some only allow the

value of ON or OFF; others accept both.

SET AUTOCOMMIT ON/OFF

Turn autocommit ON or OFF.

SET BACKUP OFF

Set backup mode to non-backup. The setting is the same as setting the

DB_BMode to 0.

SET BKSVR CMP ON/OFF

Set backup server's compact backup option ON or OFF.

SET BLOB BACKUP ON

Set backup mode to backup-data-and-blob. This setting is the same as setting

DB_BMode to 2.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-300

SET BROWSE ON/OFF

Set connection option SQL_ATTR_TXN_ISOLATION to

SQL_TXN_READ_UNCOMMITTED (ON) or SQL_TXN_SERIALIZABLE (OFF). For

more information, please refer to the ODBC Programming Guide in the function

SQLGetInfo with the option SQL_DEFAULT_TXN_ISOLATION.

SET DATA BACKUP ON

Set backup mode to backup-data. This setting is the same as setting the

DB_BMode to 1.

SET FASTCOPY ON/OFF

This option is used to set the connection attribute on client side. The default

setting is OFF. Each user connecting to the database has a key attribute, and a

user's setting will not affect other users.

SET FREE CATALOG CACHE ON/OFF

Set the system catalog cache ON to free it or OFF to save.

SET ITCMD ON/OFF

Turn implicit data conversion ON or OFF.

SET JOURNAL ON/OFF

Only a DBA may turn Journal writing ON or OFF.

SET LOADAUTOINDEX ON/OFF

This option is used to specify wheter load all indexes while user implemented

LOAD DB command. Users implement LOAD DB command load all index if

setting LOADAUTOINDEX ON, but if set LOADAUTOINDEX OFF, user

implement LOAD DB command load all index except auto index. The default

setting is OFF.

SQL Commands 3

3-301

@Copyright 1995-2024 CASEMaker Inc.

SET LOAD SYSTEM DEFAULT ON/OFF

If users assign value to the column by using the INSERT/UPDATE statement,

this option is used to specify whether the value of a column with SYSTEM

DEFAULT attribute will be overridden in the process of loading the tables of

database. If the user sets this option to ON, the value will be updated to the

default value; if the user sets this option to OFF, the original value will be

updated to the value specified by the users. The default setting for this option

is OFF.

SET REMOVE SPACE PADDING ON/OFF

Turn ON/OFF the facility that removes the space padding after a string data

automatically.

SET STRING CONCAT ON/OFF

This option is used for the string concatenate operator (||). If you set this

option to ON, all space padding in CHAR type data will be removed before the

operator is applied. If this option is OFF, all space padding will be kept.

SET SYSTEM DEFAULT ON/OFF

Data to be updated, this option is used to specify whether the value of a

column with SYSTEM DEFAULT attribute will be overridden to the default

value. If the user sets this option to ON, the value will be updated to the

default value; if the user sets this option to OFF, the original value will be

updated to the value specified by the users. The default setting for this option

is ON.

SET SYSTEM INIT ON/OFF

Only a DBA may turn system mode ON or OFF. In the system mode, create

system tables.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-302

ON / OFF OPTIONS

Data

Backup OFF

BLOB
Backup ON

ON

Autocommit

BKSVR CMP

Browse

Free Catalog Cache

Journal

Remove Space Padding

System Init

String Concat

OFF

FASTCOPY

System Default

Load System Default

ITCMD

Figure 3-141 ON/OFF Options syntax

Number Options

This group contains options with values as integers. Each option may have its

own range of valid integers.

SET BKSVR JOURNAL FULL NUMBER

Set the backup server's Journal full percent rate, from 0 to 100.

SET BKSVR PID NUMBER

Set the backup server process ID to a number. Currently the number must be

0.

SET DDB LOGIN TIMEOUT NUMBER

Set the login timeout for a DDB connection.

SET DDB LOCK TIMEOUT NUMBER

This option sets the lock timeout for a DDB connection.

SQL Commands 3

3-303

@Copyright 1995-2024 CASEMaker Inc.

SET INPUT PARAM N AS CFILE | ASCII

This set option is used before an INSERT or UPDATE statement that uses

parameters. It is used if the user wants to bind one or more of the parameters

in the statement to a client file. The input data for the corresponding

parameter or parameters in the succeeding statement will be bound to a client

file. The data to insert must be character type data, and the parameter must

correspond to either a LONG VARCHAR or LONG VARBINARY type column.

Use the ALL option to bind all parameters to a client file. The CFILE option

must be used to set the parameters to bind to the client file. To reset DBMaker

so that it does not bind parameters to a client file, use the SET INPUT PARAM

statement with the ASCII option.

number Specifies, in sequence, which parameter is bound to the

client file

CFILE

ASCII

AS

number

ALL

SET INPUT PARAM

Figure 3-142 Syntax of the SET INPUT PARAM option

 Example

In this example, the file 'dmconfig.ini' can be inserted into column c3 using a

host variable.

dmSQL> CREATE TABLE tb_attri (c1 INT, c2 INT, c3 LONG VARBINARY);

dmSQL> SET INPUT PARAM 3 AS CFILE;

dmSQL> INSERT INTO tb_attri VALUES (?,?,?);

dmSQL/Val> 2,2,'dmconfig.ini';

dmSQL/Val> end;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-304

SET LOCK TIMEOUT NUMBER

Set the number of seconds to wait for the lock before returning to the

application. If the number is positive, the timeout is in seconds. If the number

is zero, it does not wait. If the number is negative, it will always wait.

SET MAXTBROW NUMBER

Set the maximum number of rows to be returned when retrieving table data.

All rows are returned when the number is zero or negative.

SET RPSVR RETRY NUMBER

The number of retries after a network failure occurs when replicating.

.
BKSVR PID

MAXTBROW

NUMBER OPTIONS

RPSVR Retry

BKSVR Journal Full

DDB Login Timeout

Lock Timeout

DDB Lock Timeout integer

String Length

Figure 3-143 Number Options syntax

String Options

Options in this group use single-quoted strings as the value. For some options,

the values must fit in the special formats.

SET BKSVR PATH STRING

Set the backup Journal file path.

SQL Commands 3

3-305

@Copyright 1995-2024 CASEMaker Inc.

SET DATE INPUT FORMAT {ALL | STRING}

Set input format for DATE columns.

The valid formats are:

FORMAT EXAMPLE

'mm/dd/yy' '02/18/99'

'mm-dd-yy' '02-18-99'

'dd-mon-yy' '18-Feb-99'

'mm/dd/yyyy' '02/18/1999'

'dd/mon/yyyy' '18/Feb/1999'

'dd-mon-yyyy' '18-Feb-1999'

'dd.mm.yyyy' '18.2.1999'

 Table 3-2 (yy/yyyy: year, mm: month, dd: day)

When the ALL command is specified, all of the above date formats are allowed.

SET DATE OUTPUT FORMAT STRING

Set the output format for DATE columns. The formats are listed in the SET

DATE INPUT FORMAT command.

SET EXTNAME TO STRING

Set extension name of the server file objects to string.

SET TIME INPUT FORMAT { ALL | STRING }

Set the input formats for the TIME columns. Setting the input format to ALL

allows all formats.

Alternately, use one of the following formats for input and output formats:

FORMAT EXAMPLE

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-306

'hh:mm:ss.fff ' 22:10:20.30

'hh:mm:ss' 22:10:20

'hh:mm' 22:10

'hh' 22

'hh:mm:ss.fff tt' 10:10:20.30 PM

'hh:mm:ss tt' 10:10:20 PM

'hh:mm tt' 10:10 PM

'hh tt' 10 PM

'tt hh:mm:ss.fff ' PM 10:10:20.30

'tt hh:mm:ss' PM 10:10:20

'tt hh:mm' PM 10:10

'tt hh' PM 10

Table 3-3 (hh: hour, mm: minute, ss: second, fff: fraction, tt: AM/PM)

When the ALL command is applied, all of the above formats can be used to

input TIME columns.

SET TIME OUTPUT FORMAT STRING

Set output format for the TIME columns. The possible formats in the string are

the same options as "SET TIME INPUT FORMAT" (See Table 3-3).

SQL Commands 3

3-307

@Copyright 1995-2024 CASEMaker Inc.

.
Data Output Format

ExtName

STRING OPTIONS

Data Input Format All

Time Input Format String

Time Output Format

BKSVR Path

String

.

Figure 3-144 String Options syntax

Symbol Options

In this group, all option values are a set of symbols that mainly match ODBC

symbols. Please refer to the corresponding ODBC connection options for more

information.

SET CB MODE { CLOSE | DELETE | PRESERVE }

Set cursor behavior, as transactions are committed. For more information

about these three modes, please refer to the ODBC Programmer's Guide in the

SQLGetInfo function section with the SQL_CURSOR_COMMIT_BEHAVIOR option.

SET CONCAT NULL RETURN { NULL | STRING }

This option is used for string concatenation with null for the CONCAT built-in

function or concatenate operator (||). The default setting for this option is

NULL. If this option is set to NULL, then any string concatenated with a null

value will return null. If the option is set to STRING, then any string

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-308

concatenated with a null value will return the string, because the null value

will be treated as an empty string.

SET DISCONNECT { DISCONNECT | TERMINAT | WAIT }

Sets the action of SQLDisconnect(). If disconnect is set, it just disconnects from

the server. The terminate call will shutdown the database. The wait call option

will cause the call to wait for the server to completely shutdown before it

returns. This is an internal option of DBMaker for developing tools to

shutdown the database by calling the SQLDisconnect().

SET DFO DUPMODE { COPY | NULL }

This option determines file objects duplication when executing the "select

into" on the file object columns from the remote tables. If set to null, the FILE

columns will be set to NULL. Otherwise, the remote file objects will be copied

into local tables.

SET FO TYPE { BLOB | FILE }

Selects the SQL types to map to a FILE column. If a file is selected, SQL_FILE

will be returned for FILE columns. Otherwise, the SQL_LONGVARBINARY will

be used.

SQL Commands 3

3-309

@Copyright 1995-2024 CASEMaker Inc.

SYMBOL OPTIONS

FO Type

File

BLOB

CB Mode Delete

Preserve

Close

DFO Dupmode

Disconnect Terminate

 Wait

Disconnect

Null

Copy

Figure 3-145 Symbol Options

 Example 1

SET BKSVR PID

dmSQL> SET BKSVR PID 0;

 Example 2

SET BKSVR PATH

dmSQL> SET BKSVR PATH 'd:\data\backup';

 Example 3

SET DATE INPUT FORMAT

dmSQL> SET DATE INPUT FORMAT ALL;

dmSQL> SET DATE INPUT FORMAT 'yyyy/mm/dd';

 Example 4

SET DATE OUTPUT FORMAT

dmSQL> SET DATE OUTPUT FORMAT 'mm-dd-yy'; // result of DATE column will be like

12-31-99

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-310

 Example 5

SET DDB LOCK TIMEOUT:

dmSQL> SET DDB LOCK TIMEOUT 20; // timeout is 20

 Example 6

SET DDB LOGIN TIMEOUT

dmSQL> SET DDB LOGIN TIMEOUT 15;

The remaining examples use two tables named t1 on database db1 and db2.

The definitions of both tables named t1 are included.

 Example 7

SET DFO DUPMODE

dmSQL> CREATE TABLE t1 (c1 INT, c2 FILE);

Now, we use db2 as a remote database of db1.

 Example 8

SET DFO DUPMODE

dmSQL> SET DFO DUPMODE null;

Insert data into t1.

 Example 9

SET DFO DUPMODE

dmSQL> SELECT c1, c2 from DB2:SYSADM.t1 INTO t1;

Then column c2 of t1 will be NULL. On the other hand, if we use.

 Example 10

SET DFO DUPMODE

dmSQL> SET DFO DUPMODE copy;

Insert data into t1 by selecting tuples from db2:t1, column c2 of newly

inserted rows are copied from column c2 of db2:t1.

SQL Commands 3

3-311

@Copyright 1995-2024 CASEMaker Inc.

 Example 11

SET EXTNAME TO

dmSQL> SET EXTNAME TO 'FOB';

 Example 12

SET LOCK TIMEOUT

dmSQL> SET LOCK TIMEOUT 30 ; // timeout is 30 seconds

dmSQL> SET LOCK TIMEOUT 0; // always wait

dmSQL> SET LOCK TIMEOUT –5; // always wait

 Example 13

SET MAXTBROW

dmSQL> SET MAXTBROW 10; // return only first 10 tuples of data

dmSQL> SET MAXTBROW –3; // return all tuples

 Example 14

SET SYSTEM INIT

dmSQL> SET SYSTEM INIT ON;

dmSQL> CREATE TABLE SYSTEM.t1 (c1 int);

 Example 15

SET TIME INPUT FORMAT

dmSQL> SET TIME INPUT FORMAT ALL; // all formats accepted

dmSQL> SET TIME INPUT FORMAT 'hh:mm'; // 10:20

 Example 16

SET TIME OUTPUT FORMAT

dmSQL> SET TIME OUTPUT FORMAT 'hh:mm:ss'; // 10:20:55

Transaction Options

Set connection option SQL_ATTR_TXN_ISOLATION to

SQL_TXN_READ_UNCOMMITTED, SQL_TXN_READ_COMMITTED,

SQL_TXN_REPEATABLE_READ or SQL_TXN_SERIALIZABLE. For more

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-312

information, please refer to the ODBC Programming Guide in the function

SQLGetInfo with the option SQL_DEFAULT_TXN_ISOLATION.

TRANSACTION OPTION

SET TRANSACTION ISOLATION LEVEL

READ UNCOMMITED

READ COMMITED

REPEATABLE READ

SERIALIZABLE

Figure 3-146 TRANSACTION OPTIONS syntax

SQL Commands 3

3-313

@Copyright 1995-2024 CASEMaker Inc.

3.92 SET CLIENT_CHAR_SET

The SET CLIENT_CHAR_SET command specifies the character set on the

database client side.

In mutilingual database, client side can use several local codes to connect to

UTF-8 database. So client side can set its own character set to distinguish with

the server side. Key word DB_LCode is used to set the server's language code,

while uses DB_CliLCODE to set the client's character set in the dmconfig.ini

file. In addition, user can aslo set client's character set throung the command

SET_CLIENT_CHAR_SET But, this command is only valid for the current

session, once disconnect this session, the setting set by this command can be

useless.

Aslo, user may need to know what the character set in the database server or

in the client side. And the UDF GETSYSINFO() can help to return the settings.

To get server character set, the syntax is SELECT GETSYSINFO('LCODE');

To get the client character set, the command is SELECT

GETSYSINFO('CLILCODE');

client-character-set-string Character sets can be set in client

side

ASCII (English)

BIG5 (Traditional Chinese)

Shift-JIS (Japanese Shift-JIS + Half Corner)

GBK (Simplified Chinese)

ISO-8859-1 (Latin1 code)

ISO-8859-2 (Latin2 code)

ISO-8859-5 (Cyrillic code)

ISO-8859-7 (Greek code)

EUC-JP (Japanese code)

GB18030 (Simplified Chinese)

Unicode(UTF-8)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-314

ISO-8859-{3,4,9,10,13,14,15,16},KOI8-R, KOI8-U, KOI8-

RU,CP{1250,1251,1252,1253,1254,1257}, CP{850,866},Mac{Roman,

Central Europe, Iceland, Croatian, Romania }, Mac{Cyrillic, Ukraine,

Greek, Turkish }, Macintosh(European Language)

ISO-8859-{6,8}, CP{1255,1256}, CP862, Mac{Hebrew, Arabic}

(Semitic languages)

CP932, ISO-2022-JP, ISO-2022-JP-2, ISO-2022-JP-1(Japanese)

EUC-CN, CP936, EUC-TW, CP950(Chinese)

EUC-KR, CP949, JOHAB(Korean)

Georgian-Academy, Georgian-PS(Georgian)

KOI8-T(Tajik)

PT154(Kazakh)

TIS-620, CP874, MacThai(Thai)

MuleLao-1, CP1133(Laotian)

VISCII, TCVN, CP1258(Vietnamese)

SET CLIENT_CHAR_SET client-character-set-string

Figure 3-147 SET CLIENT CHARACTER SET syntax

 Example

Set the client character set to BIG5.

dmSQL> SET CLIENT_CHAR_SET 'BIG5';

SQL Commands 3

3-315

@Copyright 1995-2024 CASEMaker Inc.

3.93 SET ERRMSG_CHAR_SET

The SET ERRMSG_CHAR_SET command specifies the error message output

character set of the database client.

Clients can set their own error message output character set for mutilingual

databases.

The command must be specified like 'language[_locale][.code]'. 'language'

string follows ISO-639 standards, it is must be lowercase; and 'locale'stirng

follows ISO-3166 standards,it is must be capital letter; 'code' string is the

character set name that DBMaker supported. For a language which has more

than one locale, it should be specified to which locale. For example, zh_CN or

zh_TW, zh alone is invalid.

But, this command is only valid for the current session, once disconnect this

session, the setting set by this command can be useless.

DBMaker currently supports four languages for client error messages: English,

simplified Chinese, traditional Chinese and Japanese.

The Error table is stored in the dbmaker/5.4/shared/locale/locale_LANG/

directory.

To get client error message set, user can execute command SELECT

GETSYSINFO('ERRLCODE');

The valid values: en，jp，zh_CN and zh_TW or the combination of them and

character set.

Such as:

en

en.ASCII

en.ISO-8859-1

en.ISO-8859-2

en.ISO-8859-5

en.ISO-8859-7

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-316

en.UTF-8

ja

ja.SHIFT-JIS

ja.UTF-8

ja.EUC-JP

zh_CN

zh_CN.GBK

zh_CN.UTF-8

zh_CN.GB18030

zh_TW

zh_TW.BIG5

zh_TW.UTF-8

SET ERRMSG_CHAR_SET language[_l ocale][.encode]

Figure 3-148 SET ERRMSG_CHAR_SET syntax

 Example1

The following sets the client error message output character set with the

locale 'ja'.

dmSQL> SET ERRMSG_CHAR_SET 'ja';

 Example2

The following sets the client error message output character set with the

locale 'ja' and the character set 'EUC_JP'.

dmSQL> SET ERRMSG_CHAR_SET 'ja.EUC-JP';

 Example3

The following sets the client error message output character set with the

locale 'ja' and the character set 'UTF-8'.

dmSQL> SET ERRMSG_CHAR_SET 'ja.UTF-8';

SQL Commands 3

3-317

@Copyright 1995-2024 CASEMaker Inc.

3.94 SUSPEND SCHEDULE

The SUSPEND SCHEDULE command suspends the replication schedule for an

asynchronous table replication. The local database will not try to connect to

the remote database until the replication schedule resumes. Only the local

table owner, a DBA, a SYSDBA, or a SYSADM can execute the SUSPEND

SCHEDULE command.

Use the SUSPEND SCHEDULE command to suspend a replication schedule for

an asynchronous table replication. To resume the replication schedule use the

RESUME SCHEDULE command.

remote_database_name….Name of the remote database to remove the

replication schedule from

SUSPEND SCHEDULE FOR REPLICATION TO remote_database_name

Figure 3-149 SUSPEND SCHEDULE syntax

 Example

The following suspends the replication schedule for the remote database

named DivOneDb.

dmSQL> SUSPEND SCHEDULE FOR REPLICATION TO DivOneDb;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-318

3.95 SYNC AUTO INDEX

The SYNC AUTO INDEX command wakes up the auto index daemon handing

mechanisms immediately. Only users with DBA, SYSDBA or SYSADM security

privileges can execute the SYNC AUTO INDEX command when the auto index

daemon starts.

Only when auto index daemon startups and the keyword AUTOCOMMIT is set

to ON, users can execute the SYNC AUTO INDEX command.

SYNC AUTO INDEX

Figure 3-150 SYNC AUTO INDEX syntax

 Example

The following example wakes up the auto index daemon when AUTOCOMMIT

is set to ON.

dmSQL> SYNC AUTO INDEX;

SQL Commands 3

3-319

@Copyright 1995-2024 CASEMaker Inc.

3.96 SYNCHRONIZE SCHEDULE

The SYNCHRONIZE SCHEDULE command synchronizes all data in the remote

database with data in the local database without waiting for the next

scheduled time. Only the local table owner, a DBA, a SYSDBA, or a SYSADM can

execute the SYNCHRONIZE SCHEDULE command.

Use the SYNCHRONIZE SCHEDULE command to synchronize data in the local

and remote tables for an asynchronous table replication.

remote_database_name….Name of the remote database to synchronize the

replication schedule for

REPLICATION TO remote_database_name

NO WAIT

WAIT

SYNC

SYNCHRONIZE

Figure 3-151 SYNCHRONIZE SCHEDULE syntax

 Example

The following example synchronizes the replication schedule for the remote

database named DivOneDb.

dmSQL> SYNCHRONIZE REPLICATION TO DivOneDb;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-320

3.97 UNLOAD STATISTICS

The UNLOAD STATISTICS command unloads database statistics into an ASCII

text file. Edit the file and load the desired statistics data back into the

database. Only users with DBA, SYSDBA or SYSADM security privileges can

execute the UNLOAD STATISTICS command.

Load statistical information for an entire database, or for one or more tables.

For each table specify whether to load the table statistics information, the

column statistics information, the index statistics information, or a

combination of the three.

DBMaker records table data statistics on the number of pages, the number of

rows, and the average row length of sampled rows in a table. DBMaker

records column data statistics on the number of distinct column values, the

average column length, the low value, and the high value for all sampled

values in a column. DBMaker records index data statistics on the number of

index pages, the number of index tree levels, the number of leaf pages, the

number of distinct key values, the number of pages per key, and the cluster

count for the index.

object_list List of database objects to unload statistics data for

file_name Name of the ASCII text file that statistics data will be saved

in

UNLOAD STATISTICS

object_list

TO file_name

Figure 3-152 UNLOAD STATISTICS syntax

SQL Commands 3

3-321

@Copyright 1995-2024 CASEMaker Inc.

UNLOAD STATISTICS Object List

index_name

,

INDEXTABLE

()

table_name

,

Figure 3-153 UNLOAD STATISTICS Object List syntax

 Example

The following unloads all STATISTICS to the file stat.dat.

dmSQL> UNLOAD STATISTICS TO stat.dat;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-322

3.98 UPDATE

The UPDATE command updates rows in a table. Rows in the system catalog

tables can not updated with this command. Only the table owner, a DBA, a

SYSDBA, a SYSADM, or a user with the UPDATE privilege for the entire table or

for the specific column can execute the UPDATE command.

When updating a column the new column values must satisfy the column

constraints and referential integrity. Use the DEFAULT keyword to set the

value of the column to the default.

table_name Name of the table containing the rows to update

column_name Name of the column to update values in

literal Literal value to update the column with

expression Expression that returns a value to update the column with

constant Constant value to update the column with

search_condition Conditions a row must meet to be updated

cursor_name Name of the cursor to use for a positioned update (cursors

are only available within ODBC programs)

SQL Commands 3

3-323

@Copyright 1995-2024 CASEMaker Inc.

UPDATE SETtable_name

WHERE

search_condition

CURRENT OF cursor_name

,

column_name =
constant

NULL

expression

literal

Figure 3-154 UPDATE syntax

 Example 1

The following shows how to update the Employeesinfo table and change the

salary of all employees named Chris.

dmSQL> UPDATE Employeesinfo SET Salary = 5000 WHERE FName = 'Chris';

 Example 2

The following shows how to give a salary raise of 10% to all employees

named Chris.

dmSQL> UPDATE Employeesinfo SET Salary = Salary*1.10 WHERE FName = 'Chris';

 Example 3

The following shows how to update the Employeesinfo table by using

subquery in update. The following example changes all the salary as same as

the first one in the salary column.

dmSQL> UPDATE Employeesinfo SET Salary = (SELECT * FROM Employeesinfo LIMIT 1);

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-324

3.99 UPDATE STATISTICS

The UPDATE STATISTICS command updates database statistics information.

Keeping statistics information current helps the database to perform queries

more efficiently. Only the owner of the object, a DBA, a SYSDBA, or a SYSADM

can execute the UPDATE STATISTICS command.

Update statistical information for the entire database or take update statistical

information for one or more tables. For each table specify whether to update

statistical information for the table, the column, the index, or a combination of

the three. In addition, specifying a number between 1 and 100 for the SAMPLE

keyword can set the percentage of data to sample.

DBMaker records index data statistics on the number of index pages, the

number of index tree levels, the number of leaf pages, the number of distinct

key values, the number of pages per key, and the cluster count for the index.

ALL: means forcibly update the statistics values for all schema objects.

SAMPLE: means the sampling rate expressed as a percentage of the whole, an

integer between 1 and 100.

MODE: means the mode of sample setting when executing UPDATE

STATISTICS command. The default value is 0, means to use the sample rate

from database setting (DB_StsSp); set to 1 means to use the sample rate from

table setting (UPDATE STATISTICS SET command); set to 2 means UPDATE

STATISTICS command will smart decide every table’s sample rate.

object_list List of database objects to update statistics data for

number Percentage of data to use when updating statistics data

SQL Commands 3

3-325

@Copyright 1995-2024 CASEMaker Inc.

Figure 3-155 UPDATE STATISTICS syntax

UPDATE STATISTICS Object List

DBMaker records table data statistics on the number of pages, the number of

rows, and the average row length of sampled rows in a table.

DBMaker also records column data statistics on the number of distinct column

values, the average column length, the low value, and the high value for all

sampled values in a column.

()

table_ name

index _name

,

,

INDEX

Figure 3-156 UPDATE STATISTICS Object List syntax

 Example 1

The following updates all STATISTICS in the database with a sampling of

30%.

dmSQL> UPDATE STATISTICS SAMPLE = 30;

 Example 2

The following updates all STATISTICS on table1.

dmSQL> UPDATE STATISTICS table1 SAMPLE = 50;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-326

 Example 3

The following updates STATISTICS for index ix1 on table1.

dmSQL> UPDATE STATISTICS table1 (INDEX ix1);

 Example 4

The following updates STATISTICS for all indexes on table1.

dmSQL> UPDATE STATISTICS table1 (INDEX);

 Example 5

The following forcibly updates STATISTICS for all objects in a database.

dmSQL> UPDATE STATISTICS ALL;

 Example 6

The following update STATISTICS in the database with mode=0.

dmSQL> UPDATE STATISTICS mode=0;

 Example 7

The following update STATISTICS in the database with smart decided

sampling rate.

dmSQL> UPDATE STATISTICS mode=2;

SQL Commands 3

3-327

@Copyright 1995-2024 CASEMaker Inc.

3.100 UPDATE STATISTICS SET

The UPDATE STATISTICS SET command specifies every table's update

statistics method and sample ratio for update statistics daemon when it starts

in every table setting mode, that is to say, the value of DB_StMod is 1.

Every table's update statistics and sample ratio are stored in system table

SYSTABLE. The column UPD_STS_MODE stored the table statistics method,

and the column UPD_STS_SAMPLE stored the table statistics sample ratio.

If users set update statistics option for every table by executing the SQL

statement UPDATE STATISTICS SET, there are four filter conditions as

follows:

• If it is a new table, that is to say, the table did not perform update

statistics, then execute automatic update statistics.

• If the total number of pages in the table is less than 20 pages, then execute

automatic update statistics.

• If the total number of pages in the table is more than 20 pages, the new

page number that is larger than 2 pages since the last automatic update

statistics, then execute automatic update statistics.

• If the table doesn't update statistics more than 10 days, execute automatic

update statistics.

table_name Name of the table

mode_value The table update statistics method

0: Sample ratio of table uses value of DB_StsSp in

dmconfig.ini，the default value is 0. The default value of

DB_StsSp is 100

1: Sample ratio of table uses table update statistics sample

ratio which be set in sample_value.

2: Sample ratio of table will be obtained intelligently.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-328

sample_value The table update statistics sample ratio

-1 : Intelligently obtain sample ratio

0: The database does not need to update statistics value

0 ~ 100: Table update statistics sample ratio, the default

value is 100

,

table_name
UPDATE STATISTICS SET

MODE = mode_value
, SAMPLE = sample_value

, MODE = mode_value
 SAMPLE = sample_value

 Figure 3-157 UPDATE STATISTICS SET syntax

 Example 1

Setting the update statistics method and sample ratio for the table

jeff.tb_staff :

dmSQL> UPDATE STATISTICS SET jeff.tb_staff MODE = 1， SAMPLE = 80;

dmSQL> SELECT TABLE_NAME, TABLE_OWNER, UPD_STS_MODE, UPD_STS_SAMPLE FROM

SYSTABLE;

 TABLE_NAME TABLE_OWNER UPD_STS_MODE UPD_STS_SAMPLE

======================== ======================== ============= ===============

TB_STAFF JEFF 1 80

1 rows selected

 Example 2

Setting the update statistics method and sample ratio for the table jeff.tb_staff

and jim.tb_salary :

dmSQL> UPDATE STATISTICS SET jeff.tb_staff, jim.tb_salary MODE = 1, SAMPLE = 60;

SQL Commands 3

3-329

@Copyright 1995-2024 CASEMaker Inc.

dmSQL> SELECT TABLE_NAME, TABLE_OWNER, UPD_STS_MODE, UPD_STS_SAMPLE FROM

SYSTABLE;

 TABLE_NAME TABLE_OWNER UPD_STS_MODE UPD_STS_SAMPLE

======================== ======================== ============= ================

TB_STAFF JEFF 1 60

TB_SALARY JIM 1 60

2 rows selected

 Example 3

If a table is huge, UPDATE STATISTICS command may take a long time and

delay following commands. In this example, execute UPDATE STATISTICS

SET command to define tables’ sample rate, skip table t1 (sample rate=0) and

do update statistics on t2 with sample rate is 20.

dmSQL> UPDATE STATISTICS SET t1 mode=1 sample=0;

dmSQL> UPDATE STATISTICS SET t2 mode=1 sample=20;

dmSQL> UPDATE STATISTICS mode=1;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 3-330

3.101 UPDATE TABLESPACE STATISTICS

The UPDATE TABLESPACE STATISTICS command updates tablespace

statistical information. Keeping statistical information current helps the

tablespace to perform queries more efficiently. Only users with DBA, SYSDBA

or SYSADM security privileges can execute the UPDATE TABLESPACE

STATISTICS command.

DBMaker will update the tablespaces and associated file statistical value to

update tablespace statistics.

DBMaker records tablespace data statistics on the number of pages, the

number of free pages, the number of frames, and the number of free frames.

DBMaker records file data statistics on the number of pages/frames, and the

number of free pages/frames.

object_list List of database objects to update statistical data for

UPDATE TABLESPACE STATISTICS object_ list

Figure 3-158 UPDATE TABLESPACE STATISTICS syntax

 Example

The following updates the DEFTABLESPACE STATISTICS.

dmSQL> UPDATE TABLESPACE STATISTICS DEFTABLESPACE;

Functions 4

4-1

@Copyright 1995-2024 CASEMaker Inc.

4 Functions

DBMaker provides a number of built-in functions, and also allows

programmers to build their own user-defined functions (UDF). For details,

please refer to the following sections.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-2

Built-in Functions

DBMaker provides a number of built-in functions. These functions can be used

on columns in a result set or columns that restrict rows in a result set. This

chapter lists each function by type. The arguments and returned values for

each function are listed below the syntax diagram providing the name, data

type, and value.

The Built-in Functions types are:

 String functions

 Numeric functions

 Date and time functions

 System functions

Functions 4

4-3

@Copyright 1995-2024 CASEMaker Inc.

ABS

The ABS function returns the absolute value of number, as a double precision

floating-point number.

number Double: Number to find the absolute value for

Return value Double: Absolute value of number

ABS (number)

Figure 4-1 ABS syntax

 Example

The following syntax returns 3.14000000000000e+012.

ABS(-3.14E12)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-4

ACOS

The ACOS function returns the arc cosine for a number in the double precision

floating-point number format. The number argument must be in the range 0 to

 radians.

number Double: Number to find the arc cosine for

Return value Double: The arc cosine for a number

ACOS (number)

Figure 4-2 ACOS syntax

 Example

The following syntax returns 1.04719755119660e+000.

ACOS(0.5)

Functions 4

4-5

@Copyright 1995-2024 CASEMaker Inc.

ADD_DAYS

The ADD_DAYS function returns a result from adding the number of days to

the date. The number argument may be a negative number.

date Date: Date to add days to

number Integer: Number of days to add

Return value Date: Result of adding number days to date

ADD_DAYS (date, number)

Figure 4-3 ADD_DAYS syntax

 Example 1

The following syntax returns the date1999-03-01.

ADD_DAYS('1999-02-24', 5)

 Example 2

The following syntax returns the date 2000-02-29.

ADD_DAYS('2000-02-24', 5)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-6

ADD_HOURS

The ADD_HOURS function returns a result after adding the number in hours to

time. The number argument may be a negative number.

time Time: Time to add hours to

number Integer: Number of hours to add

Return value Time: Result of adding number hours to time

ADD_HOURS (time, number)

Figure 4-4 ADD_HOURS syntax

 Example 1

The following syntax returns the time 20:11:12.

ADD_HOURS('10:11:12', 10)

 Example 2

The following syntax returns the time 22:11:12.

ADD_HOURS('10:11:12', -12)

Functions 4

4-7

@Copyright 1995-2024 CASEMaker Inc.

ADD_MINS

The ADD_MINS function returns a result after adding the number in minutes to

time. The number argument may be a negative number.

time Time: Time to add minutes to

number Integer: Number of minutes to add

Return value Time: Result of adding number minutes to time

ADD_MINS (time, number)

Figure 4-5 ADD_MINS syntax

 Example 1

The following syntax returns the time 10:21:12.

ADD_MINS('10:11:12', 10)

 Example 2

The following syntax returns the time 09:59:12.

ADD_MINS('10:11:12', -12)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-8

ADD_MONTHS

The ADD_MONTHS function returns a result after adding a number in months

to date. The number argument may be a negative number.

date Date: Date to add months to

number Integer: Number of months to add

Return value Date: Result of adding number months to date

ADD_MONTHS (date, number)

Figure 4-6 ADD_MONTHS syntax

 Example 1

The following syntax returns the date 1999-07-24.

ADD_MONTHS('1999-02-24',5)

 Example 2

The following syntax returns the date 2001-01-01.

ADD_MONTHS('2000-01-01',12)

Functions 4

4-9

@Copyright 1995-2024 CASEMaker Inc.

ADD_SECS

The ADD_SECS function returns a result after adding a number in seconds to

time. The number argument may be a negative number.

time Time: Time to add seconds to

number Integer: Number of seconds to add

Return value Time: Result of adding number seconds to time

ADD_SECS (time, number)

Figure 4-7 ADD_SECS syntax

 Example 1

The following syntax returns the time 10:11:22.

ADD_SECS('10:11:12',10)

 Example 2

The following syntax returns the time 10:10:52

ADD_SECS('10:11:12', -20)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-10

ADD_YEARS

The ADD_YEARS function returns a result after adding a number in years to

date. The number argument may be a negative number.

date Date: Date to add years to

number Integer: Number of years to add

Return value Date: Result of adding number years to date

ADD_YEARS (date, number)

Figure 4-8 ADD_YEARS syntax

 Example 1

The following syntax returns the date 2001-03-04.

ADD_YEARS('1999-03-04', 2)

 Example 2

The following syntax returns the date 1995-02-28.

ADD_YEARS('2000-02-29', -5)

Functions 4

4-11

@Copyright 1995-2024 CASEMaker Inc.

ASCII

The ASCII function returns the ASCII code value of the first character in string.

If string contains no characters, a value of 0 (NULL) is returned. An error will

be returned when a value for the string argument is not specified.

string String: Character, in the first position to obtain an ASCII

code

Return value Integer: ASCII code of the character specified in string

ASCII (string)

Figure 4-9 ASCII syntax

 Example 1a

The following syntax returns 65, which is the ASCII code for "A".

ASCII('A')

 Example 1b

The following syntax also returns 65, which is the ASCII code for "A".

ASCII('ABC')

 Example 2a

The following syntax returns 97, which is the ASCII code for "a".

ASCII('a')

 Example 2b

The following syntax also returns 97, which is the ASCII code for "a".

ASCII('abc')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-12

 Example 3a

The following syntax returns 49, which is the ASCII code for "1".

ASCII('1')

 Example 3b

The following syntax returns 33, which is the ASCII code for "!".

ASCII('!')

Functions 4

4-13

@Copyright 1995-2024 CASEMaker Inc.

ASIN

The ASIN function returns a double precision floating-point number from the

arc sine of number (in the range from -/2 to /2).

number Double: Number to find the arc sine for

Return value Double: Arc sine of number

ASIN (number)

Figure 4-10 ASIN syntax

 Example

The following syntax returns the arc sine of number; 5.23598775598299e-

001.

ASIN(0.5)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-14

ATAN

The ATAN function returns a double precision floating-point number from the

tangent of number (in the range from -/2 to /2).

number Double: Number to find the arc tangent for

Return value Double: Arc tangent of number

ATAN (number)

Figure 4-11 ATAN syntax

 Example

The following syntax returns the arc tangent of number;

4.63647609000806e-001.

ATAN(0.5)

Functions 4

4-15

@Copyright 1995-2024 CASEMaker Inc.

ATAN2

The ATAN2 function returns the arc tangent of x/y in the range - to as a

double precision floating-point number.

x Double: Numerator in the ratio x/y to find the arc tangent

for

y Double: Denominator in the ratio x/y to find the arc

tangent for

Return value Double: Arc tangent of x/y

ATAN2 (x, y)

Figure 4-12 ATAN2 syntax

 Example

The following syntax returns the arc tangent of x/y, 4.63647609000806e-

001.

ATAN2(0.1, 0.2)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-16

ATOF

The ATOF function returns the value represented by the character string in

the string argument as a double precision floating-point number.

string........................... String: String to convert to a double-precision floating-

point

 number

Return value Double: Value of the character string in string

ATOF (string)

Figure 4-13 ATOF syntax

 Example 1

The following returns -1.23400000000000e+001, which is the double

precision floating-point value of the character string "-12.34".

ATOF('-12.34')

 Example 2

The following returns -1.23400000000000e+035, which is the double-

precision floating-point value of the character string "-12.34E34".

ATOF('-12.34E34')

Functions 4

4-17

@Copyright 1995-2024 CASEMaker Inc.

BAND

The BAND function returns a result after two numbers do bitwise AND

operation.

number 1…………………Bigint: First number to do the bitwise AND operation

number 2…………………Bigint: Second number to do the bitwise AND operation

Return value…………… Bigint: The value of a and b do bitwise AND operation

Figure 4-14 BAND syntax

 Example

The following syntax returns 2.

BAND(10,150)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-18

BLOBLEN

The BLOBLEN function returns the data length of an input BLOB. Please note,

BLOBLEN reports at most (231 - 1)B even when if the size is greater than or

equal to 231B. BLOBLEN can get the data length for CLOB, BLOB, NCLOB and

FILE type objects.

object BLOB: Source BLOB

Return value Integer: Get BLOB type data length of source BLOB

BLOBLEN (blob)

Figure 4-15 BLOBLEN syntax

 Example

The following returns the BLOB length of "content".

BLOBLEN(content)

Functions 4

4-19

@Copyright 1995-2024 CASEMaker Inc.

BLOBLENEX

The BLOBLENEX function returns the data length of an input BLOB as a

decimal value. BLOBLENEX can get the data length for CLOB, BLOB, NCLOB

and FILE type objects. BLOBLENEX reports the correct BLOB size, unlike

BLOBLEN, even for BLOB size > 231B.

object BLOB: Source BLOB

Return value Decimal: Get BLOB type data length of source BLOB

BLOBLEN (blob)

Figure 4-16 BLOBLENEX syntax

 Example

The following returns the BLOB length of "content".

BLOBLENEX(content)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-20

BLSHIFT

The BLSHIFT function returns a result of number 1 do the bitwise left shift.

Number 2 specifies how many bits will be left shifted.

number 1…………… … …Bigint: Number to do the bitwise left shift operation

number 2……………… …Bigint: Number of bits to left shift

Return value……………….Bigint: Result of left shifting number 2 bits to number

1

Figure 4-17 BLSHIFT syntax

 Example

The following syntax returns 400.

BLSHIFT(100,2)

Functions 4

4-21

@Copyright 1995-2024 CASEMaker Inc.

BNOT

The BNOT function returns the value of number after doing bitwise NOT

operation.

number…………………Bigint: The number need to do bitwise NOT operation

Return value………… .Bigint: The value after number do bitwise NOT operation

Figure 4-18 BNOT syntax

 Example

The following syntax returns -101

BNOT(100)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-22

BOR

The BOR function returns a result after number 1 and number 2 do the bitwise

OR operation.

number 1……………………… Bigint: First number to do the bitwise OR

number 2……………………… Bigint: Secind number to do the bitwise OR

Return value…………………….Bigint: Result of number 1 and 2 do the bitwise OR

Figure 4-19 BOR syntax

 Example

The following syntax returns 103.

BOR(100,99)

Functions 4

4-23

@Copyright 1995-2024 CASEMaker Inc.

BRSHIFT

The BRSHIFT function returns a result after number 1 do the bitwise right

shift. Number 2 specifies how many bits will be right shifted.

number 1……………… Bigint: Number to do the bitwise right shift

number 2……………… Bigint: Number of bits to right shift

Return value……………Bigint: Result of right shifting number 2 bits on number

1

Figure 4-20 BRSHIFT syntax

 Example

The following syntax returns 1250.

BRSHIFT(10000,3)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-24

BXOR

The BXOR function returns a value of bitwise XOR operation between two

values.

number 1…………………………Bigint: First number to do the bitwise XOR

number 2…………………………Bigint: Second number to do the bitwise XOR

Return value……………………. Bigint: The value of a and b do bitwise XOR

Figure 4-21 BXOR syntax

 Example

The following syntax returns 112.

BXOR(100,20)

Functions 4

4-25

@Copyright 1995-2024 CASEMaker Inc.

CEILING

The CEILING function returns the integral value, greater than or equal to

number, as a double precision floating-point number.

number Double: Number to find the nearest larger integer value for

Return value Double: The next integer value greater than number

CEILING (number)

Figure 4-22 CEILING syntax

 Example 1

The following syntax returns 1.30000000000000e+001, which is the next

integer value with a value greater than 12.3.

CEILING(12.3)

 Example 2

The following syntax returns -1.20000000000000e+001, which is the next

integer value with a value greater than -12.3.

CEILING(-12.3)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-26

CHAR

The CHAR function returns the character that has the ASCII code value

specified by number. The value specified for number should be a valid ASCII

code value between 0 and 255; other values are not valid ASCII codes and are

not supported by the CHAR function. Specifying a value that is not a valid

ASCII code value may return incorrect or invalid results. An error will be

returned when a value for the number argument is not provided.

number Integer: ASCII code of the character to obtain

Return value String: Character represented by the ASCII code specified

by number

CHAR (number)

Figure 4-23 CHAR syntax

 Example 1

The following syntax returns the string "A", which has an ASCII code value of

65.

CHAR(65)

 Example 2

The following syntax returns the string "a", which has an ASCII code value of

97.

CHAR(97)

 Example 3

The following syntax returns the string "1", which has an ASCII code value of

49.

CHAR(49)

Functions 4

4-27

@Copyright 1995-2024 CASEMaker Inc.

 Example 4

The following syntax returns the string "!", which has an ASCII code value of

33.

CHAR(33)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-28

CHAR_LENGTH

The CHAR_LENGTH function returns the number of characters in string,

excluding trailing blanks and the string termination character, when present.

An error will be returned if a value for the string argument is not provided.

string........................... String: String to find the length of

Return value Integer: Leftmost count characters in string

CHAR_LENGTH (string _expression)

Figure 4-24 CHAR_LENGTH function syntax

 Example

The following function command returns "4".

dmSQL> SELECT CHAR_LENGTH(' abc ');

CHAR_LENGTH(' ABC ')

===========================

 4

Functions 4

4-29

@Copyright 1995-2024 CASEMaker Inc.

CHARACTER_LENGTH

The CHARACTER_LENGTH function returns the number of characters in

string, excluding trailing blanks and the string termination character, when

present. An error will be returned if a value for the string argument is not

provided.

string String: String to find the length of

Return value Integer: Leftmost count characters in string

CHARACTER_LENGTH (string_expression)

Figure 4-25 CHARACTER_LENGTH function syntax

 Example

The following function command returns "4".

dmSQL> SELECT CHARACTER_LENGTH(' abc ');

CHARACTER_LENGTH(' ABC ')

===========================

 4

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-30

CHECKMEDIAFORMAT

The CHECKMEDIAFORMAT function is used to check whether the BLOB

content matches the specified media format.

blob Column name on which to perform the check

Media format:.......... String: specify media format. The supported format is: DOC,

XLS, PPT, HTM, XML and PDF.

Return value: True if the record in the column matches media format

CHECKMEDIAFORMAT (blob , media_format)

Figure 4-26 Syntax for CHECKMEDIAFORMAT

 Example:

The following check whether the blob column match the DOC format.

dmSQL> CHECKMEDIAFORMAT(wordcol, 'DOC');

Functions 4

4-31

@Copyright 1995-2024 CASEMaker Inc.

CONCAT

The CONCAT function returns a string expression formed by joining string1

and string2. A return value will occur only if the string expression in string1 is

placed at the beginning of the result string, and the string expression in

string2 is placed at the end of the result string; an error will be returned if

both values for the arguments have not been provided.

DBMaker uses the following rule to determine the value returned if one of the

string expressions contains a NULL value.

Any string that is concatenated with a null value using the CONCAT built-in

function or concatenate operator (||) will return NULL. If you want to return

the string value when concatenating a string value with a null value, you must

set the SET CONCAT NULL RETURN option to STRING. A null value

concatenated with a null value will always return a null value, regardless of

the value of the SET CONCAT NULL RETURN built-in-function.

string1 String: String to place at the beginning of the result string

string2 String: String to place at the end of the result string

Return value String: Formed by joining string1 and string2

CONCAT (string1, string2)

Figure 4-27 CONCAT syntax

 Example 1

The following returns "master plan". Take notice the space at the end of the

first string.

CONCAT('master ', 'plan')

 Example 2

The following returns "mastermind".

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-32

CONCAT('master', 'mind')

Functions 4

4-33

@Copyright 1995-2024 CASEMaker Inc.

COS

The COS function returns the cosine of number, expressed in radians, as a

double precision floating-point number.

number Double: Number to find the cosine for

Return value Double: The cosine of number

COS (number)

Figure 4-28 COS syntax

 Example

The following syntax returns a value of 8.77582561890373e-001.

COS(0.5)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-34

COSH

The COSH function returns the hyperbolic cosine of number, expressed in

radians, as a double precision floating-point number.

number Double: Number to find the hyperbolic cosine for

Return value Double: The hyperbolic cosine of number

COSH (number)

Figure 4-29 COSH syntax

 Example

The following returns the hyperbolic cosine of number;

1.12762596520638e+000.

COSH(0.5)

Functions 4

4-35

@Copyright 1995-2024 CASEMaker Inc.

COT

The COT function returns the cotangent of number, expressed in radians, as a

double precision floating point number.

number Double: Find the cotangent for number

Return value Double: The cotangent of number

COT (number)

Figure 4-30 COT syntax

 Example

The following returns the cotangent of number, 1.83048772171245e+000.

COT(0.5)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-36

CURDATE

The CURDATE function returns the current date.

Return value Date: The current date

CURDATE ()

Figure 4-31 CURDATE syntax

 Example

The following returns the current date.

CURDATE()

Functions 4

4-37

@Copyright 1995-2024 CASEMaker Inc.

CURRENT_DATE

The CURRENT_DATE function returns the current date from the default

date/time/timestamp DBMaker output format.

Return value DATE: The current date

CURRENT_DATE ()

Figure 4-32 CURRENT_DATE syntax

 Example 1

The following returns the current date.

dmSQL> INSERT INTO t1 VALUES (CURRENT_DATE);

dmSQL> SELECT CURRENT_DATE;

dmSQL> SELECY c1 FROM t1 WHERE c2 = CURRENT_DATE;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,

CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the values,

and then update the values.

dmSQL> INSERT INTO sql99t5 VALUES(CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,

CURRENT_USER);

1 row inserted

dmSQL> SELECT CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER

============= ========== ======================== ============================

16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-38

dmSQL> UPDATE sql99t5 SET c1 = CAST(CURRENT_TIMESTAMP AS CHAR(20)),

 c2 = CURRENT_DATE,

 c3 = CURRENT_TIME,

 c4 = CURRENT_TIMESTAMP WHERE c1 = CURRENT_USER;

1 row updated

Functions 4

4-39

@Copyright 1995-2024 CASEMaker Inc.

CURRENT_TIME

The CURRENT_TIME function returns the current time from the default time

DBMaker output format.

Return value TIME: The current time

CURRENT_TIME ()

Figure 4-33 CURRENT_ TIME syntax

 Example 1

The following returns the current time.

dmSQL> INSERT INTO t1 VALUES (CURRENT_TIME);

dmSQL> SELECT CURRENT_TIME;

dmSQL> SELECT c1 FROM t1 WHERE c2 = CURRENT_TIME;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,

CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the values,

and then update the values.

dmSQL> INSERT INTO sql99t5 VALUES(CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,

CURRENT_USER);

1 row inserted

dmSQL> SELECT CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER

============= ========== ======================== ============================

16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-40

dmSQL> UPDATE sql99t5 SET c1 = CAST(CURRENT_TIMESTAMP AS CHAR(20)),

 c2 = CURRENT_DATE,

 c3 = CURRENT_TIME,

 c4 = CURRENT_TIMESTAMP WHERE c1 = CURRENT_USER;

1 row updated

Functions 4

4-41

@Copyright 1995-2024 CASEMaker Inc.

CURRENT_TIMESTAMP

The CURRENT_TIMESTAMP function returns the current timestamp from the

default timestamp DBMaker output format.

Return value TIMESTAMP: The current timestamp

CURRENT_TIMESTAMP ()

Figure 4-34 CURRENT_ TIMESTAMP syntax

 Example 1

The following returns the current timestamp.

dmSQL> INSERT INTO t1 VALUES(CURRENT_TIMESTAMP);

dmSQL> SELECT CURRENT_TIMESTAMP;

dmSQL> SELECT c1 FROM t1 WHERE c2 = CURRENT_TIMESTAMP;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,

CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the values,

and then update the values.

dmSQL> INSERT INTO sql99t5 VALUES(CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,

CURRENT_USER);

1 row inserted

dmSQL> SELECT CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER

============= ========== ======================== ============================

16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-42

dmSQL> UPDATE sql99t5 SET c1 = CAST(CURRENT_TIMESTAMP AS CHAR(20)),

 c2 = CURRENT_DATE,

 c3 = CURRENT_TIME,

 c4 = CURRENT_TIMESTAMP WHERE c1 = CURRENT_USER;

1 row updated

Functions 4

4-43

@Copyright 1995-2024 CASEMaker Inc.

CURRENT_USER

The CURRENT_USER function returns the current user connected to DBMaker.

Return value USER: The current user

CURRENT_USER ()

Figure 4-35 CURRENT_ USER syntax

 Example 1

The following returns the current user.

dmSQL> INSERT INTO t1 VALUES (CURRENT_USER);

dmSQL> SELECT CURRENT_USER;

dmSQL> SELECT c1 FROM t1 WHERE c2 = CURRENT_USER;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,

CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the values,

and then update the values.

dmSQL> INSERT INTO sql99t5 VALUES(CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,

CURRENT_USER);

1 row inserted

dmSQL> SELECT CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER

============= ========== ======================== ============================

16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

dmSQL> UPDATE sql99t5 SET c1 = CAST(CURRENT_TIMESTAMP AS CHAR(20)),

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-44

 c2 = CURRENT_DATE,

 c3 = CURRENT_TIME,

 c4 = CURRENT_TIMESTAMP WHERE c1 = CURRENT_USER;

1 row updated

Functions 4

4-45

@Copyright 1995-2024 CASEMaker Inc.

CURTIME

The CURTIME function returns the current time.

Return value Time. The current time

CURTIME ()

Figure 4-36 CURRENTTIME syntax

 Example

The following syntax returns the current time.

CURTIME ()

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-46

DATABASE

The DATABASE function returns the name of the database corresponding to

the current connection. Alternately, determine the name of the database in an

ODBC program by calling the SQLGetConnectOption with the

SQL_CURRENT_QUALIFIER connection option.

Return value String: The name of the database on the current connection

DATABASE ()

Figure 4-37 DATABASE syntax

 Example

The following returns the name of the database corresponding to the current

connection.

DATABASE()

Functions 4

4-47

@Copyright 1995-2024 CASEMaker Inc.

DATEPART

The DATEPART function returns the date part of timestamp.

timestamp Timestamp: Timestamp to extract the date part from

Return value Date: Date part of timestamp

DATEPART (timestamp)

Figure 4-38 DATEPART syntax

 Example

The following syntax returns the date 1999-08-07.

DATEPART('1999-08-07 10:11:12.123')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-48

DATETOEPOCH

The DATETOEPOCH function returns a result of EPOCH time. This function

will convert DATE to EPOCH time.

DATE……..………………DATE: Date to convert to EPOCH time

Return value……………….Bigint: The value of DATE converted to EPOCH time

Figure 4-39 DATETOEPOCH syntax

 Example

The following syntax returns 1614700800000.

DATETOEPOCH('2021-03-03')

Functions 4

4-49

@Copyright 1995-2024 CASEMaker Inc.

DAYNAME

The DAYNAME function returns a character string containing the data-source

specific name of the day (for example, Sunday, Monday, …, Saturday) that date

falls on.

date Date: Date to find the name of the day for

Return value String: Weekday that date falls on

DAYNAME (date)

Figure 4-40 DAYNAME syntax

 Example

The following returns "Saturday".

DAYNAME('1999-12-25')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-50

DAYOFMONTH

The DAYOFMONTH function returns the day of the month found in date as an

integer value in the range 1-31.

date Date: Find the day of the month for date

Return value Integer: Day of the month that date falls on

DAYOFMONTH (date)

Figure 4-41 DAYOFMONTH syntax

 Example

The following returns 23.

DAYOFMONTH('1999-01-23')

Functions 4

4-51

@Copyright 1995-2024 CASEMaker Inc.

DAYOFWEEK

The DAYOFWEEK function returns the day of the week found in date as an

integer value in the range 1-7, where 1 is Sunday, 2 is Monday, …, and 7 is

Saturday.

date Date: Find the day of the week for date

Return value Integer: Day of the week that date falls on

DAYOFWEEK (date)

Figure 4-42 DAYOFWEEK syntax

 Example 1

The following returns 3.

DAYOFWEEK('2000-02-29')

 Example 2

The following returns 6.

DAYOFWEEK('2000-03-03')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-52

DAYOFYEAR

The DAYOFYEAR function returns the day of the year found in date as an

integer value in the range 1-366, 366 is only returned for the last day of a leap

year.

date Date: Find the day of the year for date

Return value Integer: Day of the year that date falls on

DAYOFYEAR (date)

Figure 4-43 DAYOFYEAR syntax

 Example 1

The following returns 31.

DAYOFYEAR('1999-01-31')

 Example 2

The following returns 365.

DAYOFYEAR('1999-12-31')

Functions 4

4-53

@Copyright 1995-2024 CASEMaker Inc.

DAYS_BETWEEN

The DAYS_BETWEEN function returns the number of days between two dates.

The date1 argument can be earlier or later than the date2 argument.

date1 Date: First of two dates

date2 Date: Second of two dates

Return value Integer: Number of days between date1 and date2

DAYS_BETWEEN (date1, date2)

Figure 4-44 DAYS_BETWEEN syntax

 Example 1

The following returns 31.

DAYS_BETWEEN('1999-01-15', '1999-02-15')

 Example 2

The following returns 31.

DAYS_BETWEEN('1999-02-15', '1999-01-15')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-54

DEGREES

The DEGREES function returns the number of degrees in radians as a double

precision floating-point number.

radians Date: Radians value to convert to degrees

Return value Double: Number of degrees in radians

DEGREES (radians)

Figure 4-45 DEGREES syntax

 Example

The following returns 1.79908747671078e+002.

DEGREES(3.14)

Functions 4

4-55

@Copyright 1995-2024 CASEMaker Inc.

DIFFERENCE

The DIFFERENCE function translates two input words to soundex results and

returns a number represent the similarity of two words. A value of 0 indicates

weak or no similarity between two soundex values; 4 indicates strongly

similar, or matching result.

Word 1……… . String: The first word to do the soundex and compare.

Word 2…… …. String: The second word to do the soundex and compare.

Return value……. Integer: Represent how similar word 1 and word 2 is.

Figure 4-46 DIFFERENCE syntax

 Example

The following syntax returns 4.

DIFFERENCE('dbmaker', 'dbmaster');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-56

DOCTOTXT

The DOCTOTXT function is used for converting Microsoft Word documents

into a temporary BLOB containing the pure text of blob as unicode. It returns

temp blob or NULL. In DBMaker current version, UDF will support office

2007- 2010 version.

Blob: Column name to be converted to pure text

Return value: temp BLOB as NCLOB type if blob is convertable to pure

text.

COS (number)

Figure4-47 Syntax for DOCTOTXT

 Example

The following example illustrates converting the column memo to puretext.

DOCTOTXT(memo)

Functions 4

4-57

@Copyright 1995-2024 CASEMaker Inc.

EPOCHTODATE

The EPOCHTODATE function returns a result of DATE. This function will

convert input EPOCH time to date.

EPOCH……………..………… Bigint: The EPOCH time to convert to date

Return value…………………….Date: The value of EPOCH time converted to date

Figure 4-48 EPOCHTODATE syntax

 Example

The following syntax returns 2021-03-03.

EPOCHTODATE(1614768188000)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-58

EPOCHTOTIME

The EPOCHTOTIME function returns a result of TIME. This function will

convert input EPOCH time to time.

EPOCH……………..………… Bigint: The EPOCH time to convert to TIME

Return value…………………….Time: The value of EPOCH time converted to time

Figure 4-49 EPOCHTOTIME syntax

 Example

The following syntax returns 18:43:08.

EPOCHTOTIME(1614768188000)

Functions 4

4-59

@Copyright 1995-2024 CASEMaker Inc.

EPOCHTOTIMESTAMP

The EPOCHTOTIMESTAMP function returns a result of TIMESTAMP. This

function will convert input EPOCH time to timestamp.

EPOCH……… Bigint: The EPOCH time to convert to TIMESTAMP

Return value……Timestamp: The value of EPOCH time converted to

TIMESTAMP

Figure 4-50 EPOCHTOTIMESTAMP syntax

 Example

The following syntax returns 2021-03-03 18:43:08.

EPOCHTOTIMESTAMP(1614768188000)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-60

EXISTSNODE

Function existsNode is used to check if specified node is found or not.

Xmldata………………XML content to be queried

Xpath-expression……user will use to query xmldata

Namespaces………... optionally specifies the namespace(s) used in xpath-

expression

Returnvalue…………the result will be serialized into NCLOB.

EXISTSNODE (XMLdata, xpath -expression , namespaces)

Figure 4-51 EXISTSNODE syntax

 Example

This example illustrates creatring an index using the existsnode XML UDF:

dmSQL> CREATE INDEX idx1 ON t1 (EXISTSNODE(c1, '/order/items/item/@product',

NULL));

Functions 4

4-61

@Copyright 1995-2024 CASEMaker Inc.

EXP

The EXP function returns the exponential function ex as a double precision

floating-point number.

x Double: Power to raise the natural logarithm to

Return value Double: Natural logarithm (e) to the power of x

EXP (x)

Figure 4-52 EXP syntax

 Example

The following returns 2.71828182845905e+000.

EXP(1)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-62

EXTRACT

The EXTRACT function returns the multi-value, one value or zero value. It not

allow asc/desc and unique index

Return value: UDF: allows multi values, one value and zero value of the

UDF results

EXTRACT ()

Figure 4-53 EXTRACT syntax

 Example

To create an index use the extract XML UDF:

dmSQL> CREATE INDEX idx1 ON t1 (EXTRACT(c1, '/order/items/item/@product', NULL));

Functions 4

4-63

@Copyright 1995-2024 CASEMaker Inc.

EXTRACTVALUE

The EXTRACTVALUE function only returns the one value or zero value. It

allow asc/desc and unique index

Return value: UDF: allow one and zero value UDF results, but not multi-

value

EXTRACTVALUE ()

 Figure 4-54 EXTRACTVALUE syntax

 Example

To create an index use the extractValue XML UDF:

dmSQL> CREATE INDEX idx2 ON t1 (EXTRACTVALUE(c1, '/order/items/item/@product',

NULL));

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-64

FILEEXIST

The FILEEXIST function determines if the file object specified by fileobject

exists as a physical file. Possible return values are 1 for a file that exists, and 0

file a file that does not exist.

fileobject File: File object to check the existence of

Return value Integer: Boolean value indicating whether the file exists

FILEEXIST (fileobject)

Figure 4-55 FILEEXIST syntax

 Example 1

The following returns 1, indicating the file exists.

FILEEXIST(file_column)

 Example 2

The following returns 0, indicating the file does not exist.

FILEEXIST(nofile_column)

Functions 4

4-65

@Copyright 1995-2024 CASEMaker Inc.

FILELEN

The FILELEN function returns the file size of fileobject as an integer value. And

it will report at most (231 – 1)B even if the size is greater than or equal to 231B.

The fileobject argument must be a column in the database of the FILE data

type.

fileobject File: File to find the length of

Return value Integer: Length of the file in bytes

FILELEN (fileobject)

Figure 4-56 FILELEN syntax

 Example

The following returns 211 for a file that is 211 bytes in size.

FILELEN(file_column)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-66

FILELENEX

The FILELENEX function returns the file size of fileobject as a decimal value.

The fileobject argument must be a column in the database of the FILE data

type. And unlike FILELEN function, it can report the correct size for FOs >

231B.

fileobject File: File to find the length of

Return value Decimal: Length of the file in bytes

FILELEN (fileobject)

Figure 4-57 FILELENEX syntax

 Example

The following returns 211 for a file that is 211 bytes in size.

FILELENEX(file_column)

Functions 4

4-67

@Copyright 1995-2024 CASEMaker Inc.

FILENAME

The FILENAME function returns the file name of fileobject as a string. The

fileobject argument must be a column in the database of the FILE data type.

fileobject File: File to find the name of

Return value String: Name of the file

FILENAME (fileobject)

Figure 4-58 FILENAME syntax

 Example

The following returns C:\PATH\MYFILE.FIL.

FILENAME(file_column)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-68

FIX

The FIX function returns an integer value for the integral part of number.

number Double: Number to find the integral part of

Return value Bigint: Integral part of number

FIX (number)

Figure 4-59 FIX syntax

 Example 1

The following returns 11.

FIX(11.99)

 Example 2

The following returns 12.

FIX(12.01)

 Example 3

The following returns a value of –11.

FLOOR(-11.99)

 Example 4

The following returns a value of –12.

FLOOR(-12.01)

Functions 4

4-69

@Copyright 1995-2024 CASEMaker Inc.

FLOOR

The FLOOR function returns a double-precision floating-point value for the

greatest integral value less than or equal to number.

number Double: Number to find the next integral value less than

Return value Double: Integral part of number

FLOOR (number)

Figure 4-60 FLOOR syntax

 Example 1

The following returns 1.20000000000000e+001.

FLOOR(12.01)

 Example 2

The following returns 1.10000000000000e+001.

FLOOR(11.99)

 Example 3

The following returns -1.20000000000000e+001.

FLOOR(-11.99)

 Example 4

The following returns -1.30000000000000e+001.

FLOOR(-12.01)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-70

FRACTIONPART

The FRACTIONPART function returns fraction part of the input timestamp.

timestamp………. Timestamp: Timestamp to select the fraction part from

Return value…… . Integer: The fraction part of the input timestamp

Figure 4-61 FRACTIONPART syntax

 Example

The following syntax returns 882000000.

FRACTIONPART('1996-01-16 10:10:10.882');

Functions 4

4-71

@Copyright 1995-2024 CASEMaker Inc.

FREXPE

The FREXPE function returns the exponent n from the equation
n

number 2X= as an integer value, where the value of X is in the range 0.5 <

X < 1.

number Double: Number to find the next exponent n for from the

 equation
n

number 2X=

Return value Integer: Exponent n from the equation
n

number 2X=

FREXPE (number)

Figure 4-62 FREXPE syntax

 Example

The following returns 3, where n must equal 3 when number equals 4.0 and X

is restricted to values between 0.5 and 1.

FREXPE(4.0)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-72

FREXPM

The FREXPM function returns the mantissa X from the equation
n

number 2X= as a double-precision floating-point number, where the value

of X is in the range 0.5 < X < 1.

number Double. Number to find the next mantissa X for from the

equation
n

number 2X= .

Return value Integer. Mantissa X from the equation
n

number 2X= .

FREXPM (number)

Figure 4-63 FREXPM syntax

 Example

The following returns the value of 5.00000000000000e-001, which means X

must equal 0.5 or 5.00000000000000e-001 when number equals 4.0 and n

equals an exact integer value.

FREXPM(4.0)

Functions 4

4-73

@Copyright 1995-2024 CASEMaker Inc.

FTOA

The FTOA function returns a string containing number with a fixed amount of

digits after the decimal point. The digits argument specifies the number of

digits after the decimal point, and the format argument specifies whether the

return value should be in regular decimal format or exponential format.

The format argument has four possible values, "f", "F", "e", and "E". Using "f" or

"F" returns a string in regular decimal format, for example, 123.45, when

digits is 2. Using "e" or "E" returns a string in exponential format, for example,

1.23e+02. After conversion, the exponential digits will be converted to the

regular decimal equivalent.

number Double: Number to convert to a string

digits Integer: Number of digits after the decimal

format String: Format to return the number in

Return value String: String containing number with a fixed number of

digits in the specified format

FTOA (number, digits, format)

Figure 4-64 FTOA syntax

 Example 1

The following syntax returns the value "123.46".

FTOA(123.456789, 2, 'f')

 Example 2

The following syntax returns the value "1.23e+02".

FTOA(123.456789, 2, 'e')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-74

HIGHLIGHT

The HIGHLIGHT function returns the modified source text in which all of the

matching text patterns will be highlighted with preTag and endTag before

and after.

At most 10000 (MaxTagSpace) byte tags can be added. If the pattern contains

Boolean operators [&, |, !, (,)], all the simple searching pattern will be tagged

except the ! (NOT) patterns. The inputted text's type can be CLOB, file, char or

media type.

If the inputted text's type is XMLTYPE, the HIGHLIGHT function returns Error

6536, in this case, users can call the function PURETEXT to convert data with

XMLTYPE into that with NCLOB and then highlight patterns that matches

conditions.

text CLOB: Source Text

BoolPatn Char: Patterns to be hilighted, can be Boolean expression

pattern

sensitive Integer: Whether the match is case sensitive, 1 means yes

and 0 means no

PreTag Char: Tag before pattern, NULL denotes none

EndTag Char: Tag after pattern, NULL denotes none

Return value NCLOB: Modified source text after highlighting patterns

Functions 4

4-75

@Copyright 1995-2024 CASEMaker Inc.

HIGHLIGHT (text, BoolPatn, sensitive, PreTag, EndTag)

Figure 4-65 HIGHLIGHT syntax

 Example 1

The following will return the modified content in which all "Intel" or "AMD"

are highlighted with preTag "<<" and endTag ">>".

dmSQL> SELECT HIGHLIGHT(content,'Intel | AMD',0,'<<','>>') FROM news WHERE

content MATCH 'Intel| AMD';

 Example 2

The following will return the modified content in which all "dbmaker" is

highlighted with preTag "<" and endTag ">".

dmSQL> CREATE TABLE tpdf(c1 SERIAL, c2 pdffiletype);

dmSQL> SELECT HIGHLIGHT(c2,'dbmaker',0,'<','>') FROM tpdf;

 Example 3

The following will return the modified content in which all "dbmaker" is

highlighted with preTag "<" and endTag ">".

dmSQL> CREATE TABLE txml(c1 SERIAL,c2 XMLTYPE);

dmSQL> SELECT HIGHLIGHT(PURETEXT(c2), 'dbmaker',0,'<','>') FROM txml;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-76

HITCOUNT

The HITCOUNT function returns the frequency of patterns found in source

text.

Rule of count values for Boolean patterns are:

 a AND b : min(count(a), count(b))

 a OR b : count(a) + count(b)

 NOT a : count = 0

text CLOB: Source text

BoolPatn Char: Patterns to be highlighted can be Boolean expression

patterns

sensitive Integer: Whether the match is case sensitive, 1/0 means

yes/no, respectively

Return value Integer: The frequency of searched text patterns in the

source text

HITCOUNT (text, BOOIPatn, sensitive)

Figure 4-66 HITCOUNT syntax

 Example

The following returns the frequency of "target" found in source data

"content", and the finding is case insensitive.

HITCOUNT(content, "target", 0)

Functions 4

4-77

@Copyright 1995-2024 CASEMaker Inc.

HITPOS

The HITPOS function shows the position information of the nth pattern found

in source text, the offset can be: start offset, end offset, pattern length, begin

offset (higher than 24 bits), BINARY, OR end offset (lower 8 bits). The offset

starts at 1.

text CLOB: Source Text

BoolPatn Char: Patterns to be hilighted can be Boolean expression

pattern

sensitive Integer: Whether the match is case sensitive, 1/0 means

yes/no, respectively

n Integer: The nth pattern in source text

RetType Char: Return position type:

0: begin offset (default setting)

1: end offset

2: pattern length (endoff - begoff + 1)

3: begin offset (higher 24 bits) BINARY OR end offset

 (lower 8 bits)

Return value Integer: Get position information of the nth pattern found in

source text. If nth pattern is not found, the value is 0

HITPOS (text, BoolPatn, sensitive, n , RetType)

Figure 4-67 HITPOS syntax

 Example

The following examples return 5, 3, 5 and 7 using the source text "a b A c".

HITPOS(src,'A', 1, 1, 0) = 5 ('A')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-78

HITPOS(src,'A&B' 0, 2, 0) = 3 ('b')

HITPOS(src,'a|b|c', 0, 3, 0) = 5 ('A')

HITPOS(src,'!a&c' 0, 1, 0) = 7 ('c')

Functions 4

4-79

@Copyright 1995-2024 CASEMaker Inc.

HMS

The HMS function returns the time hours: minutes: seconds in time format. The

hours' argument represents the hours' component of the time, and has valid

values from 0 to 23. Hours must be entered using the 24-hour format; there is

no method provided for entering values for AM and PM to indicate the time in

12-hour format. The minutes' argument represents the minutes' component of

the time, and has valid values from 0 to 59. The seconds' argument represents

the seconds' component of the time, and has valid values from 0 to 59.

hours Integer: Hours component of the time

minutes Integer: Minutes component of the time

seconds Integer: Seconds component of the time

Return value Time: Time format composite of hours, minutes, and

seconds

HMS (hours, minutes, seconds)

Figure 4-68 HMS syntax

 Example 1

The following returns 10:11:12, which is equivalent to 10:11:12 AM.

HMS(10, 11, 12)

 Example 2

The following returns 22:11:12, which is equivalent to 10:11:12 PM.

HMS(22, 11, 12)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-80

HOUR

The HOUR function returns the hour in time as an integer value in the range

from 0 to 23.

time Time: Time to find the hour component of

Return value Integer: Hour component of time

HOUR (time)

Figure 4-69 HOUR syntax

 Example 1

The following returns 10.

HOUR('10:11:12')

 Example 2

The following returns 22.

HOUR('PM 10:11:12')

Functions 4

4-81

@Copyright 1995-2024 CASEMaker Inc.

HTMLHIGHLIGHT

The HTMLHIGHLIGHT function returns modified source data in which all text

matching patterns will be highlighted with preTag and endTag before and

after. HTMLHIGHLIGHT also provides a highlight function to quote the

patterns in an HTML file without destroying the HTML document structure.

At most 10000 (MaxTagSpace) byte tags can be added. If the pattern contains

Boolean operators [&, |, !, (,)], all the simple searching pattern will be tagged

expect the ! (NOT) patterns. The input text can be CLOB, file or char type. No

content inside tags, including comments, will be highlighted. All tags (include

comments) are treated as SPACE character. For example, if pattern is

"DBMaker License", then the HTML data "DBMaker
License" will be

highlighted. However, if the HTML data is "DBMaker", it will not

match "DBMaker" pattern! Only the data after <BODY> can be highlighted.

text CLOB: Source text.

BoolPatn Char: Patterns to be highlighted can be Boolean expression

pattern

sensitive Integer: Whether the match is case sensitive, 1/0 means

yes/no, respectively

PreTag Char: The tag after pattern, NULL denotes none

EndTag Char: The tag after pattern, NULL denotes none

Return value BLOB: The modified text after highlighting patterns

HTMLHIGHLIGHT (text, BoolPatn, sensitive, PreTag, EndTag)

Figure 4-70 HTMLHIGHLIGHT syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-82

 Example

The following returns modified content in which all text matching "Intel" or

"AMD" will be highlighted with "<<" and ">>" before and after.

HTMLHIGHLIGHT(content,'Intel | AMD',0,'<<','>>')

Functions 4

4-83

@Copyright 1995-2024 CASEMaker Inc.

HTMLTITLE

The HTMLTITLE function finds the title (text between html tags "<title>" and

"</title>" in source HTML data) of HTML data.

object BLOB: Source HTML data

Return value Varchar: Return the title of the source HTML data

HTMLTITLE(object)

Figure 4-71 HTMLTITLE syntax

 Example

The following returns title in source HTML data "htmlFile".

HTMLTITLE(htmlFile)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-84

HTMTOTXT

The HTMTOTXT function can be used to convert html document to a

temporary BLOB containing the pure text of blob as local code.

Blob: Column name on which to be converted to pure text

Return value: temp blob as CLOB type if blob could be converted to pure

text

HTMTOTXT (blob)

Figure4-72 Syntax for HTMTOTXT

 Example

The following will convert the column memo to puretext.

HTMTOTXT(memo)

Functions 4

4-85

@Copyright 1995-2024 CASEMaker Inc.

HYPOT

The HYPOT function returns the length of the hypotenuse of a right angle

triangle as a double precision floating-point number. The hypotenuse is

calculated according to the equation z2 = x2 + y2 (Pythagorean Theorem),

where z is the length of the hypotenuse.

x Double: Length of one leg of the right triangle you are

finding the hypotenuse for

y Double: Length of the other leg of the right triangle you are

finding the hypotenuse for

Return value Double: Length of the hypotenuse of the right triangle

HYPOT (x, y)

Figure 4-73 HYPOT syntax

 Example

The following returns 5.

HYPOT(3,4)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-86

INSERT

The INSERT function returns a character string where length characters from

string1 have been replaced by string2 beginning at start. The value of start

indicates the position in string1 where the first character of string2 is placed.

If the value of length is zero, string2 is inserted into string1 without replacing

any characters. An error is returned if a value for all arguments is not

provided.

DBMaker uses the following rules to determine the value returned if one of the

string expressions contains a NULL value or if one of the integer arguments

contains an atypical value:

 If string1 contains a NULL value, the function returns a NULL value

 If start, length, or string2 contains a NULL value, the function returns the

string expression in string1

 If the value of start is less than or equal to zero, or the value of length is

less than zero, the function returns the string expression in string1

 If the value of start is greater than the length of string1 plus one, the

function returns the string expression in string1

string1 String: String to insert characters into

start Integer: Position where the first character from string2 is

inserted in string1

length Integer: Number of characters to replace in string1

string2 String: String to insert into the original source string

Return value String: String formed by inserting string1 in string2

Functions 4

4-87

@Copyright 1995-2024 CASEMaker Inc.

INSERT (string1, start, length, string2)

Figure 4-74 INSERT syntax

 Example 1

The following returns the string "Good ng!"

INSERT('morning!', 1, 5, 'Good ')

 Example 2

The following returns the string "Good morning!"

INSERT('Good ', 6, 8, 'morning!')

 Example 3

The following returns the string "Good night!"

INSERT('Good morning!', 6, 7, 'night')

 Example 4

The following returns the string "Good morning, sir. Here is your coffee."

INSERT('Good morning! Here is your coffee.', 13, 1, ', sir.')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-88

INVDATE

The INVDATE function determines if the date specified by the date argument

is valid. Possible return values are:

 1 for invalid dates (e.g., out of date range)

 0 for valid dates (e.g., '0001-01-01' to '9999-12-31')

 -1 for dates with unknown values (e.g., NULL values)

date Date: Date to check the validity of

Return value Integer: Boolean value indicating whether the date is valid

INVDATE (date)

Figure 4-75 INVDATE syntax

 Example

The following returns a 0, indicating the date is valid.

INVDATE('2000-01-01')

Functions 4

4-89

@Copyright 1995-2024 CASEMaker Inc.

INVTIME

The INVTIME function determines if the time specified by the time argument

is valid. Possible return values are:

 1 for invalid times (e.g., out of time range)

 0 for valid times (e.g., '00:00:00' to '24:00:00')

 -1 for times with unknown values (e.g., NULL values)

time Time: Time to check the validity of

Return value Integer: Boolean value indicating whether the time is valid

INVTIME (time)

Figure 4-76 INVTIME syntax

 Example

The following returns a 0, indicating the time is valid.

INVTIME('01:01:01')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-90

INVTIMESTAMP

The INVTIMESTAMP function determines if the timestamp specified with a

timestamp argument is valid. Possible return values are:

 1 for invalid timestamps (e.g., out of timestamp range)

 0 for valid timestamps (e.g., '00:00:00' to '24:00:00')

 -1 for timestamps with unknown values (e.g., NULL values)

timestamp Timestamp: Timestamp to check the validity of

Return value Integer: Boolean value indicating whether the timestamp is

valid

INVTIMESTAMP (timestamp)

Figure 4-77 INVTIMESTAMP syntax

 Example

The following returns a 0, indicating the timestamp is valid.

INVTIMESTAMP('1999-08-07 10:11:12.123')

Functions 4

4-91

@Copyright 1995-2024 CASEMaker Inc.

LAST_DAY

The LAST_DAY function returns the last date in the same month as the date

specified in the date argument.

date Date: Date to find the last date in the same month of

Return value Date: Last date in the same month as date

LAST_DAY (date)

Figure 4-78 LAST_DAY syntax

 Example 1

The following returns '1996-02-29'.

LAST_DAY('1996-02-08')

 Example 2

The following returns '2002-12-31'.

LAST_DAY('2002-12-25')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-92

LCASE

The LCASE function converts all upper case letters in string to lower case;

numbers and symbols are not affected. If the string argument is NULL, a NULL

value is returned. If you do not provide a value for the string argument, an

error will be returned.

string........................... String: Text to convert to lower case

Return value String: Text from the string argument in lower case

LCASE (string)

Figure 4-79 LCASE syntax

 Example 1

The following returns the string "abcdef ".

LCASE('ABCdef')

 Example 2

The following returns the string "abc123".

LCASE('ABC123')

 Example 3

The following returns the string "abc@#$".

LCASE('ABC@#$')

Functions 4

4-93

@Copyright 1995-2024 CASEMaker Inc.

LDEXP

The LDEXP function returns the result of the equation
n

number 2X= as a

double precision floating-point number.

x Double: Mantissa x from the equation
n

number 2X=

n Integer: Exponent n from the equation
n

number 2X=

Return value Double: Result of the equation
n

number 2X=

LDEXP (x, n)

Figure 4-80 LDEXP syntax

 Example

The following returns 8.00000000000000e+000.

LDEXP(0.5, 4)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-94

LEFT

The LEFT function returns the leftmost count characters in string. If the value

of count is less than zero, a NULL value is returned. All arguments must be

provided otherwise an error is returned.

string........................... String: String to extract characters from

count Integer: Number of characters to extract

Return value String: Leftmost count characters in string

LEFT (string,count)

Figure 4-81 LEFT syntax

 Example

The following returns the string "Good".

LEFT('Good morning!', 4)

Functions 4

4-95

@Copyright 1995-2024 CASEMaker Inc.

LENGTH

The LENGTH function returns the number of characters in string, excluding

trailing blanks and the string termination character, when present. An error is

returned if a value for the string argument is not provided.

string String: String to find the length of

Return value Integer: Leftmost count characters in string

LENGTH (string)

Figure 4-82 LENGTH syntax

 Example

The following returns 13.

LENGTH('Good morning! ')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-96

LOCATE

The LOCATE function returns the starting position of the first occurrence of

string1 in string2. The search for the first occurrence of string1 begins with the

character position specified by start. Assigning a value of 1 to start indicates

the search should begin with the first character in string2. If string1 is not

found in string2, a value of 0 is returned. DBMaker uses the following rules to

determine the value returned if one of the string expressions contains a NULL

value or when start contains an atypical value:

 If string1 contains a NULL value, the function will return a NULL value

 If string2 or start contain a NULL value, the function will return 0

 If start is less than or equal to zero, the function will return the correct

value

 If start is greater than the length of string2 plus one, the function will

return 0

string1 String: String to locate

string2 String: String to search

start Integer: Position in string2 to start searching

Return value Integer: Starting position of string1 in string2

LOCATE (string_exp1, string_exp2, 1)

Figure 4-83 LOCATE syntax

 Example 1

The following syntax returns a value of 4.

LOCATE('def', 'abcdefghi', 1)

Functions 4

4-97

@Copyright 1995-2024 CASEMaker Inc.

 Example 2

The following syntax returns the value of 0.

LOCATE('def', 'abcdefghi', 5)

 Example 3

The following syntax returns a value of 4.

LOCATE('def', 'abcdefghi', 4)

 Example 4

The following syntax returns a value of 4.

LOCATE('def', 'abcdefghi', -1)

 Example 5

The following syntax returns a value of 0.

LOCATE('def', 'abcdefghi', 10)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-98

LOG

The LOG function returns the natural logarithm of x as a double-precision

floating-point number.

x Double: Value to find the natural logarithm of

Return value Double: Natural logarithm of x

LOG (x)

Figure 4-84 LOG syntax

 Example

The following returns 1.00000000000000e+000.

LOG(2.71828182845905e+000)

Functions 4

4-99

@Copyright 1995-2024 CASEMaker Inc.

LOG10

The LOG10 function returns the logarithm with base 10 of x as a double

precision floating-point number.

x Double: Value to find the natural logarithm with base 10 of

x

Return value Double: Natural logarithm with base 10 of x

LOG10 (x)

Figure 4-85 LOG10 syntax

 Example

The following returns 2.

LOG10(100)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-100

LOWER

The LOWER function performs the same calculation as LCASE. It makes all

characters in the string lower case characters.

String_expression ... String: string to convert all characters in lower case

Return value String: the returned characters in lower case converted

from characters in upper case

LOWER (string_expression)

Figure 4-86 Lower function syntax

 Example

dmSQL> SELECT LOWER('ABCDEF');

LOWER('ABCDEF')

=================

abcdef

Functions 4

4-101

@Copyright 1995-2024 CASEMaker Inc.

LTRIM

The LTRIM function returns the characters of string with leading blanks

removed. All arguments must be provided otherwise an error is returned.

string String: String to trim characters from the left of

Return value String: String with leading blanks removed

LTRIM (string)

Figure 4-87 LTRIM syntax

 Example

The following returns the string "Good morning!"

LTRIM(' Good morning!')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-102

MDY

The MDY function returns the date month/day/year in the current date

format. The month argument represents the month component of the date,

and has valid values from 1 to 12. The day argument represents the day

component of the time, and has valid values from 1 to 31. The year argument

represents the year component of the time, and has valid values from 0001 to

9999.

month Integer: Month component of the date

day Integer: Day component of the date

year.............................. Integer: Year component of the date

Return value Date: Date format composite of hours, minutes and seconds

MDY (month, day, year)

Figure 4-88 MDY syntax

 Example 1

The following returns the date 1996-02-08 when the current date format is

set to yyyy-mm-dd.

MDY(2,8,1996)

 Example 2

The following returns the date 02/08/2001 when the current date format is

set to mm/dd/yyyy.

MDY(2,8,2001)

Functions 4

4-103

@Copyright 1995-2024 CASEMaker Inc.

MINUTE

The MINUTE function returns the minutes in time as an integer value in the

range from 0 to 59.

time Time: Time to find the minute component of

Return value Integer: The minute component of time

Figure 4-89 MINUTE syntax

 Example

The following returns 11.

MINUTE('10:11:12')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-104

MOD

The MOD function returns the remainder, modulus, of x divided by y as a

double precision floating-point number.

x Double: Dividend

y Double: Divisor

Return value Double: Remainder

MOD (x, y)

Figure 4-90 MOD syntax

 Example

The following returns 2.00000000000000e+000.

MOD(17, 3)

Functions 4

4-105

@Copyright 1995-2024 CASEMaker Inc.

MODFI

The MODFI function returns a double precision floating-point number for the

integer part of number.

number Double: Number to determine the integer part of

Return value Double: Integer part of number

Figure 4-91 MODFI syntax

 Example 1

The following returns 3.00000000000000e+000.

MODFI(3.1415926535897936)

 Example 2

The following returns -3.00000000000000e+000.

MODFI(-3.1415926535897936)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-106

MODFM

The MODFM function returns a double-precision floating-point number for the

mantissa part of number.

number Double: Number to determine the mantissa part of

Return value Double: Mantissa part of number

Figure 4-92 MODFM syntax

 Example 1

The following returns the value of 1.41592653589790e-001.

MODFM(3.1415926535897936)

 Example 2

The following returns the value of -1.41592653589790e-001.

MODFM(-3.1415926535897936)

Functions 4

4-107

@Copyright 1995-2024 CASEMaker Inc.

MONTH

The MONTH function returns the month in date as an integer value in the

range from 1 to 12.

date Date: Date to find the month component of

Return value Integer: The month component of date

Figure 4-93 MONTH syntax

 Example

The following returns 2.

MONTH('1996-02-29')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-108

MONTHNAME

The MONTHNAME function returns a character string containing the data-

source specific name of the month (e.g., JAN, FEB, …, DEC) that date falls on.

The date argument must be a valid date or DBMaker will return an error.

date Date: Date to find the name of the month for

Return value String: The name of the month that date falls in

Figure 4-94 MONTHNAME syntax

 Example

The following returns "FEB".

MONTHNAME('1996-02-29')

Functions 4

4-109

@Copyright 1995-2024 CASEMaker Inc.

NEXT_DAY

The NEXT_DAY function returns the date proceeding the date that weekday

falls on. Valid values for the weekday argument are the names of the days of

the week (Monday, Tuesday, …, Sunday) or their abbreviations (Mon, Tue, …,

Sun). Values for weekday are not case-sensitive.

date Date: Date after which to find the next date that a weekday

falls on

weekday String: Weekday the date will fall on

Return value Date: Next date after date that weekday falls on

Figure 4-95 NEXT_DAY syntax

 Example 1

The following syntax returns the date 1996-03-04.

NEXT_DAY('1996-02-29', 'Monday')

 Example 2

The following syntax returns the date 1996-03-05.

NEXT_DAY('1996-02-29', 'Tuesday')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-110

NOW

The NOW function returns the current date and time as a timestamp value.

Return value Timestamp: The current date and time

Figure 4-96 NOW syntax

Functions 4

4-111

@Copyright 1995-2024 CASEMaker Inc.

PDFTOTXT

The PDFTOTXT function can be used to converts pdf document to a temporary

BLOB containing the pure text of blob as unicode. it will return temp blob or

NULL. Please note that PDF's formats supported by DBMaker are 1.2, 1.3, 1.4,

1.5, 1.6 and 1.7.

Blob: Column name on which to be converted to pure text

Return value:............ temp blob as NCLOB type if blob could be converted to pure

text

PDFTOTXT (blob)

Figure 4-97 Syntax for PDFTOTXT

 Example

The following will convert the column memo to puretext.

PDFTOTXT(memo)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-112

PI

The PI function returns the constant value of , 3.1415926535897936, as a

decimal number with a precision of 38 and a scale of 16.

Return value Decimal: The constant value

Figure 4-98 PI syntax

Functions 4

4-113

@Copyright 1995-2024 CASEMaker Inc.

POSITION

The POSITION function returns the starting position of the first occurrence of

string1 in string2. If string1 is not found in string2, a value of 0 is returned.

DBMaker uses the following rules to determine the value returned if one of the

string expressions contains a NULL value or when start contains an atypical

value:

 If string1 contains a NULL value, the function will return a NULL value

 If string2 or start contain a NULL value, the function will return 0

string1 String: String to locate

string2 String: String to search

Return value Integer: Starting position of string1 in string2

POSITION (string_exp1 IN string_exp2)

Figure 4-99 POSITION function syntax

 Example 1

The following function command returns the value of "4".

dmSQL> SELECT POSITION('abc' in 'defabcjlkjl');

POSITION('ABC' IN 'DEFABCJLKJL')

================================

 4

 Example 2

The following function command returns the value of "1".

dmSQL> SELECT POSITION('abc' in 'abcdefghihj');

POSITION('ABC' IN 'ABCDEFGHIHJ')

================================

 1

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-114

 Example 3

The following function command returns the value of "0".

dmSQL> SELECT POSITION('abc' in 'jlkjlkklj');

POSITION('ABC' IN 'JLKJLKKLJ')

==============================

 0

Functions 4

4-115

@Copyright 1995-2024 CASEMaker Inc.

POW

The POW function returns xy as a double-precision floating-point number.

x Double: Number to raise to a power y

y Double: Power to raise number x to

Return value Double: Value of x to the power y

Figure 4-100 POW syntax

 Example

The following returns 8.00000000000000e+000.

POW(2, 3)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-116

PPTTOTXT

The PPTTOTXT function can be used to convert Microsoft PowerPoint

document to a temporary BLOB containing the pure text of blob as unicode.it

will return temp blob or NULL. In DBMaker current version, UDF will support

office 2007- 2010 version.

Blob: Column name on which to be converted to pure text

Return value: temp blob as NCLOB type if blob could be converted to pure

text.

PPTTOTXT (blob)

Figure 4-101 Syntax for PPTTOTXT

 Example

The following will convert the column memo to puretext.

PPTTOTXT(memo)

Functions 4

4-117

@Copyright 1995-2024 CASEMaker Inc.

PURETEXT

The PURETEXT function can be use to convert blob to a temporary BLOB

containing the pure text of blob as unicode.

When use PURETEXT on the column with media type or a domain with text

converter will implicitly call the text converter function.

Blob: Column name on which to be converted to pure text

Return value:............ temp blob as NCLOB type if blob could be converted to pure

text

PURETEXT (blob)

 Figure 4-102 Syntax for PURETEXT

 Example

The following will convert the column memo to puretext.

PURETOTXT(memo)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-118

QUARTER

The QUARTER function returns the quarter that date falls in as an integer

value in the range 1 to 4, where 1 represents January 1 through March 31.

date Date: Date to find the quarter for

Return value Integer: The quarter that date falls in

Figure 4-103 QUARTER syntax

 Example

The following returns the value of 1.

QUARTER('2002-01-20')

Functions 4

4-119

@Copyright 1995-2024 CASEMaker Inc.

RADIANS

The RADIANS function returns the number of radians in degrees as a double

precision floating-point number.

degrees Double: Number of degrees to convert to radians

Return value Double: Number of radians in degrees

Figure 4-104 RADIANS

 Example

The following returns 3.14159265358979e+000.

RADIANS(180)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-120

RAND

The RAND function returns a random Integer value.

Return value Integer: Random number

Figure 4-105 RAND syntax

Functions 4

4-121

@Copyright 1995-2024 CASEMaker Inc.

REPEAT

The REPEAT function returns a character string composed of string repeated

count times. DBMaker uses the following rules to determine the value

returned if the string expression contains a NULL value or is an empty string.

If string or count contained in a NULL value, the function returns a NULL value.

If count is less than 0 or string is an empty string, the function returns an

empty string. If you do not provide a value for all arguments, an error will be

returned.

string String: String to repeat

count Integer: Number times to repeat string

Return value String: String composed of string repeated count times

Figure 4-106 REPEAT syntax

 Example 1

The following returns the string "Good morning! Good morning!"

REPEAT('Good morning! ', 2)

 Example 2

The following returns the string "Zzzz Zzzz Zzzz Zzzz".

REPEAT('Zzzz ', 4)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-122

REPLACE

The REPLACE function replaces all occurrences of string2 in string1 with

string3. DBMaker uses the following rules to determine the value returned if

one of the string expressions contains a NULL value or is an empty, zero

length, and string:

 If string1 is NULL return NULL

 If string2 or string3 is NULL return string1

 If string2 is empty return string1

string1 String: String to replace characters in

string2 String: String to replace

string3 String: String to replace with

Return value String: String composed of string1 with all occurrences of

string2 replaced with string3

Figure 4-107 REPLACE syntax

 Example 1

The following returns the string "Good evening! Good evening!"

REPLACE('Good morning! Good morning!', 'morning', 'evening')

 Example 2

The following example returns the string "Goodbye Dave."

REPLACE('Hello, Dave.', 'Hello,', 'Goodbye')

Functions 4

4-123

@Copyright 1995-2024 CASEMaker Inc.

RIGHT

The RIGHT function returns the rightmost count characters in string. If the

value of count is less than zero, a NULL value is returned. All arguments must

be provided otherwise an error is returned.

string String: String to extract characters from

count Integer: Number of characters to extract

Return value String: Rightmost count characters in string

Figure 4-108 RIGHT syntax

 Example

The following returns the string "morning!"

RIGHT('Good morning! ', 10)

NOTE There are two spaces after the exclamation point in both the function

argument and the return value.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-124

RND

The RND function rounds number to the nearest integer.

number Double: Number to round

Return value Bigint: Nearest integer value to number

Figure 4-109 RND syntax

 Example 1

The following returns 12.

RND(12.01)

 Example 2

The following returns 12.

RND(12.49)

 Example 3

The following returns 13.

RND(12.50)

 Example 4

The following returns 13.

RND(12.99)

Functions 4

4-125

@Copyright 1995-2024 CASEMaker Inc.

ROUND

The ROUNDS function returns number rounded according to the

decimal_places argument. The decimal_places argument may be a negative

number, and the decimal_places argument must be an integer.

Rule of rounding for ROUND function are:

 If the decimal_places argument is omitted, the ROUND function will round

the number to 0 decimal places.

 If the decimal_places argument is bigger than 0, the ROUND function will

round off digits right of the decimal point.

 If the decimal_places argument is equal 0, the ROUND function will round

the number to the nearest integer.

 If the decimal_places argument is smaller than 0, the ROUND function will

round off digits left of the decimal point.

number Double: Number to round

decimal_places Integer: Number of decimal places rounded to

Return value Bigint: Nearest integer or decimal value to number

ROUND (,)number decimal_places

Figure 4-110 ROUND syntax

 Example 1

The following returns 124.

ROUND(123.56)

 Example 2

The following returns 37.2690000000000000000.

ROUND(37.269412, 3)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-126

 Example 3

The following returns 125.3611000000000000000.

ROUND(125.361080, 4)

 Example 4

The following returns 8912341.0000000000000000000.

ROUND(8912341.123456, 0)

 Example 5

The following returns 1234600.0000000000000000000.

ROUND(1234591.123450, -2)

NOTE Round function return type is decimal(38,19). Therefore, dmsql display
would have 19 digit on the right of the decimal point.

Functions 4

4-127

@Copyright 1995-2024 CASEMaker Inc.

RTRIM

The RTRIM function returns the characters of string with trailing blanks

removed. All arguments must be provided otherwise an error is returned.

string String: String to trim characters from the right of

Return value String: String with trailing blanks removed

Figure 4-111 RTRIM syntax

 Example

The following returns the string "Good morning!"

RTRIM('Good morning! ')

NOTE There are two spaces after the exclamation point in the function

argument.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-128

SECOND

The SECOND function returns the seconds in time as an integer value in the

range from 0 to 59.

time Time: Time to find the second component of

Return value Integer: The second component of time

Figure 4-112 SECOND syntax

 Example

The following returns 12.

SECOND('10:11:12')

Functions 4

4-129

@Copyright 1995-2024 CASEMaker Inc.

SECS_BETWEEN

The SECS_BETWEEN function returns the number of seconds between two

times. The time1 argument can be earlier or later than the time2 argument.

time1 Time: First time of two to calculate the number of seconds

 between

time2 Time: Second time of two to calculate the number of

 seconds between

Return value Integer: Number of seconds between time1 and time2

Figure 4-113 SECS_BETWEEN syntax

 Example

The following returns 36000.

SECS_BETWEEN('10:10:10', '20:10:10')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-130

SESSION_USER

The SESSION_USER function returns the current user connected to DBMaker.

Return value The current session user

SESSION_USER

Figure 4-114 SESSION_ USER syntax

 Example

The following returns the current SESSION_USER.

dmSQL> INSERT INTO t1 VALUES (SESSION_USER);

dmSQL> SELECT SESSION_USER;

dmSQL> SELECT c1 FROM t1 WHERE c2 = SESSION_USER;

Functions 4

4-131

@Copyright 1995-2024 CASEMaker Inc.

SIGN

The SIGN function returns an integer indicating the sign of number. The values

returned are +1 for positive numbers, 0 for zero, and -1 for negative numbers.

number Double: Number to find the sign of

Return value Integer: Value corresponding to the sign of number

Figure 4-115 SIGN syntax

 Example 1

The following returns the value of 1.

SIGN(12.3)

 Example 2

The following returns the value of 0.

SIGN(0)

 Example 3

The following returns the value of –1.

SIGN(-12.3)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-132

SIN

The SIN function returns the sine of number, expressed in radians, as a double

precision floating-point number.

number Double: Number to find the sine for

Return value Double: The sine of number

Figure 4-116 SIN syntax

 Example

The following returns the value of 4.79425538604203e-001.

SIN(0.5)

Functions 4

4-133

@Copyright 1995-2024 CASEMaker Inc.

SINH

The SINH function returns the hyperbolic sine of number, expressed in

radians, as a double precision floating-point number.

number Double: Number to find the hyperbolic sine for

Return value Double: The hyperbolic cosine of number

Figure 4-117 SINH syntax

 Example

The following returns the value of 5.21095305493747e-001.

SINH(0.5)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-134

SOUNDEX

The SOUNDEX function returns a four-character code (one letter and three

numbers) that is based on the spelling and sound. The first character of the

code is the first letter of the input word. The second through fourth characters

of the code are numbers that represent the letters in the expression.

Word…… …. String: The word to do the soundex translate.

Return value… String: String containing the four-character code.

Figure 4-118 SOUNDEX syntax

 Example

The following syntax returns D152.

SOUNDEX('dbmaker');

Functions 4

4-135

@Copyright 1995-2024 CASEMaker Inc.

SPACE

The SPACE function returns a character string consisting of count spaces. If the

value of count is less than zero, a NULL value is returned.

count Integer: Number of spaces

Return value String: String containing count spaces

Figure 4-119 SPACE syntax

 Example 1

The following returns a string consisting of three blank spaces " ".

SPACE(3)

 Example 2

The following returns the string " Good morning!" with three blank spaces

in front.

CONCAT(SPACE(3), 'Good morning!')

NOTE There are three spaces before the first letter in the return value.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-136

SQRT

The SQRT function returns the square root of x as a double-precision floating-

point number.

x Double: Number to find the square root of

Return value Double: Square root of x

Figure 4-120 SQRT syntax

 Example

The following returns 1.30000000000000e+001.

SQRT(169)

Functions 4

4-137

@Copyright 1995-2024 CASEMaker Inc.

STRTOINT

The STRTOINT function converts the string to an integer, when the string

argument is NULL a NULL value is returned. An error is returned if the string

cannot be converted to an integer.

string String: String to convert to number

Return value Bigint: integer converted by string

STRTOINT (string)

Figure 4-121 STRTOINT syntax

 Example

The following returns 1234.

STRTOINT('1234')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-138

SUBBLOB

The SUBBLOB function returns a temporary BLOB from an input blob

beginning at the byte position specified by start for length bytes. The first

BLOB byte is counted from 1. This function is an add-on; run the script

libblob.sql provided by DBMaker to install it. DBMaker uses the following

rules to determine the value returned if one of the expressions contains a

NULL value or is zero.

 If blob is NULL the function returns a NULL value

 If start or length is NULL the function returns a temporary BLOB

 If start < 0 or length < 0 the function returns a NULL value

 If start > length of blob the function returns a NULL value

 If length is 0, the function returns an empty temporary BLOB

blob BLOB: CLOB, FILE to extract partial data from

start Integer: Position to begin extracting the data of blob

length Integer: Number of bytes to extract

Return value BLOB: Temporary BLOB extracted from blob

Figure 4-122 SUBBLOB syntax

 Example

The following returns temporary BLOB data extracted from Data BLOB from

byte position 1001 to byte position 1100.

SUBBLOB(Data, 1001, 100)

Functions 4

4-139

@Copyright 1995-2024 CASEMaker Inc.

SUBBLOBTOBIN

The SUBBLOBTOBIN function returns a binary string derived from input blob,

beginning at the byte position specified by start for length bytes. The first byte

of BLOB is counted from 1. This function is an add-on; run the libblob.sql

script provided by DBMaker to install it. DBMaker uses the following rules to

determine the value returned if one of the expressions contains a NULL value

or is zero.

 If blob is NULL the function returns a NULL value

 If start or length is NULL the function returns a string with the same data

as blob

 If start < 0 or length < 0 the function returns a NULL value

 If start > length of blob the function returns a NULL value

 If length is 0 the function returns an empty string

blob BLOB (BLOB, CLOB, FILE) to extract partial data from

start Integer. Position to begin extracting the data of blob

length Integer. Number of characters to extract

Return value Binary string. Data extracted from blob

SUBBLOBTOBIN (blob, start, length)

Figure 4-123 SUBBLOBTOBIN syntax

 Example

A binary string with data extracted from the Data BLOB byte position 1001 to

1100.

SUBBLOBTOBIN(Data, 1001, 100)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-140

SUBBLOBTOCHAR

The SUBBLOBTOCHAR function returns a character string that is derived from

the input blob beginning at the byte position specified by start for length bytes.

The first byte of BLOB is counted from 1. This function is an add-on, run the

libblob.sql script provided by DBMaker to install it. DBMaker uses the

following rules to determine the value returned if one of the expressions

contains a NULL value or is zero.

 If blob is NULL the function returns a NULL value

 If start or length is NULL return the string, which is the same data as blob

 If start < 0 or length < 0 the function returns a NULL value

 If start > length of blob the function returns a NULL value

 If length is 0 the function returns an empty string

blob BLOB: BLOB, CLOB, FILE to extract partial data from

start Integer: Position to begin extracting the data of blob

length Integer: Number of characters to extract

Return value Character String: Data extracted from blob

SUBBLOBTOCHAR (blob, start, length)

Figur
e 4-124 SUBBLOBTOCHAR syntax

 Example

A character string with data extracted from Data BLOB byte position 1001 to

1100.

SUBBLOBTOCHAR(Data, 1001, 100)

Functions 4

4-141

@Copyright 1995-2024 CASEMaker Inc.

SUBSTRING

The SUBSTRING function returns length characters beginning at start from

string. DBMaker uses the following rules to determine the value returned if

one of the expressions contains a NULL value or is zero.

 If string is NULL the function returns a NULL value

 If start or length is NULL the function returns string

 If start < 0 or length < 0 the function returns a NULL value

 If start > length of string the function returns a NULL value

 If length is 0 the function returns an empty string

string String: String to extract a substring from

start Integer: Position to begin extracting the substring

length Integer: Number of characters to extract

Return value String: Substring extracted from string

SUBSTRING

string, start, length

String

(

from start for length

)

Figure 4-125 SUBSTRING syntax

 Example 1

The following returns the string "morning".

SUBSTRING('Good morning!', 6, 7)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-142

 Example 2

dmSQL> SELECT SUBSTRING(CAST(123456 AS CHAR(10)) FROM LENGTH('abc') for

LENGTH('abc'));

SUBSTRING(CAST(123456 AS CHAR(10)

=================================

345

 Example 3

dmSQL> SELECT SUBSTRING('abcdef', 2, 2);

Functions 4

4-143

@Copyright 1995-2024 CASEMaker Inc.

TAN

The TAN function returns the tangent of number, expressed in radians, as a

double-precision floating-point number.

 number Double: Number to find the tangent for

Return value Double: The tangent of number

Figure 4-126 TAN syntax

 Example

The following returns the value of 5.46302489843790e-001.

TAN(0.5)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-144

TANH

The TANH function returns the hyperbolic tangent of a number as a double

precision floating-point number expressed in radians.

Number Double: Number to find the hyperbolic tangent for

Return value Double: The hyperbolic tangent of Number

Figure 4-127 TANH syntax

 Example

The following returns the value of 4.62117157260010e-001.

TANH(0.5)

Functions 4

4-145

@Copyright 1995-2024 CASEMaker Inc.

TIMEPART

The TIMEPART function returns the time part of Timestamp.

timestamp Timestamp: Timestamp to extract the time part from

Return value Time: Time part of Timestamp

Figure 4-128 TIMEPART syntax

 Example

The following returns 10:11:12.

TIMEPART('1996-02-29 10:11:12.123')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-146

TIMESTAMPADD

The TIMESTAMPADD function returns the timestamp calculated by adding

Numbered Intervals to Timestamp.

IF INTERVAL UNIT INTERVAL

"f " (or SQL_TSI_FRAC_SECOND for ODBC programs) Fractions of a second

"s" (or SQL_TSI_SECOND for ODBC programs) Seconds

"m" (or SQL_TSI_MINUTE for ODBC programs) Minutes

"h" (or SQL_TSI_HOUR for ODBC programs) Hours

"D" (or SQL_TSI_DAY for ODBC programs) Days

"W" (or SQL_TSI_WEEK for ODBC programs) Weeks

"M" (or SQL_TSI_MONTH for ODBC programs) Months

"Q" (or SQL_TSI_QUARTER for ODBC programs) Quarters

"Y" (or SQL_TSI_YEAR for ODBC programs) Years

Table 4-1 TIMESTAMPADD NUMBERED INTERVAL table

interval String: Unit interval to add

number Integer: Number of unit intervals to add

timestamp Timestamp: Timestamp to add interval to

Return value Timestamp: Result of Timestamp + Interval Number

Figure 4-129 TIMESTAMPADD syntax

Functions 4

4-147

@Copyright 1995-2024 CASEMaker Inc.

 Example

The following returns 1996-01-17 06:10:10.

TIMESTAMPADD('h',20,'1996-01-16 10:10:10')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-148

TIMESTAMPDIFF

The TIMESTAMPDIFF function returns the number of unit intervals between

timestamp2 and timestamp1.

IF INTERVAL UNIT INTERVAL

"f" (or SQL_TSI_FRAC_SECOND for ODBC programs) Fractions of a second
"s" (or SQL_TSI_SECOND for ODBC programs) Seconds
"m" (or SQL_TSI_MINUTE for ODBC programs) Minutes
"h" (or SQL_TSI_HOUR for ODBC programs) Hours
"D" (or SQL_TSI_DAY for ODBC programs) Days
"W" (or SQL_TSI_WEEK for ODBC programs) Weeks
"M" (or SQL_TSI_MONTH for ODBC programs) Months
"Q" (or SQL_TSI_QUARTER for ODBC programs) Quarters
"Y" (or SQL_TSI_YEAR for ODBC programs) Years

Table 4-2 TIMESTAMPDIFF NUMBERED INTERVAL table

interval String: Unit Interval to return the difference in

timestamp1 Timestamp: First Timestamp to find the interval between

timestamp2 Timestamp: Second Timestamp to find the Interval

between

Return value Double: Result of Timestamp2 - Timestamp1

Figure 4-130 TIMESTAMPDIFF syntax

 Example

The following returns 2.40000000000000e+001.

TIMESTAMPDIFF('h','1996-01-16 10:10:10', '1996-01-17 10:10:10')

Functions 4

4-149

@Copyright 1995-2024 CASEMaker Inc.

TIMESTAMPTOEPOCH

The TIMESTAMPTOEPOCH function returns a result of EPOCH time. This

function will convert input timestamp to EPOCH time.

timestamp……..… Timestamp: Timestamp to convert to EPOCH time

Return value……………Bigint: The value of timestamp converted to EPOCH time

Figure 4-131 TIMESTAMPTOEPOCH syntax

Example

The following syntax returns 1614768188000.

TIMESTAMPTOEPOCH('2021-03-03 18:43:08')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-150

TIMETOEPOCH

The TIMETOEPOCH function returns a result of EPOCH time. This function will

convert input time to EPOCH time.

time……..…………… TIME: Time to convert to EPOCH time

Return value………… ….Bigint: The value of time converted to EPOCH time

Figure 4-132 TIMETOEPOCH syntax

 Example

The following syntax returns -62135558212000.

TIMETOEPOCH('18:43:08')

Functions 4

4-151

@Copyright 1995-2024 CASEMaker Inc.

TRIM

The TRIM function combines the LTRIM and RTRIM functions. More than one

character can be specified in the trim_char_value_expr and each character is

viewed as a valid trim character.

The default trim option is BOTH when at least one LEADING, TRAILING, or

BOTH options are not specified. The default trim_char_value_expr character is

the space character (' '). In addition, if the trim_char_value_expr were an

empty string (''), the resulting string would be trim_source string. If the

trim_source is NULL, than the result would also be NULL, no matter which

trim option and trim character were used. The LENGTH function can also be

used with the TRIM function as shown in some of the examples that follow.

leading Remove trim_string from the front of trim_source

trailing Remove trim_string from the end of trim_source

both.............................. remove trim_string from the front and end of trim_source

If none of these are chosen (i.e.: leading, trailing, both), the trim function will

remove trim_expr from both the front and end of trim_source.

trim_expr The character that will be removed from trim_source.

If this parameter is omitted, the trim function will remove all leading and

trailing spaces from trim_source.

trim_source The string to trim.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-152

TRIM

FROM

LEADING

TRAILING

BOTH

trim_expr

()trim_source

Figure 4-133 TRIM function syntax

 Example 1

dmSQL> SELECT TRIM(both 'a' FROM 'aabcaa');

TRIM(BOTH 'A' FROM 'AABCAA')

==============================

bc

 Example 2

dmSQL> SELECT TRIM(FROM 'aabcaa');

TRIM(FROM 'AABCAA')

=====================

aabcaa

 Example 3

dmSQL> SELECT TRIM('a' FROM 'aabcaa');

TRIM('A' FROM 'AABCAA')

==========================

bc

 Example 4

dmSQL> SELECT TRIM('abc' FROM 'abckjkjjdcba');

TRIM('ABC' FROM 'ABCKJKJJDCBA')

===================================

kjkjjd

 Example 5

dmSQL> SELECT TRIM('a c' FROM 'ac ddbc');

TRIM ('A C' FROM 'AC DDBC')

Functions 4

4-153

@Copyright 1995-2024 CASEMaker Inc.

==============================

ddb

 Example 6

dmSQL> SELECT LENGTH(TRIM(leading FROM ' abc '));

LENGTH(TRIM(LEADING FROM ' ABC '))

==

 3

 Example 7

dmSQL> SELECT LENGTH(TRIM(leading 'a' FROM 'aabc '));

LENGTH(TRIM(LEADING 'A' FROM 'AA'))

==

 2

 Example 8

dmSQL> SELECT LENGTH(TRIM(trailing FROM 'aabc '));

LENGTH(TRIM(TRAILING FROM 'AABC'))

===

 4

 Example 9

dmSQL> SELECT LENGTH(TRIM(trailing 'a' FROM 'aabcaa'));

LENGTH(TRIM(TRAILING 'A' FROM 'AABCAA'))

==

 4

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-154

UCASE

The UCASE function converts all lower case characters in string to uppercase.

If the string argument is NULL, a NULL value is returned. All arguments must

be provided otherwise an error is returned.

string........................... String: Text to convert to upper case

Return value String: Text from the string argument in upper case

Figure 4-134 UCASE syntax

 Example 1

The following returns the string "ABCDEF".

UCASE('ABCdef')

 Example 2

The following returns the string "ABC123".

UCASE('abc123')

 Example 3

The following returns the string "ABC@#$".

UCASE('abc@#$')

Functions 4

4-155

@Copyright 1995-2024 CASEMaker Inc.

UPPER

This function performs the same calculation as UCASE. It capitalizes all

characters in the string. NULL string argument will return NULL.

String-expression String: function change LOWER case into UPPER case

Return value String: returns all characters in UPPER case

UPPER (string_expression)

Figure 4-135 UPPER function syntax

 Example

dmSQL> SELECT UPPER('abcdef');

UPPER('ABCDEF')

=================

ABCDEF

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-156

USER

The USER function returns the authorization name of the current user. The

authorization name of the user is also available by calling the SQLGetInfo with

the SQL_USER_NAME option.

Return value String: The name of the current user

Figure 4-136 USER syntax

Functions 4

4-157

@Copyright 1995-2024 CASEMaker Inc.

UTFConvert

The UTFConvert function is used to convert the character set between UTF-8

and UTF-16. It contains two functions U8TOU16 and U16TOU8.

The UTFConvert function is in DBMaker's installation directory\shared\udf.

It's not created by default in the database. If users want to use it, they have to

create it manually.

To execute the following command to create these functions:

dmSQL> CREATE FUNCTION UTFConvert.U8TOU16(long varbinary) RETURNS nclob;

dmSQL> CREATE FUNCTION UTFConvert.U16TOU8(nclob) RETURNS long varbinary;

long varbinary the UTF-8 content which will be converted to UTF-16

nclob the UTF-16 content which will be converted to UTF-8

U8TOU16(long varbinary)

U16TOU8(nclob)

Figure 4-137 UTFConvert syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-158

WEEK

The WEEK function returns the week date that falls in the integer value range

from 1 to 53.

date Date: Date to find the week for

Return value Integer: The week that date falls in

Figure 4-138 WEEK syntax

 Example

2002-02-11 is in the 5th week of 2002, the following returns 5.

WEEK('2002-02-01')

Functions 4

4-159

@Copyright 1995-2024 CASEMaker Inc.

XLSTOTXT

The XLSTOTXT function can be used to convert excel document to a

temporary BLOB containing the pure text of blob as unicode.it will return

temp blob or NULL. In DBMaker current version, UDF will support office

2007- 2010 version.

blob Column name on which to be converted to pure text

Return value temp blob as NCLOB type if blob can be converted to pure

text.

COS (number)

 Figure4-139 Syntax for XLSTOTXT

 Example

The following will convert the column memo to puretext.

XLSTOTXT(memo)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-160

XMLUPDATE

The xmlupdate function is using XPath to locate the part of xml data to be

updated.

xmldata………………the XML content to be updated

xpath-expression……specifies the location of the xmldata to be updated

namespaces…………optionally specifies the namespace used in Xpath-

expression

replace-content…… the value to replace the content located by Xpath

returnvalue…………the entire XML document after updating

XMLUPDATE(XMLdata, modification-type, xpath-expression,

namespaces, replace content)

Figure 4-140 XMLUPDATE syntax

Functions 4

4-161

@Copyright 1995-2024 CASEMaker Inc.

YEAR

The YEAR function returns the year in date as an integer value in the range

from 1 to 9999.

date Date: Date to find the year component of

Return value Integer: The year component of date

Figure 4-141 YEAR syntax

 Example

The following example illustratrates returning 2002.

YEAR('2002-02-01');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-162

User-Defined Functions

DBMaker allows programmers to build their own user-defined functions

(UDF). Once a UDF has been written in DBMaker, it is treated as a new built-in

DBMaker function with the same usages.

Functions 4

4-163

@Copyright 1995-2024 CASEMaker Inc.

AES_DECRYPT

The AES_ENCRYPT function is used to encrypt the data to safeguard the

significant data. Correspondingly, The AES_DECRYPT function is used to

decrypt the encrypted data to get the raw data.

The AES_DECRYPT function is in DBMaker's installation directory\shared\udf.

It's not created by default in the database. If users want to use it, they have to

create it manually, or run the SQL script located under the same directory.

To execute the following command to create these functions:

dmSQL> CREATE FUNCTION LIBCRYPT.AES_DECRYPT(BINARY(4096),STRING) RETURNS

BINARY(4096);

ciphertext the ciphertext

cipher key the inputed passphrase key

plaintext the raw data

(plaintext, ciphertext)cipher key , AES_DECRYPT

Figure 4-142 AES_DECRYPT syntax

The AES_DECRYPT function supports the following five data types:

BINARY(N), CHAR(N), VARCHAR(N), NCHAR(N), NVARCHAR(N). If the

original data's type is other types, ERROR (6536): [DBMaker] function

arguments do not match definition will be returned.

Encryption uses 16 byte alignment, which makes the string bigger. Note that

the original data's length must matches value of the defined UDF argument.

Under different environment, users should modify the parameter BINARY(n)

to make sure the length is big enough for the encrypted data. In addition, value

of AES_DECRYPT's parameter BINARY(n) must matches the value of the

AES_ENCRYPT's parameter BINARY(n).

 Example

Users can use the following syntax to run the AES_DECRYPT function.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-164

dmSQL> SELECT AES_DECRYPT (Column, 'key') FROM table;

The following example decribes usage of the AES_DECRYPT function.

dmSQL> CREATE TABLE DAES(C1 BINARY(1024));

dmSQL> SELECT AES_DECRYPT (C1, 'key') FROM DAES; //the result' data type is

BINARY, and please cast the value;

dmSQL> SELECT CAST(AES_DECRYPT (C1, 'key') AS CHAR(200)) FROM DAES;

Functions 4

4-165

@Copyright 1995-2024 CASEMaker Inc.

AES_ENCRYPT

The AES_ENCRYPT function is used to encrypt the data to safeguard the

significant data.

The AES_ENCRYPT function is in DBMaker's installation directory\shared

\udf. It's not created by default in the database. If users want to use it, they

have to create it manually, or run the SQL script located under the same

directory.

To execute the following command to create these functions:

dmSQL> CREATE FUNCTION LIBCRYPT.AES_ENCRYPT(BINARY(4096),STRING) RETURNS

BINARY(4096);

plaintext the raw data to be encrypted

cipher key the inputted passphrase key

ciphertext the ciphertext

(plaintext , ciphertext)cipher key , AES_ENCRYPT

Figure 4-143 AES_ENCRYPT syntax

The AES_ENCRYPT function supports the following five data types:

BINARY(N), CHAR(N), VARCHAR(N), NCHAR(N), NVARCHAR(N). If the

original data's type is other types, ERROR (6536): [DBMaker] function

arguments do not match definition will be returned.

Encryption will make the string bigger and 16 byte alignment. Note that the

original data's length must matches value of the defined UDF argument. Under

different environment, users should modify the parameter BINARY(n) to

make sure the length is big enough for the encrypted data. In addition, value of

AES_DECRYPT's parameter BINARY(n) must matches the value of the

AES_ENCRYPT's parameter BINARY(n).

 Example

Users can use the following syntax to run the AES_ENCRYPT function.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-166

dmSQL> SELECT AES_ENCRYPT (Column, 'key') FROM table;

The following example decribes usage of the AES_ENCRYPT function.

dmSQL> CREATE TABLE AES(C1 CHAR(200));

dmSQL> INSERT INTO AES VALUES('abc');

dmSQL> SELECT AES_ENCRYPT (C1, 'key') FROM AES INTO DAES;

Functions 4

4-167

@Copyright 1995-2024 CASEMaker Inc.

DATETOSTR

The DATETOSTR function is used to convert a value in DATE type into the

character string in specified format. The value in DATE type must be a valid

date.

The DATETOSTR function is in DBMaker's installation directory\shared\udf.

It's not created by default in the database. If users want to use it, they have to

create it manually, or run the SQL script located under the same directory.

To execute the following command to create these functions:

dmSQL> CREATE FUNCTION datetostr.DATETOSTR(DATE, varchar(20)) RETURNS

varchar(20);

date...................................the date to be converted into a character string

date_format_string.............the format of the returned character string into which

the date is converted. Currently, the following 13

formats are supported: mm/dd/yy, mm-dd-yy,

dd/mon/yy, dd-mon-yy, mm/dd/yyyy, mm-dd-yyyy,

yyyy/mm/dd, yyyy-mm-dd, dd/mon/yyyy, dd-mon-

yyyy, dd.mm.yyyy, yyyy.mm.dd and yyyymmdd.

Additional, the format must be small letters.

Return valuethe character string into which the date is converted

DATETOSTR (date , date_ _ string)format

Figure 4-144 DATATOSTR syntax

 Example

The following will convert the date "2012-2-12" into the character string in

"mm/dd/yy" format.

DATETOSTR('2012-12-12','mm/dd/yy')

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-168

TIMETOSTR

The TIMETOSTR function is used to convert a value in TIME type into the

character string with specified format. The value in TIME type must be a valid

time.

The TIMETOSTR function is in DBMaker's installation directory\shared\udf.

It's not created by default in the database. If users want to use it, they have to

create it manually, or run the SQL script located under the same directory.

To execute the following command to create these functions:

dmSQL> CREATE FUNCTION datetostr.TIMETOSTR(TIME, varchar(20)) RETURNS

varchar(20);

time...............................the time to be converted into a character string

time_format_string.........the format of the returned character string into which

the time is converted. Currently, the following 13 formats

are supported: hh:mm:ss.fff, hh:mm:ss, hh:mm, hh,

hh:mm:ss.fff tt, hh:mm:ss tt, hh:mm tt, hh tt, tt

hh:mm:ss.fff, tt hh:mm:ss, tt hh:mm, tt hh and hhmmss.

Additional, the format must be small letters.

Return value the character string into which the time is converted

TIMETOSTR (time , time_ _ string)format

Figure 4-145 TIMETOSTR syntax

 Example

The following will convert the time "12:10:10" into characters in "hh:mm:ss

tt" format.

TIMETOSTR('12:10:10','hh:mm:ss tt')

Functions 4

4-169

@Copyright 1995-2024 CASEMaker Inc.

TIMESTAMPTOSTR

The TIMESTAMPTOSTR function is used to convert a value in TIMESTAMP

type into the character string in specified format. The value in TIMESTAMP

type must be a valid date and time.

The TIMESTAMPTOSTR function is in DBMaker's installation

directory\shared\udf. It's not created by default in the database. If users want

to use it, they have to create it manually, or run the SQL script located under

the same directory.

To execute the following command to create these functions:

dmSQL> CREATE FUNCTION datetostr.TIMESTAMPTOSTR(TIMESTAMP, varchar(20),

varchar(20)) RETURNS varchar(30);

timestamp..........................the date and time to be converted into a character

string

date_format_string.............the format of the returned character string into which

the date is converted. Currently, the following 13

formats are supported: mm/dd/yy, mm-dd-yy,

dd/mon/yy, dd-mon-yy, mm/dd/yyyy, mm-dd-yyyy,

yyyy/mm/dd, yyyy-mm-dd, dd/mon/yyyy, dd-mon-

yyyy, dd.mm.yyyy, yyyy.mm.dd and yyyymmdd.

Additional, the format must be small letters.

time_format_stringthe format of the returned character string into which

the time is converted. Currently, the following 13

formats are supported: hh:mm:ss.fff, hh:mm:ss,

hh:mm, hh, hh:mm:ss.fff tt, hh:mm:ss tt, hh:mm tt, hh

tt, tt hh:mm:ss.fff, tt hh:mm:ss, tt hh:mm, tt hh and

hhmmss. Additional, the format must be small letters.

Return value the character string into which the date and time is

converted

TIMESTAMPTOSTR (timestamp , time_ _ string)date_ _ string , format format

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-170

Figure 4-146 TIMESTAMPTOSTR syntax

 Example

The following will convert the date and time "2012-12-12 12:12:12" into the

character string in "mm/dd/yy" and "tt hh:mm:ss" format.

TIMESTAMPTOSTR('2012-12-12 12:12:12','mm/dd/yy' 'tt hh:mm:ss')

Functions 4

4-171

@Copyright 1995-2024 CASEMaker Inc.

TO_DATE

The TO_DATE function converts a selected character string to a DATE format.

The string may be of any data type, but must conform to a valid date when

converted to a date. The TO_DATE function consists of two parameters,

char_string and date_format_string. The char_string parameter represents the

string that is to be matched, while the date_format_string represents the

format that the DATE type data result set will take.

The TO_DATE UDF function is in DBMaker's installation directory\shared\udf,

it's not created by default in the database. If users want to use it, they have to

create it manually, or run the SQL script located under the same directory.

To execute the following command:

dmSQL> CREATE FUNCTION to_date.TO_DATE(varchar(20), varchar(20)) RETURNS DATE;

string_expr......................String expression from which the expression is matched

date_format_string...........The format that the date format should take. Use Y or

y to denote years, M or m to denote months, and D or d

to denote days. Use / or – to denote a separator.

Return value.....................The string expression returned as a DATE type data

string.

 TO_ DATE (string_expr, date_ format_string)

Figure 4-147 TO_DATE syntax

 Example 1

TO_DATE('991031', 'YYMMDD')

 Example 2

dmSQL> SELECT TRIM(FROM 'aabcaa');

dmSQL> SELECT TO_DATE('2009-Jan-01', 'YYYY-mon-DD');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 4-172

System-Stored Procedures 5

5-1

@Copyright 1995-2024 CASEMaker Inc.

5 System-Stored

Procedures

System-Stored Procedures are dynamic library modules that are not be loaded

until called. System-stored procedures include shared objects and XML import

and XML export procedures.

A shared object is a signed integer variable existing in the database shared

memory (DCCA). The access of a shared object is more efficient and

independent of the transaction. Unlike data records, shared objects are not

stored in a database file. As a result, the lifecycle of the shared object ends

when it is dropped or

the database is shut down.

Every user connected to the database can see the shared objects added by the

SYSADM. Users can set or get the shared object's values unless a lock has been

placed on them by another user. A shared object is a 4 byte signed integer. All

users also have equal rights and permissions to the shared objects, thus any

user can override or reset an objects' settings except for the lock permission.

The other two system-stored procedures (XMLEXPORT and XMLIMPORT) can

only be used by a SYSADM, a SYSDBA or a DBA to import and export xml files.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-2

5.1 APPENDBLOB

The APPENDBLOB system-stored procedure is used to insert a huge file into a

BLOB/CLOB/FILE type column piece by piece. It is built in the add-on

executable file. DBMaker doesn't initialize it when creating a database, so,

before using it, users need to declare it by running <DBMaker home

installation directory> /shared/sp/ AppendBlob.sql.

For simplicity, without special note, we use BLOB type to represent the

BLOB/CLOB/FILE type in the following sections.

If no record or more than one record matches the condition specified by

WHERE_STR, an error will occur and a relevant error message will be

returned.

If the cell specified by TABLE_NAME, COLUMN_NAME and WHERE_STR is Null

or its type is not BLOB, an error will occur and a relevant error message will

be returned.

The maximum size of DATA_BUFF is 10M bytes, so if the value of DATA_BUFF

or DATA_LEN is bigger than 10485760, an error will occur and a relevant

error message will be returned.

 The prototype for APPENDBLOB is:

APPENDBLOB(VARCHAR(128) TABLE_NAME INPUT,

VARCHAR(128) COLUMN_NAME INPUT,

VARCHAR(2048) WHERE_STR INPUT,

BINARY(10485760) DATA_BUFF INPUT,

INTEGER DATA_LEN INPUT)

table_name................the name of the table which contains BLOB type column

column_name.............the name of the BLOB type column to which the new data

will be appended

where_str....................the condition string used to specify the single row

System-Stored Procedures 5

5-3

@Copyright 1995-2024 CASEMaker Inc.

data_buff...................the data in the buffer will be appended to on the BLOB type

column specified by TABLE_NAME, COLUMN_NAME and

WHERE_STR.

data_len.....................the length of the valid data in DATA_BUFF. Its unit is Byte. If

it is less than the DATA_BUFF's length, DBMaker appends

only the data with the length DATA_LEN, or else, appends

the whole buffer.

 Example

Firstly, create a database named bbsp, and then declare the stored procedure

APPENDBLOB.

dmSQL> CREATE DB bbsp;

USE db #1 connected to db:<bbsp> by user:<SYSADM>

dmSQL> RUN 'C:\DBMaker\5.4\shared\sp\AppendBlob.sql';

Create a table named test_blob1, and then insert a record.

dmSQL> CREATE TABLE test_blob1(c1 INT,c2 BLOB);

dmSQL> INSERT INTO test_blob1 VALUES(1,?);

dmSQL/Val> &file1;

1 rows inserted

dmSQL/Val> END;

dmSQL> SELECT c1,BLOBLEN(c2) FROM test_blob1;

 C1 BLOBLEN(C2)

=========== =============

 1 81920

1 rows selected

Call the stored procedure APPENDBLOB to append more data to the BLOB.

dmSQL> CALL APPENDBLOB('test_blob1','c2','c1=1',?,10);

dmSQL/Val> 'xxxxxyyyyy';

dmSQL/Val> END;

dmSQL> SELECT c1,BLOBLEN(c2) FROM test_blob1;

 C1 BLOBLEN(C2)

=========== =============

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-4

 1 81930

1 rows selected

System-Stored Procedures 5

5-5

@Copyright 1995-2024 CASEMaker Inc.

5.2 APPENDBLOBBYOID

The APPENDBLOBBYOID system-stored procedure is used to insert a huge file

piece by piece.It has the same usage as the APPENDBLOB system-stored

procedure. It is also built in the add-on executable file and users also need to

declare it before using.

If DBMaker cannot find a row through ROW_ID, an error will occur and a

relevant error message will be returned.

If the cell specified by ROW_ID and COLUMN_ORDER is Null or its type is

neither BLOB nor FILE, an error will occur and a relevant error message will

be returned.

The maximum size of DATA_BUFF is 10M bytes, so if the value of DATA_BUFF

or DATA_LEN is bigger than 10485760, an error will occur and a relevant

error message will be returned.

 The prototype for APPENDBLOBBYOID is:

APPENDBLOBBYOID(BINARY(16) ROW_ID INPUT,

INT COLUMN_ORDER INPUT,

BINARY(10485760) DATA_BUFF INPUT,

INT DATA_LEN INPUT)

row_id_inputid of the row which contains BLOB type columns

column_order..............the order number of the BLOB type column to which the

new data will be appended

data_buff...................the data in the buffer will be appended to the BLOB type

column specified by ROW_ID and COLUMN_ORDER.

data_len.....................the length of the valid data in DATA_BUFF. Its unit is Byte.

Ifit is less than the DATA_BUFF's length, DBMaker

appends only the data with the length DATA_LEN, or else,

appends the whole buffer.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-6

 Example

Create a table named test_blob2, and then insert a record.

dmSQL> CREATE TABLE test_blob2(c1 INT,c2 BLOB);

dmSQL> INSERT INTO test_blob2 VALUES(1,?);

dmSQL/Val> &file1;

1 rows inserted

dmSQL/Val> END;

dmSQL> SET AUTOMIT OFF;

dmSQL> COMMIT;

1 rows selected

dmSQL> SELECT oid,c1,BLOBLEN(c2) FROM test_blob2;

 OID C1 BLOBLEN(C2)

================================ =========== ===========

03000000020000000000000000000000 1 81920

1 rows selected

dmSQL> SELECT column_order FROM system.syscolumn WHERE table_name = 'TEST_BLOB2'

 AND column_name = 'C2';

COLUMN_ORDER

============

2

1 rows selected

Call the stored procedure APPENDBLOBBYOID to append more data to the

file1.

dmSQL> CALL APPENDBLOBBYOID('03000000020000000000000000000000'x,2,?,15);

dmSQL/Val> 'xxxxxyyyyyzzzzz';

dmSQL/Val> END;

dmSQL> COMMIT;

dmSQL> SELECT c1,BLOBLEN(c2) FROM test_blob2;

 C1 BLOBLEN(C2)

=========== ===========

 1 81935

1 rows selected

System-Stored Procedures 5

5-7

@Copyright 1995-2024 CASEMaker Inc.

5.3 COPYTABLE

The COPYTABLE system-stored procedure is used to copy one table's

definition and data into another table. The source table's index, table and

column constraints, triggers, and data are copied to the destination table.

The COPYTABLE stored procedure must be run when autocommit mode is on.

An error is returned when the destination table already exists. If the rename

index flag is set to 1, then the index name is renamed to the new table name if

it's prefixed by the table name. If a user sets the commit count, a command is

issued to commit when copying every nth data into the destination table.

When an error occurs, operations executed prior to the error are committed.

The commands that did not execute for COPYTABLE are recorded in the

_spusr.log. Users can set the DB_SPLog directory in dmconfig.ini or find it in

the directory where the user executes the application.

 The prototype for COPYTABLE is:

COPYTABLE(VARCHAR(32) source_schema_name INPUT,

VARCHAR(32) source_table_name INPUT,

 VARCHAR(32) destination_schema_name INPUT,

 VARCHAR(32) destination_table_name INPUT,

 VARCHAR(128) tablespace_lock_mode_option_string INPUT,

 VARCHAR(2048) where_condition_string INPUT,

 INT fg_rename_index INPUT,

 INT commit_count INPUT)

schema_name.............The schema name of the table represents the default

current user when specified as NULL or an empty string.

table_name The name of the source or destination table.

tablespace_lock_mode_option_string... Specified in the IN tablespace or lock

mode syntax as in the created table in the

string. The identifier specified in the string

must follow the SQL syntax rule.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-8

where_condition_string…Specified in the where condition as the SELECT

statement in the string. The identifier specified in the

string must follow the SQL syntax rule.

fg_rename_index This flag indicates whether to rename the index to be

prefixed by new_table_name if the source index name

is prefixed by the table name. The valid values are 0 or

1.

commit_count Commit after every nth record is inserted. The valid

value range is 0 to n.

 Example

The following syntax copies the Scores table to table Scores70 in a different

tablespace, where the Math score > 70. It does not rename the index. It

commits after every 10 records.

dmSQL> CALL COPYTABLE('SYSADM', 'Scores', 'SYSADM', 'Scores70', 'in tablespace1',

'Math > 70', 0, 10);

System-Stored Procedures 5

5-9

@Copyright 1995-2024 CASEMaker Inc.

5.4 CSVEXPORT

The CSVEXPORT system-stored procedure is used to export .csv files. Same as

XMLEXPORT, only a user with SYSADM, SYSDBA or DBA security privilege can

call these stored procedures and the execute privilege cannot be granted to

other users.

CSVEXPORT can export data with SQL statement or table name, view name.

 The prototype of CSVEXPORT is:

CSVEXPORT(VARCHAR(16000) SQL_STRING,

VARCHAR(2) COLUMN_DELIMITER,

VARCHAR(3) DISPLAY_NAME,

VARCHAR(256) OPTION_STRING,

VARCHAR(256) CSV_FILE)

sql_string………………. Sql statement or table name for exported object.

column_delimiter………Column delimiter; The default value (i.e., ';') is used if a

NULL or empty string is present.

display_name…………. Specify whether to export column or label name in

output file; The default value (i.e., 'No') is used if a NULL

or empty string is present.

csv_file…………………… Full path of output exported csv file.

option_string……………Description string for option flags. Different from

EXPORT and XMLEXPORT. CSVEXPORT doesn’t need a

description file. The option string LOB_FORMAT can be

defined in this argument.

(i.e.,'LOB_FORMAT:EXTERNAL/INTERNAL').

NAME TYPE LENGTH
(BYTES)

DESCRIPTION CASE
SENSITIVITY

sql_string varchar 16000 sql statement
or table name

depends on
dbmaker

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-10

for exported
object

setting

column_delimiter varchar 2 column
delimiter

yes (output
has the same
capitalization
)

display_name varchar 3 specify
whether to
export column
or label name
in output file

yes (output
has the same
capitalization
)

option_string varchar 256 description
string for
option flags

no

csv_file varchar 256 full path of
output
exported csv
file

depends on
operating
system

Note: log file generated during csv file exporting are saved on the server

machine in the CSV_FILE.log

 Example 1

These example illustrates how to use CSVEXPORT exports every data from

table t1 to d:/csvexport/t1.csv with different column delimiter.

dmSQL> call csvexport('select * from t1',';','yes','','d:/csvexport/t1.csv');

dmSQL> call csvexport('select * from t1','\t','yes','','d:/csvexport/t1.csv');

dmSQL> call csvexport('select * from t1','\n','yes','','d:/csvexport/t1.csv');

dmSQL> call csvexport('select * from t1','\\','yes','','d:/csvexport/t1.csv');

System-Stored Procedures 5

5-11

@Copyright 1995-2024 CASEMaker Inc.

 Example2

This example illustrates how to use CSVEXPORT exports every data from table

t1 to t1.csv with different table name and view name (Assume view v1=select

* from t1).

dmSQL> call csvexport('select * from t1',';','yes','','d:/csvexport/t1.csv');

dmSQL> call csvexport('t1',';','yes','','d:/csvexport/t1.csv');

dmSQL> call csvexport('sysadm.t1',';','yes','','d:/csvexport/t1.csv');

dmSQL> call csvexport('v1',';','yes','','d:/csvexport/t1.csv');

 Example3

This example illustrates how to use CSVEXPORT with option string

LOB_FORMAT.

dmSQL> call csvexport

('t1','','yes','LOB_FORMAT:EXTERNAL','d:/csvexport/t1.csv');

dmSQL> call csvexport

('t1','','yes','LOB_FORMAT:INTERNAL','d:/csvexport/t1.csv');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-12

5.5 EXTENDTS

The EXTENDTS system-stored procedure is used to check and extend

tablespace by adding page or file according to the threshold_page/frame.

Only users with DBA or higher security privilege can execute this stored

procedure. Users have to set autocommit on before execute. EXTENDTS will

check if the tablespace's free page/frame < nFree and add nAdd page/frame to

extend tablespace. If user has specified the FILE_PREFIX, it will check

whether the data file's npage + nAdd > nMax and add a file as

FILE_PATH/FILE_PREFIX_%d.DB/BB.

 The prototype of EXTENDTS is:

EXTENDTS(VARCHAR(128) TABLESPACE_NAME INPUT,

 VARCHAR(100) THRESHOLD_PAGE INPUT,

 VARCHAR(100) THRESHOLD_FRAME INPUT,

 VARCHAR(256) FILE_PREFIX INPUT,

 VARCHAR(256) FILE_PATH INPUT)

tablespace_name…………the name of tablespace to be checked and extended

threshold_page……………include three arguments "nFree nAdd nMax" used to

define remaining free pages, pages to add and

maximum pages.

threshold_frame…………include three arguments "nFree nAdd nMax" used to

define remaining free frame, pages to add and

maximum pages.

nFree: if nFree>free page/frame, extend tablespace

nAdd: number of pages/frame to add to tablespace

nMax: the maximum size of tablespace xtension

NOTE : nFree, nAdd, nMax arguments can specified with M or G, which

represents megabytes and gigabytes, means to check and add the

System-Stored Procedures 5

5-13

@Copyright 1995-2024 CASEMaker Inc.

tablespace with file size. If specified without M or G, means to check and

add the tablespace with pages.

file_prefix……………………the file prefix of the new tablespace file, the new added

file name will be FILE_PREFIX_%d.DB/BB.

file_path……………………full path of new added tablespace file

 Example:

dmSQL> CALL EXTENDTABLESPACE('TS1', '2M 16M 10G', '2M 16M 10G', 'TS1',

'/data/db/ts1/ts1fil');

// If there's new file added, according to its file type, the logical file name

will be named as TS1_01.DB or TS1_01.BB and the physical file name will be

/data/db/ts1/ts1fil/TS1_01.DB or /data/db/ts1/ts1fil/TS1_01.BB.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-14

5.6 GETCPUNUMBER

The GETCPUNUMBER system-stored procedure is used to get the number of

logical processors in the machine.

Using GETCPUNUMBER and SETAFFINITY system stored procedures, user can

get the current system state and set a connection's CPU affinity without

restarting DBMaker during runtime.

 The prototype for GETCPUNUMBER is:

GETCPUNUMBER (INT CPU_NUMBER OUTPUT)

cpu_number ……output parameter, the number of logical processors in

the machine

 Example

The following syntax gets the number of CPU by calling GETCPUNUMBER:

dmSQL> CALL GETCPUNUMBER(?);

System-Stored Procedures 5

5-15

@Copyright 1995-2024 CASEMaker Inc.

5.7 GETSYSTEMOPTION

The GetSystemOption system-stored procedure is used to get the system

option value during run time. That is to say, user can use GetSystemOption

stored procedure to get all valid system option values during the database

running.

The following table lists all of the option_name system option values that

obtained by calling the system-stored procedure GetSystemOption, and a brief

description of what keyword is contained in each option_name. For more

details of related keywords, please refer to Database Administrator's Guide.

OPTION_NAME DESCRIPTION

fodir The system file object directory (DB_FoDir)

lgsvr Server log level (DB_LgSvr)

lgerr Server log error level (DB_LgErr)

lgstm Server log statment execution time over n secs
(DB_LgSTm)

lgsys Server log the system info (DB_LgSys)

lgfsz Server log file size (DB_LgFSz)

lgfno Server log file number (DB_LgFNo)

lgsql Server log the sql command (DB_LgSQL)

lgpln Server log the execution plan (DB_LgPLn)

lgpar Server log the input parameter value (DB_LgPar)

lglck Server log extra lock time out informatin when it
exceed error argument's length (DB_LgLck)

lgdir Server log directory (DB_LgDir)

lgday The number of days to keep server log files
(DB_LgDay)

lgzip Zip closed log files (DB_LgZip)

bkchk Whether check database before full backup and
differential backup (DB_ BkChk)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-16

bkcmp The compact backup mode (DB_BkCmp)

bkdir Directory to store backup journal files (DB_BkDir)

bkfom The file object (FO) backup mode (DB_BkFoM)

bkfrm The format Backup Server used to name
incremental backup journal files (DB_BkFrm)

bkful The percentage full of the journal files that triggers
the backup server to perform an incremental
backup (DB_BkFul)

bkitv The backup time interval (DB_BkItv)

bkodr The directories where the backup server puts the
previous version of full backup files (DB_ BkOdr)

bkrts Whether the backup server includes the read-only
tablespace files when performing a full-backup
(DB_BkRTs)

bkspm The store procedure(SP) backup mode(DB_BkSPm)

bksvr Whether a backup server is activated (DB_BkSvr)

bktim The first time a backup server performs an
incremental backup (DB_BkTim)

bkzip Whether the backup files are compressed by a
backup server when performing full backups
(DB_BkZip)

ctblm The default lock mode used when creating a table
(DB_CTbLM)

dbkmx The maximum number of differential backup after a
full backup (DB_DbKmx)

dbktv The differential backup time interval (DB_DbKtv)

dbname The database name of current connection

ddbmd Whether the DDB (Distributed DataBase) function is
enabled on the database server (DD_DDBMd)

eatrpt The database server's Subscriber Daemon TCP/IP
port number (DB_EtrPt)

extnp A size for DBMaker to extend autoextend tablespace
(DB_ExtNp)

System-Stored Procedures 5

5-17

@Copyright 1995-2024 CASEMaker Inc.

fbktm The first time the Backup Server will perform a full
backup (DB_FBkTm)

fbktv The full backup time interval (DB_FBkTv)

fosub The maximum number of file objects that may be
stored in each system file object subdirectory
(DB_FoSub)

fullbkid The full backup id

idxdp Auto drop index threshold for auto index daemon
(DB_IdxDp)

idxln Auto create index threshold for auto index daemon
(DB_IdxLn)

idxtm The start time for auto index daemon (DB_IdxTm)

idxtv The auto index daemon interval (DB_IdxTv)

idxsv Activate auto index daemon (DB_IdxSv)

isolv The default transaction isolation level when a user
connects to the database (DB_ISOLV)

letpt

The Lock Escalation Threshold for escalating a page
lock

to a table lock (DB_LetPT)

letrp The Lock Escalation Threshold for an escalating
rowlock to a page lock (DB_LetRP)

lic_acl Access Control List

lic_bkserver Backup Server

lic_dbrep Database Replication

lic_dci Database Cobol Interface

lic_ddb Distributed Database

lic_edition Edition

lic_expiredate License Expiration Date

lic_freetrial Free Trial Period

lic_fulltext FullText Indexing

lic_hostconn Host Connection

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-18

lic_ioserver IO Server

lic_locale Locale Language

lic_maxconn Max Connection

lic_maxdbsize Max Database Size

lic_maxjnfsz Max Journal File Size

lic_maxpgsize Max Page Size

lic_netzc Network Compression

lic_platform Platform

lic_product Product Name

lic_serialid Serial ID

lic_startdate License Start Date

lic_upgrade Upgradable

lic_userinfo User Information

lic_version Version

sqlst The display mode of the SQL command monitor
(DB_SQLSt)

stsvr Start update statistics daemon (DB_StSvr)

stmod The incremental update statistics mode for a
database (DB_StMod)

ststm The start time for update statistics (DB_StsTm)

ststv The update statistics daemon interval (DB_StsTv)

stssp The update statistics sample (DB_StsSP)

usrfo User file objects can be inserted in a database
(DB_UsrFo)

bmode Backup mode: NON-BACKUP (DB_BMode = 0): non
backup mode;

BACKUP-DATA (DB_BMode = 1): backup data only
mode;

BACKUP-DATA-AND-BLOB (DB_BMode = 2): backup
data and BLOB mode.

fkchk Turn on(value:1) or turn off(value:0) foreign key

System-Stored Procedures 5

5-19

@Copyright 1995-2024 CASEMaker Inc.

check

cmpblob To compare first n bytes of data while using
order/group by on blob.

ansi_nulls Specifies ANSI NULLS is 0 or 1. Default value is 1:
means ANSI NULLS. Set to 0 means no ANSI NULLS,
let null=null is true

inspgcmp Specifies when to compress page.

rp_bkfom Whether to replicate system FO, udf and sp during
database replication(RP_BkFoM)

rp_crcchk Whether the file CRC check is activated during
database replication(RP_CRCChk)

tde_status
Specifies if column encryption is opened or closed:

0 means column is closed;

1 means column is opened.

 The prototype for GETSYSTEMOPTION is:

GETSYSTEMOPTION('optionName', ?)

optionName ……system option name.

 Example 1

The following syntax gets option value of backup server:

dmSQL> CALL GETSYSTEMOPTION('BKSVR',?);

 Example 2

The following syntax gets option value of database expired date:

dmSQL> CALL GETSYSTEMOPTION('LIC_EXPIREDATE',?);

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-20

5.8 SCHEDULE_ALTER

The SCHEDULE_ALTER system-stored procedure is used to alter an existing

schedule.

Except for SCHEDULE_NAME, all schedule parameters can be altered. If a

parameter of a schedule is altered while the task is running, dmschsvr will

load and use the new parameters of this schedule when the task runs next

time according to users' schedule.

 The prototype for SCHEDULE_ALTER is:

SCHEDULE_ALTER(VARCHAR(128) SCHEDULE_NAME INPUT,

 VARCHAR(128) TASK_NAME INPUT,

 VARCHAR(512) TIMETABLE INPUT,

 VARCHAR(32) STARTTIME INPUT,

 VARCHAR(32) ENDTIME INPUT)

schedule_namethe name of the existing schedule to alter

task_name..................the name of the task involved into the schedule

starttime.....................the date and time when the schedule starts; its format is

yyyy-mm-dd hh:mm:ss.

Endtime.....................the date and time when the schedule expires; its format is

yyyy-mm-dd hh:mm:ss. Because the minimum time unit of

scheduel daemon is minutes, so end time must be later

than start time by at least one minute. Please note that,

usually users must set endtime, but if value of timetable is

set to @once or @once m n, it is allowed for users not to

set endtime, and under this situation, system will

automatically regard the time later than start time by one

minute and (m*n+1) minutes as the end time respectively.

Timetable...................the timetable of the task's execution; it is composed of

fivefields in sequence: minute, hour, day-of-month, month,

System-Stored Procedures 5

5-21

@Copyright 1995-2024 CASEMaker Inc.

day-of-week, and the five fields should be separated by a

space. Their value's range are 0–59, 0–23, 1-31, 1–12 and

0–7 respectively and all values can be replaced with the

following wildcard: asterisk (*), comma (,), hyphen (-) and

slash (/). Details are as follows.

-Asterisk (*)

It's valid to specify a * to represent all possible values for a position, e.g. a * on

2nd position is same as specifying all the possible values for hour.

-Comma (,)

It's valid to specify several values separated by commas, e.g. if a user want a

command to be executed every 10th minute, he can specify 0,10,20,30,40,50

for minute.

-Hyphen (-)

It's valid to specify the range of a value with a -, e.g. a user can specify 0-12 for

hour to represent every hour a.m.

-slash (/)

It's valid to specify a regular interval with a /, e.g. a user can specify */3 for

minute to represent every 3 minutes.

For convenience, some simple and specific characters are set as valid value for

TIMETABLE. Details are as follows.

CHARACTER DESCRIPTION

@minute THE FIRST SECOND OF EVERY MINUTE

@hourly THE FIRST MINUTE OF EVERY HOUR

@midnight THE FIRST MINUTE OF EVERY DAY

@daily THE FIRST MINUTE OF EVERY DAY

@weekly THE FIRST MINUTE OF EVERY MONDAY

@monthly THE FIRST MINUTE OF THE 1ST OF EVERY MONTH

@once THIS TASK WILL BE EXECUTED ONLY ONCE, WHETHER IT
IS EXECUTED SUCCESSFULLY OR NOT. THE STARTING TIME

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-22

IS SPECIFIED BY STARTTIME; IF STARTTIME IS 'NOW()',
THIS TASK WILL BE EXECTED AT NEXT MINUTE.

@once m n THIS TASK WILL BE EXECUTED SCCUSSFULLY ONLY ONCE.
IF FAIL, THIS TASK WILL BE EXECUTED ONCE EVERY N
MINUTES UNTIL A SUCCESS, AND THIS KIND OF ATTEMPTS
CAN BE DONE AT MOST M TIMES. M' RANGE IS 1 ~ 525600;
N'S RANGE IS 1 ~ 1440.

Table 5-1 Valid Special Characters table

 Example

The following syntax is used to alter schedule insert_into_t1. In this example,

alter the execution plan "10 0,1 * * *" to "20 2,3 * * *". For more information

of schedule insert_into_t1, please refer to the example in Chapter 5.7,

SCHEDULE_CREATE.

dmSQL> CALL SCHEDULE_ALTER('insert_into_t1', 'insert_t1', '20 2,3 * * *', '2012-

12-12 12:00:00', '2015-12-12 12:00:00'); // The task 'insert_t1' will run at 2:20

and 3:20 every day from 2012-12-12 12:00 to 2015-12-12 12:00.

System-Stored Procedures 5

5-23

@Copyright 1995-2024 CASEMaker Inc.

5.9 SCHEDULE_CREATE

The SCHEDULE_CREATE system-stored procedure is used to create a

schedule.

 The prototype for SCHEDULE_CREATE is:

SCHEDULE_CREATE(VARCHAR(128) SCHEDULE_NAME INPUT,

VARCHAR(128) TASK_NAME INPUT,

VARCHAR(512) TIMETABLE INPUT,

VARCHAR(32) STARTTIME INPUT,

VARCHAR(32) ENDTIME INPUT)

schedule_name……the name of the schedule to create. It can contains 1 to 128

letters, numbers, and underscores, but the first character cannot be numbers.

task_name the name of the task involved into the schedule

starttime.......................the date and time when the schedule starts; its format is

yyyy-mm-dd hh:mm:ss. After DBMaker 5.4.4 version, if

the starttime is empty, the default value will be now().

Endtime.......................the date and time when the schedule expires; its format is

yyyy-mm-dd hh:mm:ss. Because the minimum time unit

of scheduel daemon is minutes, so end time must be later

than start time by at least one minute. Please note that,

usually users must set endtime, but if value of timetable

is set to @once or @once m n, it is allowed for users not

to set endtime, and under this situation, system will

automatically regard the time later than start time by one

minute and (m*n+1) minutes as the end time

respectively. After DBMaker 5.4.4 version, if the endtime

is empty, the default value will be unlimited. But the

endtime column in sysschedule will show ‘2038/01/19

11:14:07’.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-24

Timetable.....................the timetale of the task's execution; it is composed of five

fields in sequence: minute, hour, day-of-month, month,

day-of-week, and the five fields should be separated by a

space. Their value's range are 0–59, 0–23, 1-31, 1–12 and

0–7 respectively and all values can be replaced with the

following wildcard: asterisk (*), comma (,), hyphen (-)

and slash (/). Details are as follows.

-Asterisk (*)

It's valid to specify a * to represent all possible values for a position, e.g. A * on

2nd position is same as specifying all the possible values for hour.

-Comma (,)

It's valid to specify several values separated by commas, e.g. If a user want a

command to be executed every 10th minute, he can specify 0,10,20,30,40,50

for minute.

-Hyphen (-)

It's valid to specify the range of a value with a -, e.g. A user can specify 0-12 for

hour to represent every hour a.m.

-slash (/)

It's valid to specify a regular interval with a /, e.g. A user can specify */3 for

minute to represent every 3 minutes.

For convenience, some simple and specific characters are set as valid value for

TIMETABLE. Details are as follows.

CHARACTER DESCRIPTION

@minute THE FIRST SECOND OF EVERY MINUTE

@hourly THE FIRST MINUTE OF EVERY HOUR

@midnight THE FIRST MINUTE OF EVERY DAY

@daily THE FIRST MINUTE OF EVERY DAY

@weekly THE FIRST MINUTE OF EVERY MONDAY

@monthly THE FIRST MINUTE OF THE 1ST OF EVERY MONTH

System-Stored Procedures 5

5-25

@Copyright 1995-2024 CASEMaker Inc.

@once THIS TASK WILL BE EXECUTED ONLY ONCE, WHETHER IT
IS EXECUTED SUCCESSFULLY OR NOT. THE STARTING TIME
IS SPECIFIED BY STARTTIME; IF STARTTIME IS 'NOW()',
THIS TASK WILL BE EXECTED IMMEDIATELY.

@once m n THIS TASK WILL BE EXECUTED SCCUSSFULLY ONLY ONCE.
IF FAIL, THIS TASK WILL BE EXECUTED ONCE EVERY N
MINUTES UNTIL A SUCCESS, AND THIS KIND OF ATTEMPS
CAN BE DONE AT MOST M TIMES. M' RANGE IS 1 ~ 525600;
N'S RANGE IS 1 ~ 1440.

Table 5-2 Valid Special Characters table

 Example

The following syntax is used to create a schedule named insert_into_t1 for

task insert_t1. For more information of task insert t1, please refer to the

example in Chapter 5.27, TASK_CREATE.

dmSQL> CALL SCHEDULE_CREATE('insert_into_t1', 'insert_t1', '10 0,1 * * *', '2012-

12-12 12:00:00', '2015-12-12 12:00:00'); // The task 'insert_t1' will run at 0:10

and 1:10 every day from 2012-12-12 12:00 to 2015-12-12 12:00.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-26

5.10 SCHEDULE_DISABLE

The SCHEDULE_DISABLE system-stored procedure is used to disable a

schedule.

Disabling a schedule means that, although the metadata of the schedule is

there, it should not run and dmschsvr will not load the schedule for

processing. When a schedule is disabled, its state in the system table is

changed to disabled. A newly created schedule, except a one-off one, is

disabled by default.

 The prototype for SCHEDULE_DISABLE is:

SCHEDULE_DISABLE(VARCHAR(128) SCHEDULE_NAME INPUT)

schedule_name ……the name of the schedule to disable

 Example

The following syntax is used to disable schedule insert_into_t1. For more

information of schedule insert_into_t1, please refer to the example in Chapter

5.7, SCHEDULE_CREATE.

dmSQL> CALL SCHEDULE_DISABLE('insert_into_t1');

System-Stored Procedures 5

5-27

@Copyright 1995-2024 CASEMaker Inc.

5.11 SCHEDULE_DROP

The SCHEDULE_DROP system-stored procedure is used to delete an existing

schedule. If a schedule is dropped, the record about it stored in SYSSCHEDULE

also is dropped.

 The prototype for SCHEDULE_DROP is:

SCHEDULE_DROP(VARCHAR(128) SCHEDULE_NAME INPUT)

schedule_name the name of the schedule to delete

 Example

The following syntax is used to delete schedule insert_into_t1. For more

information of schedule insert_into_t1, please refer to the example in Chapter

5.7, SCHEDULE_CREATE.

dmSQL> CALL SCHEDULE_DROP('insert_into_t1');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-28

5.12 SCHEDULE_ENABLE

The SCHEDULE_ENABLE system-stored procedure is used to enable a

schedule.

The effect of using this procedure is that the schedule will now be loaded by

dmschsvr for processing. Usually a newly created schedule is disabled by

default, so users need to enable it before running it.

 The prototype for SCHEDULE_ENABLE is:

SCHEDULE_ENABLE(VARCHAR(128) SCHEDULE_NAME INPUT)

schedule_name ……the name of the schedule to enable

 Example

The following syntax is used to ensable schedule insert_into_t1. For more

information of schedule insert_into_t1, please refer to the example in Chapter

5.7, SCHEDULE_CREATE.

dmSQL> CALL SCHEDULE_ENABLE('insert_into_t1');

System-Stored Procedures 5

5-29

@Copyright 1995-2024 CASEMaker Inc.

5.13 SCHEDULE_RELOAD

The SCHEDULE_RELOAD system-stored procedure is used to reload all

enabled schedules into system. Dmschsvr automatically check whether there

are altered or newly created schedule every minute, and if find some, reload

all enabled schedules.

 The prototype for SCHEDULE_RELOAD is:

SCHEDULE_RELOAD

 Example

The following syntax is used to reload all enabled schedules into system.

dmSQL> CALL SCHEDULE_RELOAD;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-30

5.14 SCHELOG_CLEAN

The SCHELOG_CLEAN system-stored procedure is used to clean excessive logs

and only keep logs of recently days. Only a user with DBA authority or higher

can call it.

 The prototype for SCHELOG_CLEAN is:

SCHELOG_CLEAN(INT RESERVE_DAY INPUT)

reserve_day...................the number of days between creation time of schedule

logs to delete and that of the most recent schedule logs.

Schedule logs are stored in SYSSCHELOG, and the range

of this value is 0 ~ 7300(20years).

 Example

A user's the most recent logs are created 10 days ago, and the following syntax

is used to clean logs of which creation is earlier than the most recent logs by

20 days, namely logs created 30 days ago.

dmSQL> CALL SCHELOG_CLEAN(20);

System-Stored Procedures 5

5-31

@Copyright 1995-2024 CASEMaker Inc.

5.15 SETAFFINITY

The SETAFFINITY system-stored procedure is used to set CPU affinity of

processes and threads. Please note that only SYSADM can call the

SETAFFINITY system-stored procedure.

Using GETCPUNUMBER and SETAFFINITY system-stored procedures, user can

get the current system state and set a connection's CPU affinity without

restarting DBMaker during runtime.

CPU affinity is difined by affinity mask in which each bit represents one

processor. DBMaker define affinity mask as char(64), so it most set 64 CPU.

 The prototype for SETAFFINITY is:

SETAFFINITY(INT CONNECTION_ID INPUT,

 CHAR(64) AFFINITY_MASK INPUT)

connection_id…………input parameter, the ID of connections or servers. Users

can get it with "select connection_id from sysuser" or

checking system monitor. It is thread's ID in windows

and process ID in Unix-like system.

affinity_mask................input parameter, CPU affinity mask. The valid affinity

mask is composed of '1' or '0'. '1' means the CPU is valid

for connection; '0' means the CPU is invalid for

connection.

 Example 1

There are affinity mask values for an 8-CPU system. (The continuous zeros in

high position are omitted.)

Decimal value Binary bit mask Allow run on CPU

1 '1' 0

3 '11' 0 and 1

7 '111' 0, 1 and 2

15 '1111' 0, 1, 2 and 3

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-32

31 '11111' 0, 1, 2, 3 and 4

63 '111111' 0, 1, 2, 3, 4 and 5

127 '1111111' 0, 1, 2, 3, 4, 5 and 6

255 '11111111' 0, 1, 2, 3, 4, 5, 6 and 7

 Example 2

Users must get some system information before setting CPU affinity, such as

the number of CPU on the server, the CPU usage of every connection, correct

affinity mask.

Get the number of CPU by calling GETCPUNUMBER:

dmSQL> CALL GETCPUNUMBER(?);

Get the CPU usage of every connection, correct affinity mask:

dmSQL> SELECT connection_id, affinity_mask, priority_level, cpu_usage FROM

sysuser;

Set CPU affinity and allow the connection running on CPU 0 and 1:

dmSQL> SELECT connection_id, user_name FROM sysuser;

 CONNECT* USER_NAME

================ ========================

 30420 BACKUP_SERVER

 30418 SYSADM

2 rows selected

dmSQL> CALL SETAFFINITY(30418,'11');

Get CPU affinity mask by querying sysuser for a precise connection:

dmSQL> SELECT affinity_mask FROM sysuser WHERE connection_id = ?;

System-Stored Procedures 5

5-33

@Copyright 1995-2024 CASEMaker Inc.

5.16 SETPRIORITY

The SETPRIORITY system-stored procedure is used to set the priority of

processes and threads. Please note that only sysadm can call the PRIORITY

system-stored procedure.

Using the SETPRIORITY system-stored procedure, users can set a connection's

priority without restarting DBMaker during runtime. Please note that user

can't set a higher priority on Linux because it need root privilege. So you can

only set lower level on Linux, but there are no limits on Windows.

 The prototype for SETPRIORITY is:

SETPRIORITY(INT CONNECTION_ID INPUT,

 INT PRIORITY_LEVEL INPUT)

connection_id……..….input parameter, the ID of connections or servers. Users

can get it with "select connection_id from sysuser" or

checking system monitor. It is thread's ID in windows

and process ID in Unix-like system.

priority_level…………input parameter, there are five levels, the normal and

default priority level is three. Valid priority levels are '1',

'2', '3', '4' and '5'. '1' means lowest priority; '2' means

lower priority; '3' means normal priority; '4' means

higher priority; '5' means highest priority.

 Example

Users must get some system information before setting priority, such as the

number of CPU on the server, the CPU usage of every connection, the priority.

To get the number of CPU by calling GETCPUNUMBER:

dmSQL> CALL GETCPUNUMBER(?);

To get the CPU usage of every connection, the priority:

dmSQL> SELECT connection_id, affinity_mask, priority_level, cpu_usage FROM

sysuser;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-34

To set priority level：

dmSQL> SELECT connection_id , user_name FROM sysuser;

 CONNECT* USER_NAME

================ ========================

 30420 BACKUP_SERVER

 30418 SYSADM

2 rows selected

dmSQL> CALL SETPRIORITY(30418,3);

To get the priority level by querying sysuser for a precise connection:

dmSQL> SELECT priority_level FROM sysuser WHERE connection_id = ?;

System-Stored Procedures 5

5-35

@Copyright 1995-2024 CASEMaker Inc.

5.17 SETSYSTEMOPTION

The SetSystemOption system-stored procedure is used to set system option

during run time, that is to say, these valid system option values can be

changed during the run time with the SetSystemOption system stored

procedure and call GetSystemOption to get the value of system option.

The following table lists all of the option_name system option values that

obtained by calling the system-stored procedure SetSystemOption, and a brief

description of what keyword is contained in each option_name. For more

details of related keywords, please refer to Database Administrator's Guide.

OPTION_NAME DESCRIPTION

fodir On-line change the system file object directory
(DB_FoDir).

option_name is the new full path. Empty string, i.e. ' ',
disables the feature of the system file object.

lgsvr Server log level (DB_LgSvr)

lgerr Server log error level (DB_LgErr)

lgstm Server log statment execution time over n secs
(DB_LgSTm)

lgsys Server log the system info (DB_LgSys)

lgfsz Server log file size (DB_LgFSz)

lgfno Server log file number (DB_LgFNo)

lgsql Server log the sql command (DB_LgSQL)

lgpln Server log the execution plan (DB_LgPLn)

lgpar Server log the input parameter value (DB_LgPar)

lglck Server log extra lock time out informatin when it exceed

error argument's length (DB_LgLck)

lgdir Server log directory (DB_LgDir)

lgday The number of days to keep server log files (DB_LgDay)

lgzip Zip closed log files (DB_LgZip)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-36

bkchk Whether check database before full backup and
differential

backup (DB_ BkChk)

bkcmp The compact backup mode (DB_BkCmp)

bkdir Directory to store backup journal files (DB_BkDir)

bkfom The file object (FO) backup mode (DB_BkFoM)

bkfrm The format Backup Server used to name incremental
backup

journal files (DB_BkFrm)

bkful The percentage full of the journal files that triggers the

backup server to perform an incremental backup
(DB_BkFul)

bkitv The backup time interval (DB_BkItv)

bkodr The directories where the backup server puts the
previous

version of full backup files (DB_ BkOdr)

bkrts Whether the backup server includes the read-only
tablespace

files when performing a full-backup (DB_BkRTs)

bkspm The store procedure(SP) backup mode(DB_BkSPm)

bksvr Whether a backup server is activated (DB_BkSvr)

bktim The first time a backup server performs an incremental

backup (DB_BkTim)

bkzip Whether the backup files are compressed by a backup
server

when performing full backups (DB_BkZip)

ctblm The default lock mode used when creating a table
(DB_CTbLM)

dbkmx The maximum number of differential backup after a full

backup (DB_DbKmx)

dbktv The differential backup time interval (DB_DbKtv)

ddbmd Whether the DDB (Distributed DataBase) function is

System-Stored Procedures 5

5-37

@Copyright 1995-2024 CASEMaker Inc.

enabled

on the database server (DD_DDBMd)

extnp A size for DBMaker to extend autoextend tablespace
(DB_ExtNp)

fbktm The first time the Backup Server will perform a full

backup (DB_FBkTm)

fbktv The full backup time interval (DB_FBkTv)

fosub The maximum number of file objects that may be stored
in

each system file object subdirectory (DB_FoSub)

idxdp Auto drop index threshold for auto index daemon
(DB_IdxDp)

idxln Auto create index threshold for auto index daemon
(DB_IdxLn)

idxtm The start time for auto index daemon (DB_IdxTm)

idxtv The auto index daemon interval (DB_IdxTv)

idxsv Activate auto index daemon (DB_IdxSv)

letpt

The Lock Escalation Threshold for escalating a page lock

to a table lock (DB_LetPT)

letrp The Lock Escalation Threshold for an escalating rowlock
to

a page lock (DB_LetRP)

lic_reload Reload License

sqlst The display mode of the SQL command monitor
(DB_SQLSt)

stsvr Start update statistics daemon (DB_StSvr)

stmod The incremental update statistics mode for a database
(DB_StMod)

ststm The start time for update statistics (DB_StsTm)

ststv The update statistics daemon interval (DB_StsTv)

stssp The update statistics sample (DB_StsSP)

sts_abort Abort ongoing update statistics

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-38

usrfo User file objects can be inserted in a database
(DB_UsrFo)

bmode Backup mode: NON-BACKUP (DB_BMode = 0): non
backup mode;

BACKUP-DATA (DB_BMode = 1): backup data only
mode;

BACKUP-DATA-AND-BLOB (DB_BMode = 2): backup
data and BLOB mode.

addslave/sladradd Add slave database address(RP_SLADR)

delslave/sladrdel Delete slave database address (RP_SLADR)

fkchk Turn on(value:1) or turn off(value:0) foreign key check

cmpblob To compare first n bytes of data while using
order/group by on blob.

inspgcmp Specifies when to compress page.

rp_bkfom Whether to replicate system FO, udf and sp during
database replication(RP_BkFoM)

rp_crcchk Whether the file CRC check is activated during database
replication(RP_CRCChk)

startbackup Option to act backup server to process full or
incremental backup

tde_open Open encrypted column

tde_close Close encrypted column

tde_open_auto Open encrypted column automatically when database is
on

tde_close_suto Close encrypted column automatically when database is
on

schedule_sync Execute the selected schedule one time after one minute

ansi_nulls Specifies ANSI NULLS is 0 or 1. Default value is 1: means
ANSI NULLS. Set to 0 means no ANSI NULLS, let null=null
is true.

 The prototype for SETSYSTEMOPTION is:

SETSYSTEMOPTION(VARCHAR(32) OPTION_NAME INPUT,

System-Stored Procedures 5

5-39

@Copyright 1995-2024 CASEMaker Inc.

 VARCHAR(8576) OPTION_VALUE INPUT)

option_name the name of the system option

option_value the value of the system option

 Example 1

The following syntax is used to activate the Backup Server.

dmSQL> CALL SETSYSTEMOPTION('BKSVR','1');

 Example 2

When Backup Server is activated, the following syntax is used to set the

appropriate backup parameters in the dmconfig.ini configuration file.

dmSQL> CALL SETSYSTEMOPTION('STARTBACKUP','1'); //do full backup

dmSQL> CALL SETSYSTEMOPTION('STARTBACKUP','2'); //do incremential backup

dmSQL> CALL SETSYSTEMOPTION('STARTBACKUP','3'); //do differential backup

 Example 3

The following syntax is used to set update statistics sample to 60 during run

time.

dmSQL> CALL SETSYSTEMOPTION('STSSP', '60');

 Example 4

The following syntax is used to abort an ongoing update statistics.

dmSQL> CALL SETSYSTEMOPTION('STS_ABORT', '14076'); // abort an ongoing update

statistics which connection ID is 14076.

dmSQL> CALL SETSYSTEMOPTION('STS_ABORT', '0'); // the value 0 is a special

connection ID.It means abort all command related to update statistics.

 Example 5

The following syntax is used to activate an auto index daemon.

dmSQL> CALL SETSYSTEMOPTION ('IDXSV', '1');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-40

 Example 6

After Auto Index Daemon is activated, the following syntax is used to set the

appropriate auto index daemon parameters in the dmconfig.ini configuration

file.

dmSQL> CALL SETSYSTEMOPTION('IDXTM', '2012-12-12 00:00:00'); // The first time

the auto index daemon starts for the first time at 2012-12-12 00:00:00.

dmSQL> CALL SETSYSTEMOPTION('IDXTV', '2-00:00:00'); // The interval of performing

the auto index daemon is 2 days.

dmSQL> CALL SETSYSTEMOPTION('IDXDP', '60'); // An index which is not used reaches

or exceeds 60 days will be dropped by auto index daemon.

dmSQL> CALL SETSYSTEMOPTION('IDXLN', '10'); // If the same scan log number

reaches or exceeds 10, an auto index will be created according to these log.

 Example 7

If user update the license, call this function may reload the license.

dmSQL> CALL SETSYSTEMOPTION('LIC_RELOAD', '1');

System-Stored Procedures 5

5-41

@Copyright 1995-2024 CASEMaker Inc.

5.18 SETSYSTEMOPTIONW

The SetSystemOptionW system-stored procedure is used to set system option

during run time and writing run time setting to dmconfig.ini file.

This stored procedure is an extension of SetSystemOption, and support all

system options that SetSystemOption can change, The following table lists all

of the option_name system option values that obtained by calling the system-

stored procedure SetSystemOptionW, and a brief description of what keyword

is contained in each option_name. For more details of related keywords,

please refer to Database Administrator's Guide.

DBMaker can set system option at run time by calling the system stored

procedure setSystemOption(), and now add new system stored procedure

setSystemOptionW() to support setting system option at run time and writing

run time setting to dmconfig.ini file. User also can get new option value

through calling getSystemOtion.

OPTION_NAME DESCRIPTION

fodir On-line change the system file object directory
(DB_FoDir).

option_name is the new full path. Empty string, i.e. ' ',
disables the feature of the system file object.

lgsvr Server log level (DB_LgSvr)

lgerr Server log error level (DB_LgErr)

lgstm Server log statment execution time over n secs
(DB_LgSTm)

lgsys Server log the system info ((DB_LgSys)

lgfsz Server log file size (DB_LgFSz)

lgfno Server log file number (DB_LgFNo)

lgsql Server log the sql command (DB_LgSQL)

lgpln Server log the execution plan (DB_LgPLn)

lgpar Server log the input parameter value (DB_LgPar)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-42

lglck Server log extra lock time out informatin when it exceed

error argument's length (DB_LgLck)

lgdir Server log directory (DB_LgDir)

lgday The number of days to keep server log files (DB_LgDay)

lgzip Zip closed log files (DB_LgZip)

bkchk Whether check database before full backup and
differential

backup (DB_ BkChk)

bkcmp The compact backup mode (DB_BkCmp)

bkdir Directory to store backup journal files (DB_BkDir)

bkfom The file object (FO) backup mode (DB_BkFoM)

bkfrm The format Backup Server used to name incremental
backup

journal files (DB_BkFrm)

bkful The percentage full of the journal files that triggers the

backup server to perform an incremental backup
(DB_BkFul)

bkitv The backup time interval (DB_BkItv)

bkodr The directories where the backup server puts the
previous

version of full backup files (DB_ BkOdr)

bkrts Whether the backup server includes the read-only
tablespace

files when performing a full-backup (DB_BkRTs)

bkspm The store procedure(SP) backup mode(DB_BkSPm)

bksvr Whether a backup server is activated (DB_BkSvr)

bktim The first time a backup server performs an incremental

backup (DB_BkTim)

bkzip Whether the backup files are compressed by a backup
server

when performing full backups (DB_BkZip)

ctblm The default lock mode used when creating a table

System-Stored Procedures 5

5-43

@Copyright 1995-2024 CASEMaker Inc.

(DB_CTbLM)

dbkmx The maximum number of differential backup after a full

backup (DB_DbKmx)

dbktv The differential backup time interval (DB_DbKtv)

ddbmd Whether the DDB (Distributed DataBase) function is
enabled

on the database server (DD_DDBMd)

extnp A size for DBMaker to extend autoextend tablespace
(DB_ExtNp)

fbktm The first time the Backup Server will perform a full

backup (DB_FBkTm)

fbktv The full backup time interval (DB_FBkTv)

fosub The maximum number of file objects that may be stored
in

each system file object subdirectory (DB_FoSub)

idxdp Auto drop index threshold for auto index daemon
(DB_IdxDp)

idxln Auto create index threshold for auto index daemon
(DB_IdxLn)

idxtm The start time for auto index daemon (DB_IdxTm)

idxtv The auto index daemon interval (DB_IdxTv)

idxsv Activate auto index daemon (DB_IdxSv)

letpt

The Lock Escalation Threshold for escalating a page lock

to a table lock (DB_LetPT)

letrp The Lock Escalation Threshold for an escalating rowlock
to

a page lock (DB_LetRP)

sqlst The display mode of the SQL command monitor
(DB_SQLST)

stsvr Start update statistics daemon (DB_StSvr)

stmod The incremental update statistics mode for a database
(DB_StMod)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-44

ststm The start time for update statistics (DB_StsTm)

ststv The update statistics daemon interval (DB_StsTv)

stssp The update statistics sample (DB_StsSP)

usrfo User file objects can be inserted in a database
(DB_UsrFo)

bmode Backup mode: NON-BACKUP (DB_BMode = 0): non
backup mode;

BACKUP-DATA (DB_BMode = 1): backup data only
mode;

BACKUP-DATA-AND-BLOB (DB_BMode = 2): backup
data and BLOB mode.

addslave/sladradd Add slave database address(RP_SLADR)

delslave/sladrdel Delete slave database address (RP_SLADR)

rp_bkfom Whether to replicate system FO, udf and sp during
database replication(RP_BkFoM)

rp_crcchk Whether the file CRC check is activated during database
replication(RP_CRCChk)

 The prototype for SETSYSTEMOPTIONW is:

SETSYSTEMOPTIONW(VARCHAR(32) OPTION_NAME INPUT,

VARCHAR(8576) OPTION_VALUE INPUT)

option_name the name of the system option

option_value the value of the system option

 Example

To start update statistics daemon, set value of STSVR to 1 by calling

setSystemOptionW during runtime, and then the run time setting will be

written into dmconfig.ini file, as following:

The dmconfig.ini file before calling stored procedure setSystemOptionW()

is:

[DBSAMPLE5]

; Here omit other keywords

System-Stored Procedures 5

5-45

@Copyright 1995-2024 CASEMaker Inc.

DB_StSvr = 0

Execute call setSystemOptionW ('optionName', 'optionValue'):

dmSQL> CALL SETSYSTEMOPTIONW('STSVR', '1');

dmSQL> CALL SETSYSTEMOPTION('STSVR',?);

OPTION_VALUE : 1

The dmconfig.ini file after calling stored procedure setSystemOptionW is:

[DBSAMPLE5]

; Here omit other keywords

DB_StSvr = 1

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-46

5.19 SOADD

The SOADD system-stored procedure is used to increase the shared object's

value.

 The prototype for SOADD is:

SOADD(INTEGER SHID,

INTEGER ADDEND,

 INTEGER NEW_VAL OUTPUT)

shid the id of the shared object

addend the positive or negative value to add

new_val the value after adding

 Example

The following syntax is used to add 3 to shared object 2 and get the new value

= 3.

dmSQL> CALL SYSADM.SOADD(2,3,?);

new_val: 3

System-Stored Procedures 5

5-47

@Copyright 1995-2024 CASEMaker Inc.

5.20 SOCREATE

The SOCREATE system-stored procedure is used to create shared objects. To

use a shared object, use SOCreate to create the shared object with a specified

identifier and initial value. Then, to read, modify, or to increase the shared

object value use SORead, SOSet or SOAdd respectively by indicating its

identifier. Since the shared object can be accessed by any connection, it

supports SOLock and SOUnlock for concurrency control. When the shared

object is no longer in use it can be dropped with SODrop.

 The prototype for SOCREATE is:

SOCREATE(INTEGER SETID,

 INTEGER INIT_VAL,

 INTEGER SHID OUTPUT)

Setid……………… the assigned id of the shared object

0: system assigned, otherwise: user assigned

init_val initial value

shid id of the created shared object

 Example 1

The following syntax is used to create a shared object with an initial value = 0

with a system assigned id = 0.

dmSQL> CALL SYSADM.SOCREATE(0,0,?);

Shid: 1

 Example 2

The following syntax is used to create shared object 2 with an initial value = 0.

dmSQL> CALL SYSADM.SOCREATE(2,0,?);

Shid: 2

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-48

5.21 SODROP

The SODROP system-stored procedure is used to drop a shared object. This

can be used when the object is no longer in use.

 The prototype for SODROP is:

SODROP(INTEGER SHID)

shid id of the shared object to drop

 Example

The following syntax is used to drop shared object 1.

dmSQL> CALL SYSADM.SODROP(1);

System-Stored Procedures 5

5-49

@Copyright 1995-2024 CASEMaker Inc.

5.22 SOLOCK

The SOLOCK system-stored procedure is used to lock a shared object. After a

shared object has been locked, other users cannot read, set, add, drop, lock, or

unlock it. Only the user that set the lock can use the other six system-stored

procedures on it.

 The prototype for SOLOCK is:

SOLOCK(INTEGER SHID)

shid id of shared object which are desired to lock

 Example

The following syntax is used to lock shared object 1.

dmSQL> CALL SYSADM.SOLOCK(1);

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-50

5.23 SOREAD

The SOREAD system-stored procedure is used to read (get) the value of a

shared object.

 The prototype for SOREAD is:

SOREAD(INTEGER SHID,

 INTEGER VAL OUTPUT)

shid the id of shared object

val value of the shared object

 Example

The following syntax is used to get the value of shared object 2.

dmSQL> CALL SYSADM.SOREAD(2,?);

val: 3

System-Stored Procedures 5

5-51

@Copyright 1995-2024 CASEMaker Inc.

5.24 SOSET

The SOSET system-stored procedure is used to set or modify a shared object's

values.

 The prototype for SOSET is:

SOSET(INTEGER SHID,

 INTEGER NEW_VAL,

 INTEGER OLD_VAL OUTPUT)

shid the id of shared object

new_val value to assign

old_val value before the assignment

 Example

The following syntax is used to set the value of shared object 2 to –2.

dmSQL> CALL SYSADM.SOSET(2,-2,?);

old_val: 3

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-52

5.25 SOUNLOCK

The SOUNLOCK system-stored procedure is used to unlock a shared object.

After a shared object has been locked, other users cannot read, set, add, drop,

lock, or unlock it. Only the user that placed a lock on the shared object may

unlock it.

 The prototype for SOUNLOCK is:

SOUNLOCK(INTEGER SHID)

shid id of shared object to be unlocked

 Example

The following syntax is used to unlock shared object 1.

dmSQL> CALL SYSADM.SOUNLOCK(1);

System-Stored Procedures 5

5-53

@Copyright 1995-2024 CASEMaker Inc.

5.26 START_DMSCHSVR

The START_DMSCHSVR system-stored procedure is used to start dmschsvr.

 The prototype for START_DMSCHSVR is:

START_DMSCHSVR(VARCHAR(8) TASKRUNNUM INPUT,

 VARCHAR(128) SCHELOGDIR INPUT)

Taskrunnum.............the task numbers that can be aroused by dmschsvr at the

same time. The range of this value is 1 ~ 50, and the default

value is 30.

schelogdir..................the path indicating the directory of dmschsvr's log files. The

default path is same with the path specified by DB_DbDir.

The log filename format is <DB_NAME><_><Date>, e.g.

DBSAMPLE5_20150135.log.

 Example

The following syntax is used to start dmschsvr.

dmSQL> CALL START_DMSCHSVR ('30', 'C:\DBMaker\5.4\SAMPLES\DATABASE');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-54

5.27 STOP_DMSCHSVR

The STOP_DMSCHSVR system-stored procedure is used to stop dmschsvr.

 The prototype for STOP_DMSCHSVR is:

STOP_DMSCHSVR

 Example

The following syntax is used to stop dmschsvr.

dmSQL> CALL STOP_DMSCHSVR;

System-Stored Procedures 5

5-55

@Copyright 1995-2024 CASEMaker Inc.

5.28 TASK_ALTER

The TASK_ALTER system-stored procedure is used to alter an existing task.

Except for TASK_NAME, all task parameters can be altered. If a parameter of a

task is altered while the task is running, the task will use the new parameter

when it runs next time according to users' schedule.

 The prototype for TASK_ALTER is:

TASK_ALTER(VARCHAR(128) TASK_NAME INPUT,

 VARCHAR(16) TASK_TYPE INPUT,

 VARCHAR(2048) ACTIONS INPUT)

task_name the name of the existing task to alter.

task_type.................. the type of the task. There are three options: SQL_

STATEMENT (abbr. SQL), STORE_PROCEDURE (abbr. SP),

and EXECUTABLE (abbr. EXEC). SQL_STATEMENT means

the task is a sql statement; STORE_PROCEDURE means the

task is a procedure; EXECUTABLE means the task is an

executable program.

actions.................... the actions that the existing task performs regularly. It

must match the type of the existing task.

 Example

The following syntax is used to alter task "insert_t1". In this example, alter the

action "INSERT INTO t1 VALUES(1, 2)" to "INSERT INTO t1 VALUES(1, 3)".

For more information of task insert_t1, please refer to the example in Chapter

5.27, TASK_CREATE.

dmSQL> CALL TASK_ALTER('insert_t1','SQL_STATEMENT','INSERT INTO t1 VALUES(1,3)');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-56

5.29 TASK_CREATE

The TASK_CREATE system-stored procedure is used to create a task. A task is

user-defined and scheduled to run one or more times. It is a combination of

actions (what needs executions) and executed by a schedule.

 The prototype for TASK_CREATE is:

TASK_CREATE(VARCHAR(128) TASK_NAME INPUT,

VARCHAR(16) TASK_TYPE INPUT,

VARCHAR(2048) ACTIONS INPUT)

task_name..............the name of the task to create. It can contain 1 to 128 letters,

numbers, and underscores, but the first character cannot be

numbers.

task_type............... the type of the task to create. There are three options:

SQL_STATEMENT (abbr. SQL), STORE_PROCEDURE (abbr.

SP), and EXECUTABLE (abbr. EXEC). SQL_STATEMENT

means the task is a sql statement; STORE_PROCEDURE

means the task is a procedure; EXECUTABLE means the task

is an executable program.

actions................... the actions that the task will perform regularly. It must

match the type of the task to create, and its maximum length

is 2K bytes.

 Example

The following syntax is used to create a task named insert_t1to insert values

into table t1.

dmSQL> CALL TASK_CREATE('insert_t1','SQL_STATEMENT','INSERT INTO t1

VALUES(1,2)');

System-Stored Procedures 5

5-57

@Copyright 1995-2024 CASEMaker Inc.

5.30 TASK_DROP

The TASK_DROP system-stored procedure is used to delete an existing task.

If a task has been added into a schedule, an error will occur when a user uses

TASK_DROP to delete this task, that is to say, users should make sure that no

user use this task before dropping it.

 The prototype for TASK_DROP is:

TASK_DROP(VARCHAR(128) TASK_NAME INPUT)

task_name the name of the task to delete

 Example

The following syntax is used to delete task insert_t1. For more information of

task insert_t1, please refer to the example in Chapter 5.27, TASK_CREATE.

dmSQL> CALL TASK_DROP('insert_t1');

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-58

5.31 XMLEXPORT

The XMLEXPORT system-stored procedure provides a programmable

interface for users to export XML data from DBMaker. Only a user with

SYSADM, SYSDBA or DBA security privilege can call these stored procedures.

In addition, the execute privilege cannot be granted to other users because

XMLEXPORT is a system-stored procedures.

XMLEXPORT exports tables from a DBMaker database to an XML file and can

process multiple tables within one call of the corresponding stored

procedures. Descriptions on the mapping between the content of XML files

and DBMaker tables are outlined in a description string. This description

string is used as one of the arguments passed into the stored procedure.

 The prototype for XMLEXPORT is:

XMLEXPORT(VARCHAR(256) FILE_PATH,

 VARCHAR(256) DB_TAG,

 VARCHAR(256) XML_HEADER,

 VARCHAR(16000) OBJECT_STR,

 VARCHAR(256) OPTION_STR,

 VARCHAR(256) LOG_PATH)

System-Stored Procedures 5

5-59

@Copyright 1995-2024 CASEMaker Inc.

NAME TYPE LENGTH

(BYTES)

DESCRIPTION CASE

SENSITIVITY

FILE_PATH VARCH
AR

256 FULL PATH OF
EXPORTED XML
FILE

DEPENDS ON
OPERATING
SYSTEM

DB_TAG VARCH
AR

256 CUSTOMIZED
DATABASE TAG

YES (OUTPUT HAS
THE SAME
CAPITALIZATION)

XML_HEAD
ER

VARCH
AR

256 CUSTOMIZED XML
HEADER

YES (OUTPUT HAS
THE SAME
CAPITALIZATION)

OBJECT_ST
R

VARCH
AR

16000 DESCRIPTION
STRING FOR
EXPORTED
OBJECTS

DEPENDS ON
DBMAKER
SETTING

OPTION_FL
AG

VARCH
AR

256 DESCRIPTION
STRING FOR
OPTION FLAGS

NO

LOG_PATH VARCH
AR

256 FULL PATH OF
ERROR LOG FILE
ON THE CLIENT

VARIES BY
OPERATING
SYSTEM

Table 5-3 XMLEXPORT Arguments table

Constructing XMLEXPORT Arguments

The XML file designated for exporting from a database must first be generated

on the server. The file_path is specified by a full path string passed in as one of

the arguments of the corresponding stored procedure.

Next, the db_tag is used to customize a tag. The default value (i.e., database

name) is used if a NULL or empty string is present.

Next, the argument object_str is used as shown here:
Object_str=:

{ <element> [; <element>…]

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-60

<element>=:

{TABLE_NAME | <select_query>} [#TABLE_TAG]

An <element> represents a table and is delimited by semi-colons. If the first

token from <element> is "select" (case insensitive comparison), this

<element> is seen as <select_query> [#TABLE_TAG]. Otherwise, this

<element> is seen as TABLE_NAME [#TABLE_TAG]. "If <element> =

TALBE_NAME [#TABLE_TAG]", all columns in this table are selected and no

customized column tag can be specified. That is to say, in the exported XML

file, the names of column tags are the same as their corresponding table

column names. Customized table tags are specified with TABLE_TAG. The

table name in the database is used as table tag name when a TABLE_TAG is not

specified.

If users want to specify a customized column tag name, they can only use

<select_query>[#TABLE_TAG] in the <element> string. The customized

column tag names are specified by using column alias names in the

<select_query> statement. The user must use "AS" in their <select_query>, for

example, "select c1 as name, c2 as type from t2" as the <select_query>

statement, then column c1 becomes the "name" tag and column c2 becomes

the "type" tag in the exported XML file.

Next, users can specify an option string using option_flag. Each option is

separated by a semicolon. For example, to treat column names as attributes,

use "column_as_attribute" in the option string. If users do not specify a certain

option, that option is not set. The option flag string is case-insensitive.

OPTION FLAG SET NOT SET

BLOB_IN_SEPARATE_FILE BLOB/CLOB COLUMN
DATA IS EXPORTED AS
A TEMP FILE
SEPARATE FROM THE
XML FILE. THE NAME
OF THAT TEMP FILE IS
RECORDED IN THE
EXPORTED DTD.

BLOB/CLOB COLUMN
DATA IS EXPORTED AS
PART OF THE XML
FILE.

System-Stored Procedures 5

5-61

@Copyright 1995-2024 CASEMaker Inc.

COLUMN_AS_ATTRIBUTE COLUMNS ARE
EXPORTED AS
ATTRIBUTES INSTEAD
OF AN ELEMENT IN
THE XML FILE.

COLUMNS ARE
EXPORTED AS AN
ELEMENT IN THE XML
FILE.

CAPITALIZE_TAG_NAME ALL TAG NAMES ARE
CAPITALIZED IN THE
XML FILE.

THE CAPITALIZATION
OF ALL TAG NAMES
STAYS THE SAME AS
THAT OF THE
CORRESPONDING
NAMES IN DATABASE.

FILE_TYPE_AS_LINK FILE TYPE DATA
CONTENT IS NOT
EXPORTED. ONLY THE
NAME OF THE FILE IS
EXPORTED TO THE
XML FILE.

FILE TYPE DATA
CONTENT WILL BE
EXPORTED AS PART
OF THE XML FILE.

NO_SCHEMA_DTD WILL NOT GENERATE
A SCHEMA DTD WHEN
THE XML FILE IS
GENERATED.

WILL GENERATE A
CORRESPONDING DTD
ALONG WITH THE XML
FILE EXPORTED.

Table 5-4 XMLEXPORT Options

Lastly, log files generated during XML file exporting are saved on the client

machine in the log_path.

Exporting XML Files

Suppose that we want to export two tables named tb_card, and tb_contact as

one file /usr/john/xmlexport.xml from a DBMaker database called Customer.

In the xmlexport.xml file, we want to use "EMPLOYEE" as our customized

database tag, "TITLE" as our customized table tag for the table "tb_card" and

"NUMBER" as our customized table tag for the table "tb_contact".

In addition, the customized column tags for ID, FNAME, LNAME and WORK of

the table tb_card are NO, FIRST_NAME, LAST_NAME and JOB respectively. We

will not use customized column tags for the table "tb_contact". We also want

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-62

to capitalize all tag names in the XML file and all BLOB column data (if any)

will be saved in another temporary file. Finally, our log file name is going to be

saved as /client/john/xmlexport.log. The contents of these two tables are as

follows:

dmSQL> SELECT * FROM tb_card;

 ID FNAME LNAME WORK

=========== ==================== ==================== ====================

 1 Eddie Chang Manager

 2 Hook Hu SoftwareEngineer

 3 Jackie Yu SoftwareEngineer

 8 Jerry Liu Manager

dmSQL> SELECT * FROM tb_contact;

 NO FIRST_NAME LAST_NAME PHONE

=========== ==================== ==================== ====================

 1 Eddie Chang 2145678

 2 Hook Hu 2335678

 3 Jackie Yu 2346678

 4 Jerry Liu 2345671

 To export an XML file

1. File_path is the full path of the XML file to be exported. The generated file

will be on the server, thus the specified file path must also be on the

server. The string '/usr/john/xmlexport.xml' will be used for this
argument.

2. db_tag is a customized database tag. A NULL or empty string means that a

default value is used. The string EMPLOYEE will be used for this
argument.

3. In this example, we will use the object_str string;

'SELECT ID AS NO, FNAME AS FIRST_NAME, LNAME AS LAST_NAME, WORK

AS JOB FROM tb_card#TITLE;tb_contact#NUMBER'

4. We will use the "capitalize_tag_name;blob_in_separate_file" tag as our

option string for this argument.

System-Stored Procedures 5

5-63

@Copyright 1995-2024 CASEMaker Inc.

5. For this argument, we will use "/client/john/xmlexport.log" for log path.

6. The resulting CALL XMLExport statement will have the following form:

CALL XMLExport(

'/usr/john/xmlexport.xml',

'EMPLOYEE',

'SELECT ID AS NO, FNAME AS FIRST_NAME, LNAME AS LAST_NAME, WORK

AS JOB FROM tb_card#TITLE;tb_contact#NUMBER',

'capitalize_tag_name;blob_in_separate_file',

'/client/john/xmlexport.log');

7. Part of the export file xmlexport.xml would be:

<EMPLOYEE>

 <TITLE>

 <NO>1</NO>

 <FIRST_NAME>Eddie</FIRST_NAME>

 <LAST_NAME>Chang</LAST_NAME>

 <JOB>Manager</JOB>

 </TITLE>

 <TITLE>

 <NO>2</NO>

 <FIRST_NAME>Hook</FIRST_NAME>

 <LAST_NAME>Hu</LAST_NAME>

 <JOB>SoftwareEngineer</JOB>

 </TITLE>

 <TITLE>

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-64

 <NO>3</NO>

 <FIRST_NAME>Jackie</FIRST_NAME>

 <LAST_NAME>Yu</LAST_NAME>

 <JOB>SoftwareEngineer</JOB>

 </TITLE>

 <TITLE>

 <NO>4</NO>

 <FIRST_NAME>Jerry</FIRST_NAME>

 <LAST_NAME>Liu</LAST_NAME>

 <JOB>Manager</JOB>

 </TITLE>

 <NUMBER>

 <NO>1</NO>

 <FIRST_NAME>Eddie</FIRST_NAME>

 <LAST_NAME>Chang</LAST_NAME>

 <PHONE>2145678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>2</NO>

 <FIRST_NAME>Hook</FIRST_NAME>

 <LAST_NAME>Hu</LAST_NAME>

 <PHONE>2335678</PHONE>

 </NUMBER>

 <NUMBER>

System-Stored Procedures 5

5-65

@Copyright 1995-2024 CASEMaker Inc.

 <NO>3</NO>

 <FIRST_NAME>Jackie</FIRST_NAME>

 <LAST_NAME>Yu</LAST_NAME>

 <PHONE>2346678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>4</NO>

 <FIRST_NAME>Jerry</FIRST_NAME>

 <LAST_NAME>Liu</LAST_NAME>

 <PHONE>2345671</PHONE>

 </NUMBER>

</EMPLOYEE>

 Alternatively

1. Using the option "column_as_attribute" and calling XMLExport:

CALL XMLExport(

'/usr/john/xmlexport.xml',

'EMPLOYEE',

'SELECT ID AS NO, FNAME AS FIRST_NAME, LNAME AS LAST_NAME, WORK

AS JOB FROM tb_card#TITLE ',

'capitalize_tag_name;blob_in_separate_file;column_as_attribute

','/client/john/xmlexport.log');

2. The partial result will become:

<EMPLOYEE>

 <TITLE NO="1" FIRST_NAME="Eddie" LAST_NAME="Chang"

JOB="Manager" />

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-66

 <TITLE NO="2" FIRST_NAME="Hook" LAST_NAME="Hu"

JOB="SoftwareEngineer" />

 <TITLE NO="3" FIRST_NAME="Jackie" LAST_NAME="Yu"

JOB="SoftwareEngineer" />

 <TITLE> NO="4" FIRST_NAME="Jerry" LAST_NAME="Liu"

JOB="Manager" />

</EMPLOYEE>

System-Stored Procedures 5

5-67

@Copyright 1995-2024 CASEMaker Inc.

5.32 XMLIMPORT

The XMLIMPORT system-stored procedure provides a programmable

interface for users to import XML data to DBMaker. Only a user with SYSADM,

SYSDBA or DBA security privilege can call these stored procedures. In

addition, the execute privilege cannot be granted to other users because

XMLIMPORT is a system-stored procedures.

XMLIMPORT will import tables from XML files to tables in DBMaker. When

importing from an XML file, users can simply store the whole XML file in the

database instead of parsing, (analyzing the file content and importing data

into tables). The XML file being imported must be on the server and the log file

generated during the importing of an XML file is saved on the client machine.

If users just want to store the whole XML file instead of parsing it, they must

specify the "key" used for storing the XML file. The key value can then be used

when querying a database for the stored XML file.

 The prototype for XMLIMPORT is:

XMLIMPORT(VARCHAR(256) FILE_PATH,

 VARCHAR(16000) OBJECT_STR,

 VARCHAR(256) OPTION_STR,

 VARCHAR(256) LOG_PATH)

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-68

NAME TYPE LENGTH

(BYTES)

DESCRIPTION CASE

SENSITIVITY

FILE_PAT
H

VARC
HAR

256 FULL PATH OF
EXPORTED XML
FILE

DEPENDS ON
OPERATING
SYSTEM

OBJECT_S
TR

VARC
HAR

16000 DESCRIPTION
STRING FOR
EXPORTED
OBJECTS

XML TAGS ARE
CASE SENSITIVE;
TABLE NAMES AND
TABLE COLUMN
NAMES DEPENDS
ON DBMAKER
SETTING

OPTION_F
LAG

VARC
HAR

256 DESCRIPTION
STRING FOR
OPTION FLAGS

NO

LOG_PAT
H

VARC
HAR

256 FULL PATH OF
ERROR LOG FILE
ON THE CLIENT

VARIES BY
OPERATING
SYSTEM

Table 5-5 XMLIMPORT Arguments table

Constructing XMLIMPORT Arguments

First, the XML file being imported from a database must be generated on the

server. The file_path is specified by a full path string passed in as one of the

arguments of the corresponding stored procedure.

Second, the object_str argument is used to describe imported objects. This

information includes document levels, the mapping between customized

column tag names, and inserted table column names, as well as the mapping

between customized table tag name and table name in the database. The

format is as follows:
object_str =:

 { <table_element> [; <table_element>]...}

<table_element> =

 { <document mapping information>#<table mapping information> }

System-Stored Procedures 5

5-69

@Copyright 1995-2024 CASEMaker Inc.

<document mapping information> =:

 {<document level string>[(<column tag names>)]

<document level string> =: {/<level1> [/<level2>/.....]}

<column tag names> =: {<tag1> [, <tag2>]...}

<table mapping information> =: <table import definition>

<table import definition> =: { <insert sql statement> | <target table

name>[(<table column names>)] }

<insert sql statement> =: INSERT INTO <target table name> [(<table column

names>)] VALUES (<value list>)

<table column names> =: {<col1> [, <col2>] ...}

<value list> =: {<insert value>, <insert value>,...}

<insert value> =: {<constant> | <expression>}

Figure 5-1 object_str Argument Syntax

If users want to store the entire XML file instead of parsing it and storing the

content in tables, they should use special handling in <column tag names>.

Please see example 5.

<table_element>represents a table. The delimiter used between <element> is

a semi-colon. In the <document level string>, the document levels from the

root level to the table level are specified.

<root>

 <database>

 <table1>

 <column1>

 </column1>

 <column2>

 </column2>

 </table1>

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-70

 <table2>

 </table2>

 </database>

</root>

Figure 5-2 Sample XML File

Based on the sample XML file shown in Figure 5.2, to import data stored in the

<table1> tag of the<database>, specify a <document level string> of the

"/root/database/table1".

In <column tag names>, specify which column tags to insert into the table. If a

<column tag names> is not specified, all column tags under a certain table tag

are inserted.

In the <table import definition>, use either the format of <INSERT SQL

statement> or TABLE_NAME [<table column names>]. When using the

<INSERT SQL statement>, the INSERT SQL statement will be like this:
INSERT INTO <target table name> [(<table column names>)] VALUES (<value list>)

The <table column names> columns to be inserted are specified. If a <table

column names> is not specified, it is implied that the user is trying to insert all

columns in the target table (this is the same as the syntax for the ordinary

INSERT SQL statement.) Also, if there is a <column tag names> located in the

<document mapping information>, than the number of column tags specified

in <column tag names> must be equal to the number of host variables in the

<value list>. If there are no <column tag names> located in the <document

mapping information>, it is implied that all column tags under the base

element are to be inserted into the target table. The schema information in the

dtd file is also used to check whether the number of tags is equal to the

number of host variables located in the <value list>.

The mapping between <table column names>, <value list> and <column tag

names> in the <document mapping information> file must be appropriate.

The <column tag names> are mapped to host variables in the <value list> file.

The sequence of columns in <table column names> combined with the

sequence values in <value list> and the sequence of tags <column tag names>

decides what values are inserted into <value list>.

System-Stored Procedures 5

5-71

@Copyright 1995-2024 CASEMaker Inc.

When using <target table name>[(<table column names>)], specify the table to

be inserted into <target table name>. This <target table name> is mapped to

the last level in <document level string>.

When this format is used, a constant value insert or expression insert cannot

be used. If there is no <column tag names> specified in <document mapping

information>, there should be no <table column names> present either. If

there is <column tag names> in <document mapping information>, the

number of tags in <column tag names> must be equal to the number of

columns in <table column names>.

In <table column names>, specify mapped table columns to be inserted. If no

<table column names> are specified, all table columns will be inserted. If that

is the case, there should be no <column tag names> in <document mapping

information>. The schema information in the dtd file will be used to check

whether the number of all tags under the base element is equal to the number

of all columns in the target table.

Users are responsible for the mapping between <table column names> and

<column tag names>. The location of tags in <column tag names> should be

mapped to that of columns in <table column names>.

 Example 1

If the <table column names> is (c1, c2, c3), <value list> is (?,?,?) and <column

tag names> is (tg1, tg2, tg3), the value in tg1 is inserted into c1, the value in

tg2 is inserted into c2 and the value in tg3 is inserted into c3.

 Example 2

Assume that table t1 has four columns, c1, c2, c3, and c4, and that we have

four tags, tg1, tg2, tg3, tg4, in the xml element we are trying to import. Also,

assume that the obj_str is, "/root/book/order(tg1, tg2)#insert into t1 (c1, c2,

c3) values (?,?+3, 5)". From the string, we decide that table t1 is our target

table, that the column c1 in table t1 has the inserted value of tag tg1, that

column c2 has the inserted value of tag tg2 plus 3, and that column c3 has the

inserted constant value of 5.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-72

 Example 3

If the user does not specify the usage of the <column tag names> file in the

<document mapping information>, it is implied that the sequence of xml

column tags matches the sequence of what is located in the <table column

names>, and that all column tags under the base element are to be inserted

into the target table.

Assume that our target table t2 has five columns, c1, c2, c3, c4, and c5. Also,

assume that in our xml file, the sequence of tags is tg1, tg2, tg3, and tg4. If the

obj_str is, "/root/book/order#insert into t2 (c1, c2, c3, c4, c5) values (?, ?, ?, ?,

6)", the value of tg1 is inserted into c1 of t2, the value of tg2 is inserted into c2

of t2, the value of tg3 is inserted into c3 of t2, the value of tg4 is inserted into

c4 of t2 and the constant value of 6 is inserted into c5 of t2.

If the obj_str is "/root/book/order(tg1, tg2, tg3, tag4)#insert into t1 values

(?, ?, ?, ?)". This tells us that users are trying to insert 4 tags into all columns of

our target table. The value of tg1 is inserted into c1 of t1, the value of tg2 is

inserted into c2 of t1, the value of tg3 is inserted into c3 of t1, and the value of

tg4 is inserted into c4 of t1.

 Example 4

If obj_str is "/root/book/order(tg1, tg2)#insert into t1 values (?, ?, acos(1))",

the result of acos(1) is inserted into c3 of t1.

 Example 5

For users who want to store the whole XML file in the record instead of

parsing the whole XML file and storing the content (i.e., parsing the whole

XML file and then storing the data in XML file in table), they have to specify a

"virtual tag" in <column tag names>. This special "virtual tag" is named

"_XML_FILE_".

If this "_XML_FILE_" is used as the column tag name, the columns represented

by the column tags preceding this special "virtual tag" are used as the key

value. In addition, the mapped value in the <value list> file must be a single

host variable without any further calculation.

System-Stored Procedures 5

5-73

@Copyright 1995-2024 CASEMaker Inc.

If the following object string, "/root/book/order(tag1, tag2,

XML_FILE_)#insert into t2 (c1, c2, c3, c4, c5) values (?+2, ?*5, ?, 7, 8)", is used

then the whole file will be inserted into c3 of table t2.

If <table_element> in the object string, "/root/book/order(tag1, tag2,

_XML_FILE_)#customer(firstname, lastname, xml_file)", is used for the table

"customer", then firstname is inserted from the tag1 tag into the XML file. In

addition, the lastname is inserted from the tag2 tag into the XML file and the

xml_file will be inserted from the whole XML file. The firstname and lastname

are used as keys for finding a specific XML file.

 Example 6

In <column tag names> = <tag1, tag2, tag3> and <table column names> = <c1,

c2, c3>, there are three pairs of mapping: tag1 <-> c1, tag2 <-> c2, tag3 <-> c3.

Tag names and column names are all-or-nothing. That means that empty tag

names such as (tag1, ,tag3) are not permissible, neither are empty column

names. All customized tag names must specify or none of them at all.

So, the object string "/root/book/order(tag1, , tag2)#insert into t2 (c1, c2)

values (?, ?, ?)" is not permissible. An object string of "/root/book/order(tag1,

tag2, tag3)#insert into t2 (c1, c2, c3, c4) values (?, ?, ?,) is permissible. What is

inserted into c4 of t2 depends on the table schema information.

Thirdly, the option_flag string is case-insensitive. When the option_flag string

is set, the column_as_attribute columns in the imported XML file are treated as

attributes. When the option_flag string is not set, the columns are treated as

elements in the XML file.
Option_flag=:{[<attribute>[;<attribute>]…]}

<attribute>=:

{

column_as_attribute

}

Lastly, the log file of errors generated during the importing of XML files are

saved on the client machine in the log_path.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-74

Importing XML Files

Assume that we have an XML file, xmlimport.xml under the /usr/john

directory. The file is listed as follows.

<ROOT>

 <EMPLOYEE>

 <TITLE>

 <TAG1>1</TAG1>

 <TAG2>Eddie</TAG2>

 <TAG3>Chang</TAG3>

 <TAG4>Manager</TAG4>

 </TITLE>

 <TITLE>

 <TAG1>2</TAG1>

 <TAG2>Hook</TAG2>

 <TAG3>Hu</TAG3>

 <TAG4>SoftwareEngineer</TAG4>

 </TITLE>

 <TITLE>

 <TAG1>3</TAG1>

 <TAG2>Jackie</TAG2>

 <TAG3>Yu</TAG3>

 <TAG4>SoftwareEngineer</TAG4>

 </TITLE>

 <TITLE>

 <TAG1>4</TAG1>

 <TAG2>Jerry</TAG2>

 <TAG3>Liu</TAG3>

 <TAG4>Manager</TAG4>

 </TITLE>

 <NUMBER>

 <NO>1</NO>

 <FIRST_NAME>Eddie</FIRST_NAME>

 <LAST_NAME>Chang</LAST_NAME>

System-Stored Procedures 5

5-75

@Copyright 1995-2024 CASEMaker Inc.

 <PHONE>2145678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>2</NO>

 <FIRST_NAME>Hook</FIRST_NAME>

 <LAST_NAME>Hu</LAST_NAME>

 <PHONE>2335678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>3</NO>

 <FIRST_NAME>Jackie</FIRST_NAME>

 <LAST_NAME>Yu</LAST_NAME>

 <PHONE>2346678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>4</NO>

 <FIRST_NAME>Jerry</FIRST_NAME>

 <LAST_NAME>Liu</LAST_NAME>

 <PHONE>2345671</PHONE>

 </NUMBER>

 </EMPLOYEE>

<ROOT>

We are trying to import the data recorded in the xmlimport.xml file into the

following database schema:

Database Name: DB_TEST

Table Name: TB_CARD(ID CHAR(30), FNAME CHAR(30), LNAME CHAR(30), WORK CHAR(30))

Table Name: TB_CONTACT(NO CHAR(30), FIRST_NAME CHAR(30), LAST_NAME CHAR(30),

PHONE CHAR(30))

From the content of the above .xml file, we can see that under the

<EMPLOYEE> element, there are two sub-elements. We can map

<EMPLOYEE> element as the database level, the <TITLE> as the table level

and the <NUMBER> as another table level in the import database.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-76

Assume that we want to import <TITLE> into TB_CARD table and <NUMBER>

into TB_CONTACT table. The mapping of xml document tags to database

tables is as follows:

/ROOT/EMPLOYEE/TITLE -> /DB_TEST/TB_CARD

/ROOT/EMPLOYEE/NUMBER -> /DB_TEST/TB_CONTACT

The mapping between the XML document tags and table columns is as follows:

The elements under /ROOT/EMPLOYEE/TITLE(the mapping between

<TITLE> and TB_CARD table):
TAG1 -> NO

TAG2 -> FIRST_NAME

TAG3 -> LAST_NAME

TAG4 -> JOB

The elements under /ROOT/EMPLOYEE/NUMBER (the mapping between

<NUMBER> and the TB_CONTACT table):

NO -> NO

FIRST_NAME -> FIRST_NAME

LAST_NAME -> LAST_NAME

PHONE -> PHONE

In addition, we can see in xmlimport.xml that columns are treated as

elements in the target XML file. Finally let us assume that our log file is

/client/john/xmlimport.log.

For importing into table TB_CARD, the elements under

/ROOT/EMPLOYEE/TITLE are imported. TAG1 is mapped to column ID, TAG2

is mapped to column FNAME, TAG3 is mapped to column LNAME and TAG4

is mapped to column WORK.

For Importing into table TB_CONTACT, the elements under

/ROOT/EMPLOYEE/NUMBER are imported. All elements under the

<NUMBER> tag are imported and they are assumed a direct mapping to

columns in table TB_CONTACT.

Note that xml tags are case-sensitive subsequently, ROOT, EMPLOYEE, TITLE,

TAG1, TAG2, and TAG3 in this example must be capitalized. The case-

System-Stored Procedures 5

5-77

@Copyright 1995-2024 CASEMaker Inc.

sensitivity of table names and table column names depends on DBMaker

settings.

 To use XMLIMPORT with the above files:

1. The file must be on the server, thus the specified full path must also be on

the server. The file_path used in the argument is

"/usr/john/xmlimport.xml".

2. The object_str can be used like this

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#INSERT INTO

TB_CARD (ID,FNAME,LNAME,WORK) VALUES

(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#tb_contact'

or

'/ROOT/EMPLOYEE/TITLE#INSERT INTO TB_CARD (ID,FNAME,LNAME,WORK) VALUES

(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#tb_contact'

or

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#CARD

(C1,C2,C3,C4);/ROOT/EMPLOYEE/NUMBER#contact'

3. The object string used can have several formats:

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#INSERT INTO

TB_CARD (ID,FNAME,LNAME,WORK) VALUES

(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#TB_CONTACT'

or, since there are four tags mapping four columns and the sequence

of tags are the same as the columns:

'/ROOT/EMPLOYEE/TITLE#INSERT INTO TB_CARD (ID,FNAME,LNAME,WORK)

VALUES (?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#TB_CONTACT'

or,

'/ROOT/EMPLOYEE/TITLE#INSERT INTO TB_CARD VALUES

(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#TB_CONTACT'

or, since no further calculation of host variables is required:

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-78

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#TB_CARD(ID, FNAME,

LNAME, WORK);/ROOT/EMPLOYEE/NUMBER#TB_CONTACT'

4. Since columns are treated as elements in the XML file, we will not set the

option_flag here. If these columns were not treated as elements, the

option_flag could be set.

option_flag =: {[<attribute> [;<attribute>]...]}

<attribute> =:

{

column_as_attribute

}

5. The log_path will be: "/client/john/xmlimport.log. This is where errors

are recorded during the process of XMLIMPORT. "

6. Call XMLIMPORT using one of possible forms of obj_str:

CALL XMLImport (

'/usr/john/xmlimport.xml',

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3,

TAG4)#TB_CARD(ID,FNAME,LNAME,WORK);/ROOT/EMPLOYEE/NUMBER#tb_cont

act',

'',

'/client/john/xmlimport.log');

System-Stored Procedures 5

5-79

@Copyright 1995-2024 CASEMaker Inc.

5.33 SHOWINDEX

The SHOWINDEX system-stored procedure is used to show index information

on the specific table.

 The prototype for SHOWINDEX is:

SHOWINDEX(VARCHAR(128) TABLE_SCHEMA_NAME INPUT,

 VARCHAR(128) TABLE_NAME INPUT)

table_schema_name................the schema(owner) of the destination table

table_name………………….destination table name

 The returns for SHOWINDEX is:

VARCHAR(128) TABLE_OWNER,

VARCHAR(128) TABLE_NAME,

INT NON_UNIQUE,

VARCHAR(128) INDEX_NAME,

INT TYPE,

INT ORDINAL_POSITION,

VARCHAR(128) COLUMN_NAME,

CHAR(1) ASC_OR_DESC,

INT CARDINALITY,

INT PAGES,

VARCHAR(256) FILTER_CONDITION,

INT FOREIGN_KEY;

 Example

dmSQL> call showindex(‘SAMPLE’,’BOOKS’);

TABLE_OWNER TABLE_NAME NON_UNIQUE INDEX_NAME TYPE

=========== ========== ========== ========== =====

SAMPLE BOOKS 0 PRIMARYKEY 3

DINAL_POSITOIN COLUMN_NAME ASC_OR_DESC CARDINALITY

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-80

============== =========== =========== ===========

 1 ID A 3

PAGES FILTER_CONDITION FOREIGN_KEY

===== ================ ===========

1 NULL 0

System-Stored Procedures 5

5-81

@Copyright 1995-2024 CASEMaker Inc.

5.34 DEFTABLE

The DEFTABLE system_stored procedure is used to display schema

information for a specified table. The result will be same as the result of

dmSQL command DEF TABLE.

 The prototype for DEFTABLE is:

DEFTABLE(VARCHAR(128) TABLE_SCHEMA_NAME INPUT,

VARCHAR(128) TABLE_NAME INPUT)

table_schema_name…………table owner name of the destination table

table_name………………….the destination table name

 The returns for DEFTABLE:

VARCHAR(512) TABLE_DEFINITION

 Example

dmSQL> call deftable(‘SAMPLE’,’BOOKS’);

TABLE_DEFINITION

===

create table SAMPLE.BOOKS (

 ID SERIAL(1),

 NAME VARCHAR(50) default null ,

 AUTHOR VARCHAR(30) default null ,

 SUBJECT VARCHAR(80) default null ,

 INTRODUCTION LONG VARCHAR default null ,

 CONTENT FILE)

 in DEFTABLESPACE lock mode row fillfactor 100 ;

alter table SAMPLE.BOOKS primary key (ID) in DEFTABLESPACE;

create ivf text index IDX_BOOKS_CONTENT on SAMPLE.BOOKS (CONTENT) storage path

DB_DBDIR total text size 500 mb ;

create text index IDX_BOOKS_INTRO on SAMPLE.BOOKS (INTRODUCTION) total text

size 32 mb scale 40 ;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-82

create text index IDX_BOOKS_NAME on SAMPLE.BOOKS (NAME) total text size 32 mb

scale 40 ;

create text index IDX_BOOKS_SUBJECT on SAMPLE.BOOKS (SUBJECT) total text size 32

mb scale 40 ;

System-Stored Procedures 5

5-83

@Copyright 1995-2024 CASEMaker Inc.

5.35 SHOWDMLOG

The SHOWDMLOG system_stored procedure is used to check dmlog message

created by dbmaker. Such as DMERROR.LOG, DMEVENT.LOG,

DMBACKUP.LOG……You can check these information on.

 The prototype for SHOWDMLOG is:

SHOWDMLOG(VARCHAR(256) DMLOG_NAME INPUT,

 VARCHAR(256) SEARCH_STRING INPUT,

 INT START_LINENO INPUT,

 INT SHOW_NLINE INPUT)

dmlog_name……...supports DMERROR.LOG, DMEVENT.LOG,

DMBACKUP.LOG, RP.LOG, ATRP.LOG,

ATRERROR.LOG, dmBackup.his, dmconfig.ini or any file

under DBDIR and its file extension as log, old, txt or ini.

search_string…… search the file's content and returns the line that contains

the search_string. If search_string is null or ' ' means

do not need to search.

start_lineno… ……start lineno offset for search or show the file content.

If start_lineno is null or 0, then it will start from first line.

show_nline……….show how many lines after search_string.

 Example

dmSQL> call showdmlog(‘DMERROR.LOG’,null,null,null);

LINE_NO CONTENT

======= ==

 1 [18016]: 2021/11/05 16:15:12 - INIT_STOP_WORD : ERROR (8002), keyword

entry is required in configuration file .Cannot find 'DB_STPWD' key word

therefore use default stop word

1 rows selected

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 5-84

dmSQL Commands 6

6-1

@Copyright 1995-2024 CASEMaker Inc.

6 dmSQL Commands

The commands presented in this chapter require CASEMaker's dmSQLTool

included with DBMaker.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-2

6.1 CONNECT

The CONNECT command establishes a connection to a database. The user

name and password are case-sensitive, while the database name is not. Any

user with CONNECT or higher security privileges can execute the CONNECT

command.

Before connecting to a database, the dmconfig.ini file on the computer must

contain a database configuration section for the target database. The database

configuration section should already exist if the database was created on the

local computer. If the database was created on a remote computer, add the

database configuration section.

Use the CONNECT command to connect to a single-user database. This starts

the database and establishes a connection. Only one user may be connected to

a single-user database.

Before connecting to a single-user database, specify the database directory.

Use the DB_DbDir keyword to set the directory containing the database in the

dmconfig.ini file.

Use the CONNECT command to connect to a client/server database while the

database server is running. If the database server is not running, start it before

trying to connect.

Before connecting to a client/server database, specify the IP address of the

host computer running the DBMaker server and the port number of the

database. Use the DB_SvAdr and DB_PtNum keywords to set the IP address

and the port number in the dmconfig.ini file. Alternatively, substitute a host

name in place of an IP address when using the DB_SvAdr keyword.

DBMaker will try to connect to a client/server database until the connection

timeout period expires. The connection timeout period is specified by the

DB_CTimO keyword in the dmconfig.ini file. The DB_CTimO keyword does

not apply to single-user databases.

dmSQL Commands 6

6-3

@Copyright 1995-2024 CASEMaker Inc.

The user name and password are not optional with one exception; if the

password is NULL omit it. You may also omit the user name and password

from the CONNECT command using the DB_UsrId and DB_PasWd keywords

in the dmconfig.ini file. The DB_UsrId keyword specifies a default user name

and the DB_PasWd keyword specifies a default password. You cannot specify

one parameter on the command line and the other in the configuration file;

DBMaker always takes the user name and password from the same location.

DBMaker ignores the values specified by the DB_UsrId and DB_PasWd

keywords if you provide a username and password with the CONNECT

command.

database_name Name of the database being connected to

user_name Name of the user connecting to the database

password Current password of user user_name

Figure 6-1 CONNECT syntax

 Value 1

The dmconfig.ini file will provide a value for the DB_DbDir keyword in the

Tutor1 configuration section.
[TUTOR1]

DB_DbDir = C:\DBMAKER\DATABASE\TUTOR1

 Example 1

The following connects the user jenny with password grala833 to the single-

user Tutor1 database.

dmSQL> CONNECT TO Tutor1 jenny grala833;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-4

 Value 2a

The dmconfig.ini file will provide a value for the DB_SvAdr and DB_PtNum

keywords in the Tutor2 configuration section.
[TUTOR2]

DB_SvAdr = 192.72.116.137

DB_PtNum = 35400

 Value 2b

Alternatively use a host name for the DB_SvAdr keyword instead of an IP

address.
[TUTOR2]

DB_SvAdr = mars.syscom.com.tw

DB_PtNum = 35400

 Example 2

The following connects the user amanda with password grixa944 to the

multi-user Tutor2 database.

dmSQL> CONNECT TO Tutor2 amanda grixa944;

 Value 3

The dmconfig.ini file provides values for the DB_SvAdr, DB_PtNum,

DB_UsrId, and DB_PasWd keywords in the Tutor2 configuration section.
[TUTOR2]

DB_SvAdr = 192.72.116.137

DB_PtNum = 35400

DB_UsrId = vivian

DB_PasWd = shuka828

Alternatively, substitute a host name for the IP address for DB_SvAdr, the

same as in Value 2b.

 Example 3

The following connects the user vivian with password shuka828 to the multi-

user Tutor2 database. The user name and password are not provided in the

dmSQL Commands 6

6-5

@Copyright 1995-2024 CASEMaker Inc.

command since they are specified by the DB_UsrId and DB_PasWd keywords

in the dmconfig.ini configuration section. If you provide a user name and

password in the command, DBMaker ignores the values specified by the

DB_UsrId and DB_PasWd keywords.

dmSQL> CONNECT TO Tutor2;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-6

6.2 CREATE DATABASE

The CREATE DATABASE command creates a new database. To execute the

CREATE DATABASE command, DBMaker must have write permission (e.g.,

from the operating system) on the directory where the database will be

created. Any user can execute the CREATE DATABASE command.

DBMaker stores all configuration information for each database in

dmconfig.ini. This file contains a database configuration section for each

database you can connect to from the computer. The dmconfig.ini file is an

ASCII text file, and can be edited with a text editor.

Each database configuration section is comprised of a section header followed

by one or more keyword lines. The section header is the name of the database

enclosed in square brackets. The keyword lines consist of a keyword and a

corresponding value(s). If a keyword requires or supports multiple values,

delimit individual values with either spaces or commas. Depending on their

purpose, keywords may be used, at start time or connect time.

Key words in the dmconfig.ini file are not case-sensitive. Keyword values

may be case-sensitive, depending on the keyword and the operating system

the database is running on. When creating a database, DBMaker will examine

the dmconfig.ini file for a database configuration section. If a database

configuration section with the same name as the database exists, DBMaker

uses the values specified in this section when it creates the database. If a

database configuration section with the same name as the database does not

exist, DBMaker uses default values when it creates the database and adds a

new configuration section.

Choose a database name that is unique from all computers that will be

connecting. Since, DBMaker stores configuration information for all local and

remote databases in the dmconfig.ini file, using the same name for two

databases will cause a conflict. You cannot change the database name once it

has been created, unless you unload all data and recreate the database with a

new name. Database names have a maximum length of 128 characters, and

dmSQL Commands 6

6-7

@Copyright 1995-2024 CASEMaker Inc.

may contain letters, numbers, and the underscore character. Database names

are not case-sensitive.

In the DBMaker physical storage model, files are physical units of storage that

contain the data. Files are managed by the operating system, while data in the

files is managed by the DBMS. DBMaker uses three types of files Data, BLOB,

and Journal.

Data and BLOB files store user and system data. Although they have similar

characteristics, DBMaker manages these two file types in different ways to

improve performance. Data files store table and index data, while BLOB files

store only binary large objects.

Journal files are special files that provide a real-time, historical record of all

changes made to a database and the status of each change. This allows the

database to undo changes made by a transaction that fails, or redo changes

made successfully but not written to disk after a database crash. Journal files

are used only by the database management system, and are not used to store

user data.

In the DBMaker logical storage model, tablespaces are the logical storage

structures used to partition information in a database into manageable areas.

Each tablespace may contain several tables and indexes. Data in the

tablespace is managed by the DBMS, but is physically stored in files. There are

three types of tablespaces regular, autoextend, and system.

Regular tablespaces have a fixed size and contain one or more Data or BLOB

files. They may be extended manually by enlarging existing files in the

tablespace or adding new files to the tablespace. A regular tablespace may

contain a maximum of 32,767 files, with a maximum cumulative file size of 8

TB. On UNIX platforms, regular tablespaces may be placed on raw devices.

NOTE For more information on raw devices, see your UNIX system

documentation.

Autoextend tablespaces automatically increase in size to a maximum of 8 TB

to hold additional data as required. They must contain one data file, and may

contain one BLOB file. To add new files to an autoextend tablespace, first

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-8

convert it to a regular tablespace. If an autoextend tablespace is created with

only one Data file and no BLOB file, a BLOB file may be added later.

Autoextend tablespaces do not support raw devices.

DBMaker generates system tablespaces, while a database is created. Each

database has one system tablespace, which contains the system catalog tables

used to store schema, security, and status information. The system tablespace

is created as an autoextend tablespace, unless created on a UNIX raw device.

System tablespaces may be converted to regular tablespaces. System

tablespaces are created with an initial data file size of 600 KB, and an initial

BLOB file size of 20 KB.

DBMaker will create one system data file and one system BLOB file in the

system tablespace, and create one user data file and one user BLOB file in the

default user tablespace. DBMaker also creates at least one system Journal file

to log database transactions.

The default names for the system files are DATABASE.SDB, DATABASE.SBB,

and DATABASE.JNL, where DATABASE is the name of the database. To change

the default names, use the DB_DbFil, DB_BbFil, and DB_JnFil keywords in the

dmconfig.ini file. Use DB_DbFil to specify the name of the system data file,

DB_BbFil to specify the name of the system BLOB file, and DB_JnFil to specify

the name of the system Journal file. Specify a new name before creating a

database or the default name will be used. The name of a system file may not

be changed after creating the database.

The default user files names are DATABASE.DB and DATABASE.BB.DATABASE

is the name of the database. To change the default names, use the DB_UsrDb

and DB_UsrBb keywords in the dmconfig.ini file. Use DB_UsrDb to specify

the name and size of the default user data file, and DB_UsrBb to specify the

name and size of the default user BLOB file. When using these two keywords

to specify new names for the default user files, also include the size of the file

in Data pages or BLOB frames, separated from the filename by a space or

comma. If the default name is not used for either of the default user files,

specify a new name before creating the database.

dmSQL Commands 6

6-9

@Copyright 1995-2024 CASEMaker Inc.

DBMaker can use up to eight Journal files to log database transactions. To

create multiple Journal files, add additional filenames after the DB_JnFil

keyword, separated by spaces or commas. DBMaker automatically creates

these Journal files when it creating the database. It is possible to add

additional Journal files to a database after creating it by adding additional

Journal filenames and restarting the database in new Journal mode.

To include a path with a filename, include the drive and full path on Windows

systems. On UNIX systems, include either a full or a relative path. By default,

the file will be created in the directory specified by the DB_DbDir keyword in

the dmconfig.ini file, or the application directory if the DB_DbDir keyword is

not present. DBMaker system files may have filenames with a maximum

length of 256 characters, and may contain any characters and symbols

permitted by the operating system, except spaces.

The default sizes for the system files are 600 KB for the data file, 20 KB for the

BLOB file, and 4,000 KB for the Journal file. To change the default file sizes, use

the DB_BfrSz and DB_JnlSz keywords in the dmconfig.ini file.

The DB_BfrSz keyword specifies the size of frames in the system BLOB file,

which also changes the size of the system BLOB file. Provide a value for

DB_BfrSz when you create your database if you do not want to use the default,

and it cannot be changed after creating the database.

The DB_JnlSz keyword specifies the size of the system Journal file in Journal

blocks, which are the primary unit of storage in a Journal file. Journal blocks

store a record of every transaction performed on the database. The size of

each Journal block is determined by the DB_PgSiz in dmconfig.ini file. Each

Journal block can store information on as many transactions as will fit into a

block. To specify a size for a system Journal file, set the DB_JnlSz keyword to a

value between 23 and 524,287 blocks. To calculate the actual size of the file in

kilobytes, multiply this value by the value of the DB_PgSiz as specified in the

dmconfig.ini file. If your database has multiple Journal files, DBMaker creates

each Journal file with the size specified by DB_JnlSz. The default value for

DB_JnlSz is 1,000 pages. The DB_JnlSz keyword may be changed at any time,

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-10

but it will not take effect until the next time the database is started in New

Journal Mode.

The default sizes for the default user files are 600 KB for the default user data

file, and 20 KB for the default user BLOB file. To change the default file sizes,

use the DB_UsrDb and DB_UsrBb keywords in the dmconfig.ini file.

The DB_UsrDb keyword specifies the size of the default user data file in data

pages, which are the primary unit of storage. Data pages store table records,

index keys, and any BLOB data small enough to fit onto the data page. Each

data page can store as many table rows or index keys as will fit onto a page.

The size of each data page is determined by the DB_PgSiz as specified in the

dmconfig.ini file. To specify a size for the default user data file, set the size

parameter of the DB_UsrDb keyword to a value between 2 and 524,287 pages.

To calculate the actual size of the file in kilobytes, multiply this value by the

value of the keyword DB_PgSiz as specified in the dmconfig.ini file. The

default value of DB_UsrDb is 150.

The DB_UsrBb keyword specifies the size of the default user BLOB file in

BLOB frames, which are the primary unit of storage in a BLOB file. BLOB

frames store large binary data objects, graphics, audio and video, or large text,

which does not fit onto a data page. Each BLOB frame can only store a single

BLOB. The size of each BLOB frame is specified by the DB_BfrSz keyword,

which can range from 8 KB to 256 KB. To specify a size for the default user

BLOB file, set the size parameter of the DB_UsrBb keyword to a value

between 2 and 524,287 frames. To calculate the actual size of the file in

kilobytes, multiply this value by the value of DB_BfrSz. The default value for

DB_UsrBb is 2.

Security mode determines whether DBMaker uses security privileges to

control access to the database. There are five levels of security privileges:

CONNECT, RESOURCE, DBA, SYSDBA and SYSADM.

CONNECT security privilege permits a user to connect to the database, view

the system tables, and access any database objects granted privileges on by

the owner, a DBA, a SYSDBA or a SYSADM. New database objects cannot be

dmSQL Commands 6

6-11

@Copyright 1995-2024 CASEMaker Inc.

created with the CONNECT security privilege. The CONNECT security privilege

must be granted before being granted any other privilege.

RESOURCE security privilege permits users to create and drop tables, indexes,

views, synonyms, and domains. A user can only drop tables, views, synonyms,

and domains they created. In addition, a user can grant and revoke object

privileges to other users on any database objects created by them. Users with

RESOURCE security privilege also have all privileges of the CONNECT security

privilege.

DBA security privilege permits a user to start, terminate, and back up

databases, manage database resources, tablespaces and files, and access all

tables, indexes, views, synonyms, and domains without having been granted

privileges. Also grant, change, and revoke object privileges on any database

object owned by any user. A DBA may not grant security privileges to new

users or create new groups, but may add and remove users from existing

groups. Users with DBA security privilege also have all privileges of

RESOURCE and CONNECT.

SYSDBA security privilege permits a user to grant and revoke security

privileges to all users except users with the SYSADM and SYSDBA authority,

create and drop groups, and add or remove users from groups. Also, change

the password of all users except users with the SYSADM and SYSDBA

authority. Users with SYSDBA security privilege also have all privileges of

DBA, RESOURCE and CONNECT.

SYSADM security privilege permits a user to grant and revoke security

privileges to all users, create and drop groups, and add or remove users from

groups. Also, change the password of any user. There is only one user in each

database with SYSADM security privileges. DBMaker automatically creates

this user when creating the database, and assigns the user name SYSADM. A

SYSADM may not grant SYSADM security privileges to any other users. The

SYSADM also has all privileges of SYSDBA, DBA, RESOURCE, and CONNECT.

Set the security mode before creating a database. After creating a database,

the security mode cannot change unless the database is unloaded and

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-12

recreated. Use the DB_Secur keyword in the dmconfig.ini file to set the

security mode. If the DB_Secur keyword is not used when creating a database,

the security mode is ON by default.

When security mode is ON, only users with appropriate security privileges can

connect to the database. A user name and password are required to connect to

a database. DBMaker maintains a list of authorized users and their security

privileges for the database, and checks this list to determine the specific

commands each user can execute.

When security mode is OFF, any user can connect to a database with any user

name. Passwords are not required to connect to a database, and DBMaker

ignores passwords. DBMaker does not maintain a list of users or security

privileges for the database, and any user can execute any command.

When executing the CREATE DATABASE command, DBMaker creates a new

database, starts the database, and connects you as the SYSADM. DBMaker does

not assign a password to the SYSADM user when it is created. Change the

SYSADM password immediately after creating the database to prevent

unauthorized access to the database. DBMaker starts a newly created

database in single-user mode to prohibit other users from logging on to the

database before you can change the SYSADM password. To put the new

password into effect and allow other users to connect, shut down the database

and restart it in single or multi-user mode.

DBMaker starts all databases in single-user mode by default. To start a

database in multi-user mode, use the DB_SvAdr and DB_PtNum keywords in

the client-side dmconfig.ini file and the DB_PtNum keyword in the server-

side dmconfig.ini file.

The DB_SvAdr keyword specifies the IP address or host name of the computer

the DBMaker server is running on. This keyword is required only on the client

side; it is optional on the server side. To specify an IP address or host name,

set the DB_SvAdr keyword to any valid IP address or host name. Use a

hostname; also ensure that the Domain Name Service (DNS) is properly set up

on your computer.

dmSQL Commands 6

6-13

@Copyright 1995-2024 CASEMaker Inc.

The DB_PtNum keyword specifies the port number the DBMaker server is

bound to. This keyword is required on both the client and server sides. To

specify a port number, set the DB_PtNum keyword to a value between 1,025

and 65,535. If not specifying a port number, DBMaker uses port number

23,000 by default.

database_name Name of the new database to create

Figure 6-2 CREATE DATABASE syntax

 Example 1

The following creates a new database named Accounts with the default

settings for all parameters. A database configuration section for this database

does not exist in the dmconfig.ini file when this command is executed. This

creates a single-user database in the application directory using the default

file names ACCOUNTS.SDB, ACCOUNTS.SBB, ACCOUNTS.DB, ACCOUNTS.BB

and ACCOUNTS.JNL and the default file sizes of 600 KB for the .SDB and .DB

files, 20 KB for the .SBB and .BB files, and 4,000 KB for the .JNL file. To start

this database in multi-user mode, add the DB_SvAdr and DB_PtNum

keywords to the Accounts database configuration section in the dmconfig.ini

file after creating the database.

dmSQL> CREATE DATABASE Accounts;

 Example 2

The following creates a new database named Accounts using the settings

shown in the dmconfig.ini section below.

dmSQL> CREATE DATABASE Accounts;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-14

 Excerpt

This database configuration section exists in the dmconfig.ini file when the

command is executed. This creates a single-user database with security in the

C:\DATABASE\ACCOUNTS directory, using file names ACCOUNTS.SDB for the

system data file, ACCOUNTS.SBB for the system BLOB file, ACNTDATA.DB for

the default-user data file, ACNTBLOB.BB for the default user BLOB file, and

ACNTHIST.JN1, ACNTHIST.JN2, and ACNTHIST.JN3 for the three Journal

files. The file sizes are 600 KB for the system data file, 20 KB for the system

BLOB file, 1,000 KB for the default user data file, 8,000 KB for the default user

BLOB file, and 2,000 KB for each of the three Journal files. To start this

database in multi-user mode, add the DB_SvAdr and DB_PtNum keywords to

the Accounts database configuration section in the dmconfig.ini file after

creating the database.

[ACCOUNTS]

DB_DbDir = C:\DATABASE\ACCOUNTS

DB_DbFil = ACCOUNTS.SDB

DB_BbFil = ACCOUNTS.SBB

DB_UsrDb = ACNTDATA.DB 250

DB_UsrBb = ACNTBLOB.BB 250

DB_BfrSz = 32

DB_JnFil = ACNTHIST.JN1, ACNTHIST.JN2, ACNTHIST.JN3

DB_JnlSz = 500

dmSQL Commands 6

6-15

@Copyright 1995-2024 CASEMaker Inc.

6.3 DEF TABLE

The dmSQL command DEF TABLE is used to display schema information for a

specified table. This command should not be used on system tables.

Figure 6-3 DEF TABLE Command

 Example 1a

Create a table:

dmSQL> CREATE TABLE tb_tmp(c00_serial SERIAL, c01_int INTEGER, c02_char

CHAR(20));

 Example 1b

Execute the command:

dmSQL> DEF TABLE tb_tmp;

 Result

dmSQL> DEF TABLE tb_tmp;

dmSQL> create table SYSADM.TB_TMP (

 C00_SERIAL SERIAL(1),

 C01_INT INTEGER default null ,

 C02_CHAR CHAR(20) default null)

 in DEFTABLESPACE lock mode row fillfactor 100;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-16

6.4 DEF VIEW

The dmSQL command DEF VIEW is used to display the construction of

definitions. This command should not be used on system views.

Figure 6-4 DEF VIEW Command

 Example 1a

Create a view:

dmSQL> CREATE VIEW view_tmp AS SELECT c00_serial, c01_int FROM tb_tmp;

 Example 1b

Execute the command:

dmSQL> DEF VIEW view_tmp;

 Result

dmSQL> DEF VIEW view_tmp;

dmSQL> CREATE VIEW SYSADM.VIEW_TMP AS SELECT c00_serial, c01_int FROM

SYSADM.TB_TMP;

dmSQL Commands 6

6-17

@Copyright 1995-2024 CASEMaker Inc.

6.5 DEF PROC

The dmSQL command DEF PROC is used to check the definition of the stored

procedure.

DEF PROC Stored procedure_name

 Example 1a

Create a stored procedure:
dmSQL> SET BLOCK DELIMITER @@;

dmSQL> @@

CREATE PROCEDURE CRETB

LANGUAGE SQL

BEGIN

CREATE TABLE TB_1(V1 int, V2 BIGINT, V3 smallint,V4 INT,

 V5 FLOAT,V6 DOUBLE,V7 DECIMAL(8,2),

 V8 CHAR(20),V9 CHAR(20),V10 VARCHAR(20),

 V11 CHAR(40),V12 VARCHAR(40),V13 DATE,

 V14 TIME,V15 TIMESTAMP,V16 REAL);

END;

@@

 Example 1b

Execute the command:

dmSQL> DEF PROC cretb;

 Result

dmSQL> DEF PROC cretb;

CREATE PROCEDURE SYSADM.CRETB

LANGUAGE SQL

BEGIN

CREATE TABLE TB_1(V1 int, V2 BIGINT, V3 smallint,V4 INT,

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-18

 V5 FLOAT,V6 DOUBLE,V7 DECIMAL(8,2),

 V8 CHAR(20),V9 CHAR(20),V10 VARCHAR(20),

 V11 CHAR(40),V12 VARCHAR(40),V13 DATE,

 V14 TIME,V15 TIMESTAMP,V16 REAL);

dmSQL Commands 6

6-19

@Copyright 1995-2024 CASEMaker Inc.

6.6 DISCONNECT

The DISCONNECT command closes an active database connection. Any user

with CONNECT or higher security privileges can execute the command.

AUTOCOMMIT mode controls when DBMaker will commit a transaction. When

AUTOCOMMIT mode is on, each command is treated as a separate transaction.

DBMaker automatically commits each command executed if it completes

successfully, or rolls it back if an error occurs during execution. When

AUTOCOMMIT mode is off, all commands between successive COMMIT WORK

commands form a single transaction.

Executing the COMMIT WORK command commits any changes made in the

transaction, and executing the ROLLBACK WORK command rolls back all

changes. When disconnecting from a database and AUTOCOMMIT mode is off,

the active transaction is aborted. Any changes made by the transaction are not

recorded in the database.

When disconnecting from a multi-user database, the database remains active

and accessible to other users. When disconnecting from a single-user database

running on UNIX the database shuts down. When disconnecting from a

multiple-connection database running on Windows, the database shuts down

only if you are the last connected user.

Figure 6-5 DISCONNECT syntax

 Example

The following disconnects an active database.

dmSQL> DISCONNECT;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-20

6.7 EXPORT

The Export command facitates the extraction of data from database tables and

inserts the data into text files. There are two configurations used. The export

command interface is used for specifying command options. The description

file is used for specifying the export file format.

EXPORT COMMAND INTERFACE

The Export command syntax is as follows:

<data_file> This is the target file into which you will insert the data. It

should be in full path. If you do not specify data_file, the export file name will

be <table_name>_out.txt.

TABLE Please specify the table you want to export.

[DESCRIPTION <description_file>] … This is the description file for the data

format in the resulting data file. In the description file, users will specify some

rules for the resulting data file. Refer to the DESCRIPTION FILE FORMAT

section for more information. If the description file is not specified, the

description file name is <table_name>_out.dsc. If this file does not exist,

DBMaker uses the default output format.

The default file format is the variable format, meaning:

• TAB is the column delimiter

• New line characters are row terminators

• No quotation marks

• All columns in the source table are exported in the order as they are in the

table

[LOG <log_file>] This file logs the errors that occur during the course of

unloading data. If this option is not specified, the default log file name,

export.log, will be used.

dmSQL Commands 6

6-21

@Copyright 1995-2024 CASEMaker Inc.

[STOP_ON_ERROR]… Specifies that you want want to stop unloading data if an

error occurs. If this option is not specified, the unloading of data will continue

even if an error has occured.

EXPORT { [INTO data-file] TABLE table-name |

 INTO data-file FROM (select-statement) }

 [DESCRIPTION description-file]

 [LOG log-file]

 [STOP_ON_ERROR]

DESCRIPTION FILE

You can specify the format of the description file for formatting the unloading

result. Two types of format can be used, fixed format and variable format.

FIXED FORMAT DESCRIPTION FILE

When the fixed format description file is used, users want each column of the

export result to be aligned vertically. The separators used for alignment will

be space characters.

FORMAT = FIXED ... …This specifies the description file format for fixed length

data files.

[LOB_FORMAT= INTERNAL | EXTERNAL]…This specifies that when exporting

columns of large object types (such as blob, clob, nclob, nblob and other files)

external files will be generated. For each column of large object type in each

row, an external file will be generated. If this option is not specified, the

content of data will be embedded in a datafile.

When naming external files it's important to keep the following in mind:

blobtempdir<m>\blbtmpf<n>.<tmp | txt>.

m specifies the minimum un-used number counted from 1 in the directory.

For example, if there are already directories named blobtempdir1,

blobtempdir2 and blobtempdir3, the newly created directory for containing

external files will be blobtempdir4.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-22

n specifies the minimum un-used number counted from 1 in the directory.

Whether the file extension name is tmp or txt depends on whether the

exported column is BLOB type, FILE type or CLOB type. If the column type is

BLOB or FILE, the file extension name will be tmp. Otherwise, the column type

is txt.

server_column_name…This lists the names of the source table columns that are

going to be exported from the database. If there are spaces in table name, use

double quotes to enclose the column names.

column_position Specifies the column byte position in data file.

server_columnname and column_position are separated by space character(s).

column_position is specified by two numbers that are separated by (:).For

example a 1:40 means the data loader should look for data from 1st byte to

40th byte in data file. We will use space characters to align the data field

vertically. If the data in the source table exceeds the field length, the data

output will be truncated.
FORMAT=FIXED

[LOB_FORMAT=INTERNAL | EXTERNAL]

<server_column_name> <column_position>

Figure 6-6 EXPORT syntax

VARIABLE FORMAT DESCRIPTION FILE

When variable format description file is chosen, the fields of resulting data

output will be separated by a user specified delimiter.

dmSQL Commands 6

6-23

@Copyright 1995-2024 CASEMaker Inc.

FORMAT=VARIABLE… specifies the resulting output file is in variable format.

[COLUMN_DELIMITER=<delimiter>]… This specifies a character that separates

each column in datafile. The character should be single quoted. For example,

to indicate that a SPACE is used as column delimiter, use ' '. Aside from normal

characters, take the following escape sequences that represent special

characters.

CHARACTER ESCAPE SEQUENCE REPRESENTATION

TAB \T

NEW LINE \N

Table 6-1 Character and Escape Sequence

For example, if the delimiter is a TAB, users will use '\t' in <delimiter>. If the

column delimiter is not specified, we will use TAB (\t) as the column

delimiter. Use discretion when choosing a delimiter.

If the number of column delimiters is fewer than the number of target table

columns specified by users, NULL will be used for the insert value.

[ROW_TERMINATOR=<row_terminator>]…This string denotes the end of a

row.

[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE] …This indicates that the

output data will be quoted by either single quotes or double quotes. If there is

quotation mark in the data, the output will show two consecutive quotation

marks.

[LOB_FORMAT=INTERNAL | EXTERNAL]… This specifies that when exporting

columns of large object types, such as blob, clob, nclob, nblob and other large

files, external files will be generated. For each column of large object type in

each row, an external file will be generated. If this option is not specified, the

content of the data will be embedded in a datafile.

When naming external files it's important to keep the following in mind:

blobtempdir<m>\blbtmpf<n>.<tmp | txt>.

m specifies the minimum un-used number counted from 1 in the directory.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-24

 For example, if there are already directories named blobtempdir1,

blobtempdir2 and blobtempdir3, the newly created directory for containing

external files will be blobtempdir4.

n specifies the minimum un-used number counted from 1 in the directory.

Whether the file extension name is tmp or txt depends on whether the

exported column is BLOB type, FILE type or CLOB type. If the column type is

BLOB or FILE, the file extension name will be tmp. Otherwise, the column type

is txt.

[DISPLAY_NAME=YES | NO] … This specifies whether to export column or label

name in the output file. Default setting is NO.

server_column_name… This variable lists the names of columns of a server

table which are to be exported. The order of these names represents the order

of column export. If there is no such list, all the columns in source table will be

export in the same order as that of table columns.

FORMAT=VARIABLE

[COLUMN_DELIMITER=<delimiter>]

[ROW_TERMINATOR=<row_terminator>]

[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE]

[LOB_FORMAT=INTERNAL | EXTERNAL]

[DISPLAY_NAME=YES | NO]

[<server_column_name>]

IMPORT/EXPORT DATA RULES

The following table outlines the rules that must be applied when attempting to

import or export data to or from a file.

DATA

TYPE
IMPORT/EXPORT

FORMAT
EXAMPLE

BINARY USE HEX FORMAT
TO IMPORT THE BINARY
NUMBER "0X004D2", USE
004D2 IN DATAFILE

dmSQL Commands 6

6-25

@Copyright 1995-2024 CASEMaker Inc.

DATA

TYPE
IMPORT/EXPORT

FORMAT
EXAMPLE

CHAR
CHARACTERS ARE USED
EXCLUSIVELY

TO IMPORT THE WORD
"INCEPTION", USE INCEPTION
IN THE DATAFILE

NCHAR

THREE FORMATS CAN BE
USED: AUTO, HEX FORMAT
OR CHARACTER.

USE DESCRIPTION FLAG
IMPORT_NCHAR_FORMAT
TO INDICATE USER'S
OPTION IN DESCRIPTION
FILE.

NCHAR_AUTO OPTION IS
TRYING TO IMPORT DATA
AS HEX FORMAT FIRST. IF
FAILS, THEN TRY IMPORT
DATA AS CHARACTER.

NCHAR_HEX FORMAT
OPTION IS IMPORTING
DATA AS HEX FORMAT.

NCHAR_CHAR FORMAT
OPTION IS IMPORTING
DATA AS CHARACTERS.

TO IMPORT THE WORD
"WORD", USE
77006F0072006400 OR
WORD IN DATA FILE

VARCHAR SEE CHAR DATA TYPE

NVARCHAR SEE NCHAR DATA TYPE

DATE

THE FORMAT YYYY/MM/DD
WILL BE USED FOR
EXPORTING

TO IMPORT THE DATE
"2003/07/25", USE
2003/07/25 IN THE
DATAFILE

TIME
EXPORT AND IMPORT WILL
USE THE FORMAT
HH:MM:SS

TO IMPORT THE TIME
"14:30:25", USE 14:30:25 IN
THE DATAFILE

TIMESTAMP THE COMBINATION OF
DATE FORMAT AND TIME

TO IMPORT THE TIMESTAMP
"2003/07/25 14:30:25", USE

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-26

DATA

TYPE
IMPORT/EXPORT

FORMAT
EXAMPLE

FORMAT FORMS THE
FORMAT OF TIMESTAMP

2003/07/25 14:30:25 IN
DATA FILE

DECIMAL
USE NUMERIC DATA
REPRESENTATION

TO IMPORT THE NUMBER
"36.82", USE 36.82 IN DATA
FILE

DOUBLE

USE NUMERIC DATA AS
DESCRIBED IN DECIMAL OR
SCIENTIFIC NOTATION OF
NUMBERS

TO IMPORT THE NUMBER
"13E+12", USE 13E+12 IN
DATA FILE

FLOAT SEE DOUBLE

INTEGER USE INTEGER DATA
TO IMPORT THE INTEGER
"576", USE 576 IN DATAFILE

LONG
VARBINARY

TWO FORMATS CAN BE
USED: EMBEDDED OR
EXTERNAL FILE FORMAT.

FOR EMBEDDED FORMAT,
HEX CHARACTERS ARE
USED.

FOR EXTERNAL FILE
FORMAT, THE URL IS
PROVIDED.

USE DESCRIPTION FLAG
LOB_FORMAT TO INDICATE
YOUR OPTION. FOR
DETAILS SEE DESCRIPTION
FILE SPECIFICATIONS.

(1) EMBEDDED FORMAT:

THE FORMAT USED WILL BE
THE SAME AS BINARY.

(2) EXTERNAL FILE FORMAT:

FOR EXAMPLE, IF USERS
WANT TO IMPORT A BINARY
FILE WHOSE FULL PATH IS
"C:\MY
DOCUMENT\GRAPH.GIF". THE
URL PROVIDED WILL BE
C:\MY
DOCUMENT\GRAPH.GIF

LONG
VARCHAR

SIMILAR TO THE CASE FOR
LONG VARBINARY, TWO
FORMATS CAN BE USED.
THE INPUT DATA WILL BE
IN ASCII STRING INSTEAD
OF HEX STRING.

(1) EMBEDDED FORMAT:

SAME AS CHAR FORMAT.

(2) EXTERNAL FILE FORMAT:

SAME AS LONG VARBINARY.

FILE FOR FILE TYPE,
IMPORT/EXPORT WILL

dmSQL Commands 6

6-27

@Copyright 1995-2024 CASEMaker Inc.

DATA

TYPE
IMPORT/EXPORT

FORMAT
EXAMPLE

ADOPT THE SAME RULE
FOR LONG VARBINARY.

OID SAME RULE AS INTEGER

SERIAL SAME RULE AS INTEGER

SMALLINT SAME RULE AS INTEGER

NULL data FOR VARIABLE FORMAT,
NULL DATA IS RECOGNIZED
BY THE FACT THAT
THERE'S NOTHING
BETWEEN TWO
CONSECUTIVE DELIMITERS.

FOR FIXED FORMAT, NULL
DATA ARE RECOGNIZED BY
THE FACT THAT THERE
ARE ONLY SPACE
CHARACTERS BETWEEN
COLUMNS.

Table 6-2 Import/Export Data Rules

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-28

6.8 IMPORT

The Import command is used for extracting data from a text file and then

inserting the data into database tables. The import command interface is used

for specifying command options. The description file is used for specifying the

import file format.

IMPORT COMMAND INTERFACE

The Import Command Interface provides you with several options for

importing data. Options include controling the stoppage criteria for data

loading, the logging of errors and the data encoding of source data files. The

format, of source data files, is described in the description file.

[<owner_name>.]<table_name> … This identifies the table to be loaded from

the datafile. If you do not specify the <owner_name>, the current connection

user will be assigned as the owner.

[FROM <data_file>] … This is the actual file that contains data to be loaded. If

you do not specify data_file, the datafile name will be <table_name>_in.txt. For

example, if the import table name is t1 and datafile name is not specified in

command, the datafile name will be t1_in.txt.

[DESCRIPTION <description_file>]… This is the description file for describing

the data format in the datafile. If this option is not specified, the description

file name will be assigned as <table_name>_in.dsc. For example, if the import

table name is t1 and description file is not specified, the description file name

will be assigned as t1_in.dsc. If this file is not found, a default description file

format will be used, variable description file format.

[LOG <log_file>] This identifies the log file, which logs any errors during the

course of data loading. It will show the content of the record, which triggers

the error as well as the corresponding error message. If you do not specify this

option, the default log name will be import.log.

dmSQL Commands 6

6-29

@Copyright 1995-2024 CASEMaker Inc.

[STOP_ON_ERROR]… The loading of data will stop if an error occurs during the

import process if this variable is set. If it is not specified, the loading will

continue even when an error occurs.

IMPORT [<owner_name>.]<table_name>

[FROM <data_file>]

[DESCRIPTION <description_file>]

[LOG <log_file>]

[STOP_ON_ERROR]

IMPORT

FROM data_file

table_name

owner_name

DESCRIPTION description_fle

LOG log_file STOP_ON_ERROR

Figure 6-7 IMPORT syntax

DESCRIPTION FILE

Two types of description file are used. One is fixed format and the other is

variable format. Parse errors in the description file will be shown as clearly as

possible. You will know why the error has happened by checking the error

message. The error message will display the problem that occurred when

parsing a specific word.

FIXED FORMAT DESCRIPTION FILE

FORMAT=FIXED When the format is set to fixed this means the description

file describes the format for fixed length datafiles.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-30

[START_WITH_ROW=<row_number>]… You can specify from which record you

want to start loading data. The default number is 1, if you do not specify this

option. If START_WITH_ROW is greater than total rows of data in datafile, no

data will be loaded. The row_number is must be a positive number.

[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>] … This lets you

specify the interval of the rows of records loaded between each commit-

transaction. If this option is not specified, DBMaker will commit transaction

for every 5 rows. If the variable is set at -1, there will be no commit. In this

case you must commit transaction manually if you want the load to be

effective. If the variable is set at 0, the entire import is seen as a single

transaction. The system will then issue a commit after the loading is finished.

The number of rows committed will still count a record even if an error occurs

when loading the record.

For example, you set NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=10, and

an error occurs when the 4th record is loaded. The 1st through 3rd records and

5th through 10th records will still be committed and the 1st through 10th

records are still seen as one transaction unit. Of course, when

STOP_ON_ERROR is specified, the 5th record through the 10th record are not

committed; only the 1st through 3rd records are committed.

This option is valid only when auto-commit is off.

[LOB_FORMAT=INTERNAL | EXTERNAL] … If clob/blob format is internal, the

text in data file is seen as the data that is going to be imported. Otherwise, the

text is seen as a URL to external files that are going to be imported.

server_column_name …This lists the names of the target table columns

that are going to be imported from a datafile. If there are spaces or equal signs

in the table column name, use double quotes to enclose it.

column_position This is the column byte position in datafiles.

server_column_name and column_position are separated by space characters.

column_position is specified by two numbers that are separated by (:). For

example, a 1:40 means the data loader should look for data from the 1st byte

through the 40th byte in a datafile. Use space characters to align the data field

dmSQL Commands 6

6-31

@Copyright 1995-2024 CASEMaker Inc.

vertically. If the data in the source table exceeds the field length, the rest of

row data will be truncated. Each line is terminated by either new line or a

carriage return and a new line, depending on whether the loader is a Windows

platform. If a line is smaller than the maximum position, spaces will be padded

to fill the hole. If a line is longer than the maximum position, the rest of the

line is ignored.

FORMAT=FIXED

[START_WITH_ROW=<row_number>]

[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>]

[LOB_FORMAT=INTERNAL | EXTERNAL]

<server_column_name> <column_position>

NOTE The fields, server_column_name, and column_position are separated by

space characters.

 An example for importing a file with fix format description file is as follows:

The datafile exists as follows:
Davolio Nancy Sales Representative Ms.

Fuller Andrew Vice President, Sales Dr.

Leverling Janet Sales Representative Ms.

Peacock Margaret ... Sales Representative Mrs.

Buchanan Steven Sales Manager Mr.

Suyama Michael Sales Representative Mr.

King Robert Sales Representative Mr.

The description file for this datafile may look like this:

START_WITH_ROW=1

NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=5

Name 1:20

Position 20:45

Gender 50:54

VARIABLE FORMAT DESCRIPTION FILE
FORMAT=VARIABLE

[START_WITH_ROW=<row_number>]

[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>]

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-32

[{COLUMN_DELIMITER=<delimiter>}]

[ROW_TERMINATOR=<row_terminator>]

[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE]

[ESCAPE_CHAR=YES|NO]

[LOB_FORMAT=INTERNAL | EXTERNAL]

[<server_column_name> <column_number>]

FORMAT=VARIABLE… This means this file contains the format for variable

length description files.

[START_WITH_ROW=<row_number>]… You can specify from which record you

want to start loading data. The default number is 1, if you do not specify this

option. If START_WITH_ROW is greater than total rows of data in datafile, no

data will be loaded. The row_number is must be a positive number.

[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>] … This lets you

specify the interval of the rows of records loaded between each commit-

transaction. If this option is not specified, DBMaker will commit transaction

for every 5 rows. If the variable is set at -1, there will be no commit. In this

case you must commit transaction manually if you want the load to be

effective. If the variable is set at 0, the entire import is seen as a single

transaction. The system will then issue a commit after the loading is finished.

The number of rows committed will still count a record even if an error occurs

when loading the record.

For example, you set NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=10, and

an error occurs when the 4th record is loaded. The 1st to 3rd records and 5th to

10th records will still be committed and the 1st to 10th records still seen as one

transaction unit. Of course, when STOP_ON_ERROR is specified, the 5th record

to 10th record won't be committed at all only the 1st to 3rd records will be

committed.

This option is valid only when auto-commit is off.

[COLUMN_DELIMITER=<delimiter>]… This specifies a character that separates

each column in datafile. The character should be single quoted. For example,

to indicate that a SPACE is used as column delimiter, use ' '. Aside from normal

dmSQL Commands 6

6-33

@Copyright 1995-2024 CASEMaker Inc.

characters, take the following escape sequences that represent special

characters.

CHARACTER ESCAPE SEQUENCE

REPRESENTATION

TAB \T

NEW LINE \N

Table 6-3 Character and Escape Sequence

For example, if the delimiter is a TAB, users will use '\t' in <delimiter>. If the

column delimiter is not specified, we will use TAB (\t) as the column

delimiter. Use discretion when choosing a delimiter.

If the number of column delimiters is fewer than the number of target table

columns specified by users, NULL will be used for the insert value.

[ROW_TERMINATOR=<row_terminator>] … This is a string that denotes the

end of a row. The row_terminator should be double-quoted. The escape

sequence rule for column delimiter applies to row terminator. In addition to

that, the carriage-return also can be the escape sequence:

CHARACTER ESCAPE SEQUENCE

REPRESENTATION

CARRIAGE RETURN \R

Table 6-4 Character and Escape Sequence

For example, if a carriage return and a new line character form a row

terminator, the <row_terminator> should be "\r\n". If no row terminator is

specified, a new line character ('\n') will be used as row terminator. The

number of characters in row terminator should not be greater than 2.

Note that, no column delimiter should be in row_terminator.

[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE] … This indicates whether the

alphabetic data in one field of a data source file is quoted. If SINGLE_QUOTE is

specified, the data enclosed by single quotes is seen as one column of data. If

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-34

DOUBLE_QUOTE is specified, the data enclosed by double quotes is seen as

one column of data.

[ESCAPE_CHAR=YES | NO] … This indicates whether an escape character (\) is

used or not. The default is YES. If the escape character is used, the column

delimiter character after escape character is seen as real data. For example, if

we specify that a TAB be used as the column delimiter, and ESCAPE_CHAR is

YES, a \TAB data is seen as TAB in data instead of column delimiter. For row

terminator, this escape character means the line continues, and the \n is seen

as real data. This rule also applies to the quotation mark.

[LOB_FORMAT=INTERNAL | EXTERNAL] … If clob/blob format is internal, the

text in the datafile is seen as the data that is going to be imported. Otherwise,

the text is seen as a URL to external files that are going to be imported.

server_column_name … This lists the names of the target table columns

that are going to be imported from a datafile. If there are spaces or equal signs

in the table column name, use double quotes to enclose it.

column_number This is the cardinal number of each field in data file.

server_column_name and column_number are separated by space characters.

NOTE Note that if server_column_name and column_number are not

specified, all columns in datafile will be imported into target table

columns in the same order as datafile columns. That is to say, the 1st

column in datafile will be imported as 1st column in the table, and the

2nd column in datafile will be imported as the 2nd column in table, etc.

If the number of columns in datafile is greater than that of the target

table, the remaining columns in datafile will be ignored. If, on the

other hand, the number of columns in datafile is smaller than that of

the target table, the remaining columns in target table will be inserted

with NULL.

DEFAULT VARAIBLE FORMAT DESCRIPTION FILE

It's optional that users specify the description file for their datafile format. If

users do not specify the description file, a default description format is

dmSQL Commands 6

6-35

@Copyright 1995-2024 CASEMaker Inc.

assumed. The default format means the following description file is used (On

Win32 platform, the ROW_DELIMITER="\r\n"):

START_WITH_ROW=1

NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=5

COLUMN_DELIMITER="\t"

ROW_TERMINATOR="\n"

 An example for importing a file with variable format description file is as follows:

A datafile exists:
Davolio Nancy,Sales Representative,Ms.

Fuller Andrew,"Vice President, Sales",Dr.

Leverling Janet,Sales Representative,Ms.

Peacock Margaret,Sales Representative,Mrs.

Buchanan Steven,Sales Manager,Mr.

Suyama Michael,Sales Representative,Mr.

King Robert,Sales Representative,Mr.

The description file for this data file may look like this:

START_WITH_ROW=1

NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=5

COLUMN_DELIMITER=","

ROW_TERMINATOR="\n"

DOUBLE_QUOTE

Name 1

Position 2

Gender 3

IMPORT/EXPORT DATA RULES

The following table outlines the rules that must be applied when attempting to

import or export data from or to a file.

DATA TYPE IMPORT/EXPORT FORMAT EXAMPLE

BINARY USE HEX FORMAT
TO IMPORT THE
BINARY NUMBER
"0X004D2", USE

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-36

DATA TYPE IMPORT/EXPORT FORMAT EXAMPLE

004D2 IN DATAFILE

CHAR
CHARACTERS ARE USED
EXCLUSIVELY

TO IMPORT THE
WORD "INCEPTION",
USE INCEPTION IN
THE DATAFILE

NCHAR

THREE FORMATS CAN BE
USED: AUTO, HEX FORMAT OR
CHARACTER.

USE DESCRIPTION FLAG
IMPORT_NCHAR_FORMAT TO
INDICATE USER'S OPTION IN
DESCRIPTION FILE.

NCHAR_AUTO OPTION IS
TRYING TO IMPORT DATA AS
HEX FORMAT FIRST. IF FAILS,
THEN TRY IMPORT DATA AS
CHARACTER.

NCHAR_HEX FORMAT OPTION IS
IMPORTING DATA AS HEX
FORMAT.

NCHAR_CHAR FORMAT OPTION
IS IMPORTING DATA AS
CHARACTERS.

TO IMPORT THE
WORD "WORD", USE
77006F0072006400
OR WORD IN
DATAFILE

VARCHAR SEE CHAR DATA TYPE

NVARCHAR SEE NCHAR DATA TYPE

DATE

THE FORMAT YYYY/MM/DD
WILL BE USED FOR EXPORTING

TO IMPORT THE
DATE "2003/07/25",
USE 2003/07/25 IN
THE DATAFILE

TIME
EXPORT AND IMPORT WILL USE
THE FORMAT HH:MM:SS

TO IMPORT THE TIME
"14:30:25", USE
14:30:25 IN THE
DATAFILE

TIMESTAMP THE COMBINATION OF DATE TO IMPORT THE

dmSQL Commands 6

6-37

@Copyright 1995-2024 CASEMaker Inc.

DATA TYPE IMPORT/EXPORT FORMAT EXAMPLE

FORMAT AND TIME FORMAT
FORMS THE FORMAT OF
TIMESTAMP

TIMESTAMP
"2003/07/25
14:30:25", USE
2003/07/25 14:30:25
IN DATA FILE

DECIMAL
USE NUMERIC DATA
REPRESENTATION

TO IMPORT THE
NUMBER "36.82", USE
36.82 IN DATA FILE

DOUBLE

USE NUMERIC DATA AS
DESCRIBED IN DECIMAL OR
SCIENTIFIC NOTATION OF
NUMBERS

TO IMPORT THE
NUMBER "13E+12",
USE 13E+12 IN
DATAFILE

FLOAT SEE DOUBLE

INTEGER USE INTEGER DATA
TO IMPORT THE
INTEGER "576", USE
576 IN DATAFILE

LONG
VARBINARY

TWO FORMATS CAN BE USED:
EMBEDDED OR EXTERNAL FILE
FORMAT.

FOR EMBEDDED FORMAT, HEX
CHARACTERS ARE USED.

FOR EXTERNAL FILE FORMAT,
THE URL IS PROVIDED.

USE DESCRIPTION FLAG
LOB_FORMAT TO INDICATE
YOUR OPTION. FOR DETAILS
SEE DESCRIPTION FILE
SPECIFICATIONS.

(1) EMBEDDED
FORMAT:

THE FORMAT USED
WILL BE THE SAME
AS BINARY.

(2) EXTERNAL FILE
FORMAT:

FOR EXAMPLE, IF
USERS WANT TO
IMPORT A BINARY
FILE WHOSE FULL
PATH IS "C:\MY
DOCUMENT\GRAPH.G
IF". THE URL
PROVIDED WILL BE
C:\MY
DOCUMENT\GRAPH.G
IF

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-38

DATA TYPE IMPORT/EXPORT FORMAT EXAMPLE

LONG
VARCHAR

Similar to the case for LONG

VARBINARY, two formats can be

used. The input data will be in

ASCII string instead of HEX

string.

(1) embedded format:

Same as CHAR format.

(2) external file
format:

Same as LONG
VARBINARY.

FILE For FILE type, import/export

will adopt the same rule for

LONG VARBINARY.

OID Same rule as INTEGER

SERIAL Same rule as INTEGER

SMALLINT Same rule as INTEGER

NULL data For variable format, NULL data is

recognized by the fact that

there's nothing between two

consecutive delimiters.

For fixed format, NULL data is

recognized by the fact that there

are all space characters between

columns.

Table 6-5 Import/Export Data Rules

dmSQL Commands 6

6-39

@Copyright 1995-2024 CASEMaker Inc.

6.9 LOAD

The Load command is a tool provided by dmSQL, it is used to transfer a

database object, already unloaded to a text file, into the database. There are

seven options: load database, load table, load schema, load data, load project,

load module, and load procedure. Only load the file that is unloaded in the

same option. For example, load a database from the text file that is unloaded

with database option.

When loading a text file, set the number of commands to automatically

commit the transaction. The default number is 1000. The size of n will affect

whether the transaction succeeds or not and the speed of loading. The Journal

will fill easily with a large n value and could cause the transaction to fail. A

small n value will increase the commit times and slow down the speed of

loading.

If there are errors occurring during the loading procedure, an error messages

will be recorded in a log file, which the system will use to undo executed

commands. The log file is stored in the same directory as the external text file

being loaded and does not stop the loading procedure.

Figure 6-8 LOAD syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-40

LOAD DB [DATABASE]

Use the command to transfer the contents of a database to a new database.

First, unload the database to transfer to an external text file, and then use the

"load db" command to load the contents of the database from the text file.

Before loading a database, create a new one. The name of the new database

can be different from the old one. Only a user with DBA, SYSDBA or SYSADM

security priviledge may execute this command.

However, if a user use the command SET UNLOAD EXTERNAL

'connection_string'(the format of connection_string is

"DSN=<db_name>;UID=<user_name>;PWD=<password>;") before using the

command UNLOAD DB TO file_name, dmSQL will not unload data into the

scrip file. Therefore, when a user loads the database with this scrip file,

dmSQL will connect to ODBC driver manager’s data source, reads data from it

and then save data into the local database directly. dmSQL uses "set external

[database|db] 'connection_string'" in the scrip file to connect external

database, and, if fails, an error will be returned. dmSQL only keeps the last

external database connection, and therefore close previous external database

connections if a new one is set. In addition, because there is no disconnect

command, the external database will be disconnected only when dmSQL tool

is closed.

The utility will work in Journal mode if the loaddb is set in safe mode. The load

utility will rollback to the last committed command if an error occurs during

loading, the error messages will return to screen, and write to the log file of

the load utility.

When using the set loaddb in fast mode, the rule for loading the utility in

DBMaker versions earlier than 3.6, will make the whole load procedure work

under the no Journal mode. Setting loaddb in fast mode will speed up the load

utility, but it will make the database shut down in no Journal mode if any error

occurs.

For example, suppose that the load file has tablespace creation but it is not

specified in the dmconfig.ini file. If loaddb is set to use the safe option, the

following error message, "ERROR(8002): [DBMaker] keyword entry is

dmSQL Commands 6

6-41

@Copyright 1995-2024 CASEMaker Inc.

required for configuration file", will be reported and then the load command

will rollback. If loaddb is set to use the fast option, then the following error

message occurs, "ERROR(30017), [DBMaker] errors occurred on no-Journal

mode, shut down database". The default option is "set loaddb safe".

 Example

The following set option for loaddb has been added to versions above

DBMaker 3.6.

SET LOADDB [SAFE | FAST]

LOAD TABLE

The option permits loading the contents of a table, including schema and data,

from a text file. When loading a table from a text file, make sure that the table

name is unique.

LOAD SCHEMA

The option allows users to load the schema, not including the data, from a

table contained in a text file. When loading a table schema from a text file,

ensure that the table name is unique.

LOAD DATA

A corresponding table must exist when loading data from an external text file.

In versions earlier than 3.6 when the errors occur during the LOAD DATA

procedure, it will rollback to the last committed command.

 If loaddata skip error, is set then the following error messages will be skipped

during the loading of data:

ERROR(401) unique key violation

ERROR(410) referential constraint violation: value does not exist in

parent key

ERROR(6521) table or view does not exist

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-42

ERROR(6002) syntax error near or at

ERROR(6015) incomplete SQL statement input

The error will be skipped and the load utility will resume execution of

subsequent commands. The above errors are the most common errors to

occur during loading of data. When the load data stop or stop on error is set,

the whole load command will rollback if errors occur. The default value for

this option is set loaddata skip [error]. All the error messages occurred during

the loading of data will be written into the log file.

 Example

DBMaker 3.6 and later versions support the following options.

SET LOADDATA SKIP [ERROR] | STOP [ON ERROR]

LOAD MODULE

The option allows a user to load a module from an external text file.

LOAD PROJECT

The option allows a user to load a project from an external text file.

LOAD PROC [PROCEDURE]

The option allows a user to load a stored procedure from an external text file.

 Example 1

The following command loads the database from a file named "empdb", and

commits it automatically every 100 commands during loading. The system

will generate a log file named "empdb.log" in the same directory.

dmSQL> LOAD DB FROM empdb 100;

 Example 2

The following command will load a table from a file named "empfile", and it

will commit automatically every 50 commands during loading.

dmSQL Commands 6

6-43

@Copyright 1995-2024 CASEMaker Inc.

dmSQL> LOAD TABLE FROM empfile 50;

 Example 3

The following command will permit the loading of data from an external data

file named "datafile" and will commit automatically every 1000 commands

using the default setting.

dmSQL> LOAD DATA FROM datafile;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-44

6.10 SET DUMP PLAN

A dump plan consists of several ON blocks. The query optimizer divides and

optimizes a query into several logical ON blocks. Simple and joined queries

usually only generate one ON block, where as a complex query like a sub-

query may generate more than one ON block which includes a main-block and

sub-blocks.

The optimizer will find the best execution method based on the cost for each

ON block. It will divide each ON block into several PL blocks, and each PL

block will represent an operation like a scan, join, etc.

Set dump plan on ... turns the dump plan on, accepts queries and executes

commands

Set dump plan off ... turns the dump plan off, this is the default

Set dump plan only turns the dump plan on, accepts queries, but doesn't

execute

 commands

SET DUMP PLAN ONLY

ON

()

OFF

Figure 6-9 SET DUMP PLAN Syntax

 Example

dmSQL> SET DUMP PLAN ON;

dmSQL> SELECT * FROM tb_tmp ORDER BY c01_int;

dmSQL> SET DUMP PLAN OFF;

dmSQL Commands 6

6-45

@Copyright 1995-2024 CASEMaker Inc.

6.11 START DATABASE

The START DATABASE command starts a database to allow users to connect.

This command is normally only used with client/server databases. Only a user

with DBA, SYSDBA or SYSADM security privilege may execute the command.

To start a database without specifying a user-name and password in the

START DATABASE command, use the DB_UsrId and DB_PasWd keywords in

the dmconfig.ini file.

The password is in plain text and can be seen by anyone with the read

permission for the dmconfig.ini file. This keyword is included for

convenience only, and may pose a security risk to the database Use it on an

unsecured computer.

database_name Name of the database to start

user_name Name of the user starting the database

password Current password of user_name

Figure 6-10 START DATABASE syntax

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-46

 Example

The following starts the Employees database; the user vivian has DBA,

SYSDBA or SYSADM privileges.

dmSQL> START DATABASE Employees vivian shuka828;

dmSQL Commands 6

6-47

@Copyright 1995-2024 CASEMaker Inc.

6.12 TERMINATE DATABASE

The TERMINATE DATABASE command shuts down a database so other users

cannot connect. This command is normally used with client/server databases.

Only a user with DBA, SYSDBA or SYSADM security privilege may execute the

command.

Figure 6-11 TERMINATE DATABASE syntax

 Example

The following terminates the database on an active connection.

dmSQL> TERMINATE DATABASE;

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-48

6.13 UNLOAD

Unload is a tool provided by dmSQL used to transfer the contents of a

database to an external text file. After the unload procedure succeeds, dmSQL

will produce two text files. One stores the script, with extension name s0, to

establish the database object and the other stores the BLOB data, with the

extension name bn.

There are eight options for the unload command: unload database, unload

table, unload schema, unload data, unload project, unload module, unload

procedure, and unload procedure definition. Only unload the object that you

have the select privilege on. For instance, if you have the select privilege on a

table, then you can only unload the content of this table. Only a user with DBA,

SYSDBA or SYSADM security privilege may unload the database.

To Unload tables with names containing wild cards like the escape character

"\", or double quotes on the name.

dmSQL Commands 6

6-49

@Copyright 1995-2024 CASEMaker Inc.

Figure 6-12 UNLOAD syntax

User can use the set unload splitfile on/off command to split the unloaded

script file according to each table's definition, data, index and other related

information. The default is off.

Set unload splitfile on …… split the unloaded script file.

Set unload splitfle off …… by default, it only unload the database content to

<external text file name>.bn and <external text file

name>.so files.

SET UNLOAD SplitFile

ON

OFF

 Example

dmSQL> SET UNLOAD SPLITFILE ON;

dmSQL> UNLOAD DB TO empdb;

dmSQL> SET UNLOAD SPILTFILE OFF;

User can use the set unload browse on/off command to ensure the unload

command and other DML can be used simultaneously and the consistency of the

unloaded data before doing unload operation. The default is off.

Set unload browse on ……the unload command and other DML can be used

simultaneously, meanwhile, dirty data will be unload.

Set unload browse off ……the unload command and other DML can not be used

simultaneously.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-50

SET UNLOAD

BROWSE

ON

OFF

 Example

dmSQL> SET UNLOAD BROWSE ON;

dmSQL> UNLOAD DB TO empdb;

dmSQL> SET UNLOAD BROWSE OFF;

UNLOAD DB [DATABASE]

Only a user with DBA, SYSDBA or SYSADM security privilege may unload the

content of a database to an external text file. This file includes information

about security, tablespaces, definitions, indices, synonyms, data, etc. For each

database, dmSQL will generate at least two external files, one script, and one

BLOB data.

empdb is the name of the external text file. By default, dmSQL will create

these files in the current working directory. In the statement below, there are

at least two text files created, empdb.s0 and empdb.b0. If the unloaded BLOB

file empdb.b0 exceeds the maximum size allowed by the operating system,

dmSQL will generate empdb.b1, empdb.b2 through to empdb.bn sequentially

up to a maximum number of 99. dmSQL will always generate one script file

emodb.s0, and its maximum size is set to the operating system limitation.

 Example 1

dmSQL> UNLOAD DB TO empdb;

However, if a user use the command SET UNLOAD EXTERNAL

'connection_string'(the format of connection_string is

"DSN=<db_name>;UID=<user_name>;PWD=<password>;") before using the

command UNLOAD DB TO file_name, dmSQL will not unload data into the

scrip file namely empdb.s0, Instead, dmSQL will print "set external db

dmSQL Commands 6

6-51

@Copyright 1995-2024 CASEMaker Inc.

'connection_string'" in empdb.s0, and unloading tables' data will be printed as

"load external db from 'select * from external_table_name' into

local_table_name". Please refer to the following example:

 Example 2

dmSQL> SET UNLOAD EXTERNAL 'DSN=DBSAMPLE5;UID=SYSADM;PWD=;';

dmSQL> UNLOAD DB TO empdb;

Here the scrip file empdb.s0 is as follows:
…

set external db 'DSN=DBSAMPLE5;UID=SYSADM;PWD=;';

create table Lauser1.Latb3 (

 c1 SMALLINT default null ,

 c2 FLOAT default null ,

 c3 DOUBLE default null ,

 c4 DECIMAL(10, 3) default null ,

 c5 CHAR(10) default null ,

 c6 BINARY(12) default null)

 in DEFTABLESPACE lock mode page fillfactor 100 ;

load external database from 'select * from Lauser1.Latb3' into Lauser1.Latb3;

create index idx31 on Lauser1.Latb3 (c1 asc) in DEFTABLESPACE;

create index idx32 on Lauser1.Latb3 (c3 desc) in DEFTABLESPACE;

create index idx33 on Lauser1.Latb3 (c5 asc) in DEFTABLESPACE;

…

UNLOAD TABLE

Unloads tables to an external file and will record the definition, synonyms,

indices, primary key, foreign keys, and data of the table.

Use the wild cards "_" and "%", which is similar with "?" and "*" in DOS, in the

owner and table name. The wild card "_" represents a character, and "%"

represents a set of characters.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-52

UNLOAD SCHEMA

The usage of this option is very similar with unload table. It can only unload

the definition of a table, and does not unload the data in a table. Uses the same

wild cards as illustrated in the above unload table option.

UNLOAD DATA

This option will unload all data from a table and does not unload the definition

of the table. Unload data uses the same wildcards as the previous two options.

Only users with the SELECT privilege on the unloaded table may execute the

unload data command.

DBMaker 3.6 and later versions support an additional syntax for unloading

data: dmSQL>unload data from (select statement) to file_name. If the

select statement is a join, the projection columns must be from the same table,

the following statement is executable. DDL commands, delete, insert, or

updates are not permitted.

 Example 1

Valid syntax

dmSQL> UNLOAD DATA FROM (SELECT tb_doc.c01_int, tb_doc.c02_char FROM tb_doc,

tb_txt WHERE tb_doc.c01_int= tb_txt.c01_int) TO f1;

 Example 2

Illegal syntax

dmSQL> UNLOAD DATA FROM (SELECT tb_doc.c01_int, tb_txt.c01_int FROM tb_doc,

tb_txt WHERE tb_doc.c01_int = tb_txt.c01_int) TO f1;

 Example 3

Illegal syntax, no aggregate or built-in functions are permitted in the

projection columns.

dmSQL> UNLOAD DATA FROM (SELECT AVG(c01_int) FROM tb_doc) TO f1;

dmSQL> UNLOAD DATA FROM (SELECT NOW() FROM tb_doc) TO f1;

dmSQL Commands 6

6-53

@Copyright 1995-2024 CASEMaker Inc.

 Example 4

Valid syntax, views and synonyms are permitted.

dmSQL> UNLOAD DATA FROM (SELECT * FROM syn_tmp WHERE c01_int > 10) TO f1;

dmSQL> UNLOAD DATA FROM (SELECT * FROM view_tmp WHERE c01_int < 10) TO f1;

UNLOAD PROJECT

This option allows a user to unload a project to an external text file.

UNLOAD MODULE

This option allows a user to unload a module to an external file.

UNLOAD [PROC | PROCEDURE]

This option allows a user to unload the stored procedures to an external file.

UNLOAD [PROC DEFINITION | PROCEDURE
DEFINITION]

This option allows a user to unload the definition of the stored procedure to

an external text file.

 Example 1

The following will unload the table "e tab" for the current user; if there are

any blanks in the table name add double quotes.

dmSQL> UNLOAD TABLE FROM "e tab" TO empfile;

 Example 2

The following will unload all tables with the names starting with emp for the

SYSADM owner, for example, emptab, empname, … etc.

dmSQL> UNLOAD TABLE FROM SYSADM.emp% TO empfile;

 Example 3

The following will unload the schema of all tables with the name ktab.

 SQL Command and Function Reference1

@Copyright 1995-2024 CASEMaker Inc. 6-54

dmSQL> UNLOAD SCHEMA FROM %.ktab TO kfile;

 Example 4

The following commands will unload data from a table named abc%.

dmSQL> UNLOAD DATA FROM abc\% TO abcfile;

dmSQL> UNLOAD DATA FROM "abc%" TO abcfile;

	1 Introduction
	1.1 Additional Resources
	1.2 Technical Support
	1.3 Document Conventions

	2 SQL Basics
	2.1 Syntax Diagrams
	2.2 Data Types
	BIGINT
	BIGSERIAL(start)
	BINARY (size)
	CHAR (size)
	DATE
	DECIMAL (NUMERIC)
	DOUBLE
	FILE
	FLOAT
	INTEGER
	JSONCOLS
	LONG VARBINARY (BLOB)
	LONG VARCHAR (CLOB)
	NCHAR (size)
	NVARCHAR (size)
	OID
	REAL
	SERIAL (start)
	SMALLINT
	TIME
	TIMESTAMP
	VARCHAR (size)
	Media Types

	2.3 Data Conversion
	Explicit Data Conversion
	Implicit Data Conversion

	2.4 RESERVED WORDS

	3 SQL Commands
	3.1 ABORT BACKUP
	3.2 ABORT CONNECTION
	3.3 ADD TO GROUP
	3.4 ADD TRACE
	3.5 ALTER DATAFILE
	3.6 ALTER INDEX RENAME
	3.7 ALTER PASSWORD
	3.8 ALTER REPLICATION ADD REPLICATE
	3.9 ALTER REPLICATION DROP REPLICATE
	3.10 ALTER SCHEDULE
	3.11 ALTER TABLE ADD COLUMN
	Column Definition

	3.12 ALTER TABLE ADD DYNAMIC COLUMN
	3.13 ALTER TABLE DROP COLUMN
	3.14 ALTER TABLE DROP DYNAMIC COLUMN
	3.15 ALTER TABLE DROP FOREIGN KEY
	3.16 ALTER TABLE DROP PRIMARY KEY
	3.17 ALTER TABLE FOREIGN KEY
	3.18 ALTER TABLE MODIFY COLUMN
	Modify Column Definitions
	attribute-modify-column-def
	full-attributes-modify-column-def

	3.19 ALTER TABLE MODIFY DYNAMIC COLUMN
	3.20 ALTER TABLE PRIMARY KEY
	3.21 ALTER TABLE RENAME
	3.22 ALTER TABLE SET OPTIONS
	3.23 ALTER TABLE SET DYNAMIC MAX
	3.24 ALTER TABLE TO ANOTHER TABLESPACE
	3.25 ALTER TABLESPACE
	3.26 ALTER TABLESPACE DROP DATAFILE
	3.27 ALTER TRIGGER ENABLE
	3.28 ALTER TRIGGER REPLACE
	For Each Row Clause
	For Each Statement Clause

	3.29 BEGIN BACKUP
	3.30 BEGIN WORK
	3.31 CHECK
	3.32 CHECKPOINT
	3.33 CLOSE DATABASE LINK
	3.34 COMMIT WORK
	3.35 CREATE COMMAND
	3.36 CREATE DATABASE LINK
	3.37 CREATE DOMAIN
	3.38 CREATE GROUP
	3.39 CREATE HASH INDEX
	3.40 CREATE INDEX
	3.41 CREATE PROCEDURE
	FROM FILE
	ESQL SP
	JAVA SP
	SQL SP

	3.42 CREATE REPLICATION
	3.43 CREATE SCHEDULE
	3.44 CREATE SCHEMA
	3.45 CREATE SYNONYM
	3.46 CREATE TABLE
	Column Definitions
	Primary Key and Unique Definitions
	Foreign Key Definitions
	Table Options
	CREATE TABLE AS SELECT

	3.47 CREATE TABLESPACE
	3.48 CREATE TEXT INDEX
	Signature Text Index
	Inverted File Text Index

	3.49 CREATE TRIGGER
	For Each Row Clause
	For Each Statement Clause

	3.50 CREATE VIEW
	3.51 DECLARE SET
	3.52 DELETE
	3.53 DISABLE INDEX
	3.54 DROP COMMAND
	3.55 DROP DATABASE LINK
	3.56 DROP DOMAIN
	3.57 DROP GROUP
	3.58 DROP INDEX
	3.59 DROP PROCEDURE
	3.60 DROP REPLICATION
	3.61 DROP SCHEDULE
	3.62 DROP SCHEMA
	3.63 DROP SYNONYM
	3.64 DROP TABLE
	3.65 DROP TABLESPACE
	3.66 DROP TEXT INDEX
	3.67 DROP TRIGGER
	3.68 DROP VIEW
	3.69 END BACKUP
	3.70 EXECUTE COMMAND
	3.71 GRANT (Execute Privileges)
	3.72 GRANT (Object Privileges)
	3.73 GRANT (Security Privileges)
	3.74 INSERT
	3.75 KILL CONNECTION
	3.76 LOAD STATISTICS
	3.77 LOCK TABLE
	3.78 REBUILD COMMAND
	3.79 REBUILD INDEX
	3.80 REBUILD INDEX IN ANOTHER TABLESPACE
	3.81 REBUILD TEXT INDEX
	3.82 REMOVE FROM GROUP
	3.83 REMOVE TRACE
	3.84 RESUME SCHEDULE
	3.85 REVOKE (Execute Privileges)
	3.86 REVOKE (Object Privileges)
	3.87 REVOKE (Security Privileges)
	3.88 ROLLBACK
	3.89 SAVEPOINT
	3.90 SELECT
	SELECT WITHOUT FROM
	SELECT Clause
	FROM Clause
	SOURCE SUBCLAUSE
	Forced Index Scans
	Forced Index Scan and "Alias"
	Forced Index Scan and "Synonym"
	Forced Index Scan and "View"
	Forced Text Index Scans

	WHERE Clause
	CAST
	CASE
	COALESCE
	NULLIF
	IFNULL

	Compound Comparisons
	Join Conditions
	ON <search_condition>
	ANSI Outer-Join
	DBMaker Outer-Join
	ODBC Outer-Join
	Self-Join
	Right-Join
	Full-Join
	Inner-Join
	NATURAL JOIN
	ON condition
	USING column list
	Two Table-Join
	Multiple Table-Join
	Forced Loop Join (Nested Join)
	Forced Merge Join
	Forced Join Sequence

	GROUP BY Clause
	Forced Group by Method

	HAVING Clause
	ORDER BY Clause
	UNION Operator
	Sub-queries
	IN Sub-query
	EXISTS Sub-query
	ANY/ALL/SOME Sub-query

	FOR BROWSE Clause
	LIMIT

	EXCEPT Clause
	Aggregate Functions
	WINDOW Functions
	XML Functions

	3.91 SET CONNECTION OPTIONS
	No Value Options
	SET FLUSH
	SET SYSINFO CLEAR

	ON/OFF Options
	SET AUTOCOMMIT on/off
	SET BACKUP off
	SET BKSVR CMP on/off
	SET BLOB BACKUP on
	SET BROWSE on/off
	SET DATA BACKUP on
	SET FASTCOPY on/off
	SET FREE CATALOG CACHE on/off
	SET ITCMD on/off
	SET JOURNAL on/off
	SET LOADAUTOINDEX on/off
	SET LOAD SYSTEM DEFAULT on/off
	SET REMOVE SPACE PADDING on/off
	SET STRING CONCAT on/off
	SET SYSTEM DEFAULT on/off
	SET SYSTEM INIT on/off

	Number Options
	SET BKSVR JOURNAL FULL number
	SET BKSVR PID number
	SET DDB LOGIN TIMEOUT number
	SET DDB LOCK TIMEOUT number
	SET INPUT PARAM n AS CFILE | ASCII
	SET LOCK TIMEOUT number
	SET MAXTBROW number
	SET RPSVR RETRY number

	String Options
	SET BKSVR PATH string
	SET DATE INPUT FORMAT {ALL | STRING}
	SET DATE OUTPUT FORMAT string
	SET EXTNAME TO string
	SET TIME INPUT FORMAT { ALL | string }
	SET TIME OUTPUT FORMAT string

	Symbol Options
	SET CB MODE { close | delete | preserve }
	SET CONCAT NULL RETURN { NULL | STRING }
	SET DISCONNECT { disconnect | terminat | wait }
	SET DFO DUPMODE { copy | null }
	SET FO TYPE { blob | file }

	Transaction Options

	3.92 SET CLIENT_CHAR_SET
	3.93 SET ERRMSG_CHAR_SET
	3.94 SUSPEND SCHEDULE
	3.95 SYNC AUTO INDEX
	3.96 SYNCHRONIZE SCHEDULE
	3.97 UNLOAD STATISTICS
	UNLOAD STATISTICS Object List

	3.98 UPDATE
	3.99 UPDATE STATISTICS
	UPDATE STATISTICS Object List

	3.100 UPDATE STATISTICS SET
	3.101 UPDATE TABLESPACE STATISTICS

	4 Functions
	Built-in Functions
	ABS
	ACOS
	ADD_DAYS
	ADD_HOURS
	ADD_MINS
	ADD_MONTHS
	ADD_SECS
	ADD_YEARS
	ASCII
	ASIN
	ATAN
	ATAN2
	ATOF
	BAND
	BLOBLEN
	BLOBLENEX
	BLSHIFT
	BNOT
	BOR
	BRSHIFT
	BXOR
	CEILING
	CHAR
	CHAR_LENGTH
	CHARACTER_LENGTH
	CHECKMEDIAFORMAT
	CONCAT
	COS
	COSH
	COT
	CURDATE
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	CURRENT_USER
	CURTIME
	DATABASE
	DATEPART
	DATETOEPOCH
	DAYNAME
	DAYOFMONTH
	DAYOFWEEK
	DAYOFYEAR
	DAYS_BETWEEN
	DEGREES
	DIFFERENCE
	DOCTOTXT
	EPOCHTODATE
	EPOCHTOTIME
	EPOCHTOTIMESTAMP
	EXISTSNODE
	EXP
	EXTRACT
	EXTRACTVALUE
	FILEEXIST
	FILELEN
	FILELENEX
	FILENAME
	FIX
	FLOOR
	FRACTIONPART
	FREXPE
	FREXPM
	FTOA
	HIGHLIGHT
	HITCOUNT
	HITPOS
	HMS
	HOUR
	HTMLHIGHLIGHT
	HTMLTITLE
	HTMTOTXT
	HYPOT
	INSERT
	INVDATE
	INVTIME
	INVTIMESTAMP
	LAST_DAY
	LCASE
	LDEXP
	LEFT
	LENGTH
	LOCATE
	LOG
	LOG10
	LOWER
	LTRIM
	MDY
	MINUTE
	MOD
	MODFI
	MODFM
	MONTH
	MONTHNAME
	NEXT_DAY
	NOW
	PDFTOTXT
	PI
	POSITION
	POW
	PPTTOTXT
	PURETEXT
	QUARTER
	RADIANS
	RAND
	REPEAT
	REPLACE
	RIGHT
	RND
	ROUND
	RTRIM
	SECOND
	SECS_BETWEEN
	SESSION_USER
	SIGN
	SIN
	SINH
	SOUNDEX
	SPACE
	SQRT
	STRTOINT
	SUBBLOB
	SUBBLOBTOBIN
	SUBBLOBTOCHAR
	SUBSTRING
	TAN
	TANH
	TIMEPART
	TIMESTAMPADD
	TIMESTAMPDIFF
	TIMESTAMPTOEPOCH
	TIMETOEPOCH
	TRIM
	UCASE
	UPPER
	USER
	UTFConvert
	WEEK
	XLSTOTXT
	XMLUPDATE
	YEAR

	User-Defined Functions
	AES_DECRYPT
	AES_ENCRYPT
	DATETOSTR
	TIMETOSTR
	TIMESTAMPTOSTR
	TO_DATE

	5 System-Stored Procedures
	5.1 APPENDBLOB
	5.2 APPENDBLOBBYOID
	5.3 COPYTABLE
	5.4 CSVEXPORT
	5.5 EXTENDTS
	5.6 GETCPUNUMBER
	5.7 GETSYSTEMOPTION
	5.8 SCHEDULE_ALTER
	5.9 SCHEDULE_CREATE
	5.10 SCHEDULE_DISABLE
	5.11 SCHEDULE_DROP
	5.12 SCHEDULE_ENABLE
	5.13 SCHEDULE_RELOAD
	5.14 SCHELOG_CLEAN
	5.15 SETAFFINITY
	5.16 SETPRIORITY
	5.17 SETSYSTEMOPTION
	5.18 SETSYSTEMOPTIONW
	5.19 SOADD
	5.20 SOCREATE
	5.21 SODROP
	5.22 SOLOCK
	5.23 SOREAD
	5.24 SOSET
	5.25 SOUNLOCK
	5.26 START_DMSCHSVR
	5.27 STOP_DMSCHSVR
	5.28 TASK_ALTER
	5.29 TASK_CREATE
	5.30 TASK_DROP
	5.31 XMLEXPORT
	Constructing XMLEXPORT Arguments
	Exporting XML Files

	5.32 XMLIMPORT
	Constructing XMLIMPORT Arguments
	Importing XML Files

	5.33 SHOWINDEX
	5.34 DEFTABLE
	5.35 SHOWDMLOG

	6 dmSQL Commands
	6.1 CONNECT
	6.2 CREATE DATABASE
	6.3 DEF TABLE
	6.4 DEF VIEW
	6.5 DEF PROC
	6.6 DISCONNECT
	6.7 EXPORT
	EXPORT COMMAND INTERFACE
	DESCRIPTION FILE
	FIXED FORMAT DESCRIPTION FILE
	VARIABLE FORMAT DESCRIPTION FILE
	IMPORT/EXPORT DATA RULES

	6.8 IMPORT
	IMPORT COMMAND INTERFACE
	DESCRIPTION FILE
	FIXED FORMAT DESCRIPTION FILE
	VARIABLE FORMAT DESCRIPTION FILE
	DEFAULT VARAIBLE FORMAT DESCRIPTION FILE
	IMPORT/EXPORT DATA RULES

	6.9 LOAD
	LOAD DB [DATABASE]
	LOAD TABLE
	LOAD SCHEMA
	LOAD DATA
	LOAD MODULE
	LOAD PROJECT
	LOAD PROC [PROCEDURE]

	6.10 SET DUMP PLAN
	6.11 START DATABASE
	6.12 TERMINATE DATABASE
	6.13 UNLOAD
	UNLOAD DB [DATABASE]
	UNLOAD TABLE
	UNLOAD SCHEMA
	UNLOAD DATA
	UNLOAD PROJECT
	UNLOAD MODULE
	UNLOAD [PROC | PROCEDURE]
	UNLOAD [PROC DEFINITION | PROCEDURE DEFINITION]

