
DBMaker
DCI User's Guide

CASEMaker Inc./Corporate Headquarters

1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.

www.casemaker.com

www.casemaker.com/support

©Copyright 1995-2008 by CASEMaker Inc.
Document No. 45049-232038/DBM501-M01312008-DCIU

Publication Date: 2008-01-31

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any
form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README.TXT
after installing the CASEMaker DBMaker software.

Trademarks
CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-
DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark
of The Open Group. ANSI is a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only
form information purposes. SQL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

Notices
The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the
merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for
any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or
humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for
inaccuracies. This manual is subject to change without notice.

This text is not here.

http://www.casemaker.com
http://www.casemaker.com/support
mailto:Casemaker_Asia@email.syscom.com.tw

1 Contents

Contents

1 Introduction1-1

1.1 Additional Resources 1-3

1.2 Technical Support 1-4

1.3 Document Conventions......................... 1-5

2 DCI Basics ...2-1

2.1 DCI Overview .. 2-2
File System and Databases ... 2-2
Accessing Data ... 2-3

2.2 System Requirements........................... 2-5

2.3 Setup Instructions 2-6
Setup with Windows ... 2-6
Setup with UNIX... 2-9

2.4 Basic Configuration 2-14
DCI_DATABASE .. 2-14
DCI_LOGIN ... 2-15
DCI_PASSWD .. 2-15
DCI_XFDPATH... 2-15

2.5 The Runsql Utility 2-17

2.6 Invalid Data .. 2-18

2.7 Sample Application............................. 2-20

©Copyright 1995-2008 CASEMaker Inc. i

 DCI User’s Guide1

Setting up the Application.. 2-20
Adding Records.. 2-23
Accessing the Data .. 2-24

3 Data Dictionaries 3-1

3.1 Assigning Table Names 3-2

3.2 Mapping Columns and Records 3-5
Identical Field Names ... 3-7
Long Field Names ... 3-8

3.3 Using Multiple Record Formats 3-9

3.4 Using XFD File Defaults...................... 3-12
REDEFINES Clause .. 3-12
KEY IS Phrase ... 3-12
FILLER Data Items .. 3-13
OCCURS Clauses .. 3-13

3.5 Mapping Multiple Files........................ 3-14

3.6 Mapping to Multiple Databases 3-16

3.7 Using Triggers 3-20

3.8 Using Views.. 3-22

3.9 Using Synonyms 3-25

3.10 Open Tables in Remote Databases..... 3-26

3.11 Using DCI_WHERE_CONSTRAINT........ 3-28

4 XFD Directives 4-1

4.1 Using Directive Syntax 4-2

4.2 Using XFD Directives............................ 4-3
$XFD ALPHA Directive ... 4-3
$XFD BINARY Directive ... 4-4
$XFD COMMENT DCI SERIAL n Directive........................... 4-4
$XFD COMMENT DCI COBTRIGGER Directive................ 4-5

©Copyright 1995-2008 CASEMaker Inc. ii

1 Contents

$XFD COMMENT Directive .. 4-5
$XFD DATE Directive.. 4-6
$XFD FILE Directive .. 4-8
$XFD NAME Directive... 4-9
$XFD NUMERIC Directive ... 4-9
$XFD USE GROUP Directive .. 4-10
$XFD VAR-LENGTH Directive .. 4-11
$XFD WHEN Directive for File Names.................................... 4-11
$XFD COMMENT DCI SPLIT.. 4-15

5 Compiler and Runtime Options5-1

5.1 Using ACUCOBOL-GT Default File System5-2

5.2 Using DCI Default File System.............. 5-3

5.3 Using Multiple File Systems 5-4

5.4 Using the Environment Variable 5-5

6 Configuration File Variables6-1

6.1 Setting DCI_CONFIG Variables 6-2
DCI_CASE ... 6-2
DCI_COMMIT_COUNT... 6-3
DCI_DATABASE .. 6-3
DCI_DATE_CUTOFF ... 6-4
DCI_DEFAULT_RULES... 6-5
DCI_DEFAULT_TABLESPACE.. 6-5
DCI_DUPLICATE_CONNECTION .. 6-5
DCI_GET_EDGE_DATES.. 6-5
DCI_INV_DATE... 6-6
DCI_LOGFILE... 6-6
DCI_LOGIN ... 6-6
DCI_JULIAN_BASE_DATE.. 6-7
DCI_LOGTRACE.. 6-7
DCI_MAPPING ... 6-7
DCI_MAX_ATTRS_PER_TABLE.. 6-8

©Copyright 1995-2008 CASEMaker Inc. iii

 DCI User’s Guide1

DCI_MAX_BUFFER_LENGTH... 6-9
DCI_MAX_DATE ... 6-9
DCI_MIN_DATE .. 6-9
DCI_NULL_ON_ILLEGAL_DATE.. 6-9
DCI_PASSWD... 6-10
DCI_STORAGE_CONVENTION... 6-11
DCI_USEDIR_LEVEL... 6-11
DCI_USER_PATH... 6-12
DCI_XFDPATH... 6-13
<filename>_RULES.. 6-14
DCI TABLE CACHE Variables .. 6-14
DCI_TABLESPACE.. 6-15
DCI_AUTOMATIC_SCHEMA_ADJUST............................... 6-15
DCI_INCLUDE.. 6-16
DCI_IGNORE_MAX_BUFFER_LENGTH.......................... 6-16
DCI_NULL_DATE ... 6-16
DCI_NULL_ON_MIN_DATE .. 6-16
DCI_DB_MAP .. 6-16
DCI_VARCHAR... 6-16
DCI_GRANT_ON_OUTPUT.. 6-17

7 DCI Functions.................................... 7-1

7.1 Calling DCI functions............................ 7-2
DCI_SETENV... 7-2
DCI_GETENV ... 7-2
DCI_DISCONNECT .. 7-2
DCI_GET_TABLE_NAME.. 7-3
DCI_SET_TABLE_CACHE ... 7-3
DCI_BLOB_ERROR... 7-4
DCI_BLOB_GET... 7-4
DCI_BLOB_PUT ... 7-6
DCI_GET_TABLE_SERIAL_VALUE 7-7
DCI_FREE_XFD ... 7-8

 DCI_UNLOAD_CONFIG

©Copyright 1995-2008 CASEMaker Inc. iv

... 7-8

1 Contents

8 COBOL Conversions8-1

8.1 Using Special Directives 8-2

8.2 Mapping COBOL Data Types 8-3

8.3 Mapping DBMaker Data Types.............. 8-5

8.4 Troubleshooting Runtime Errors........... 8-7

8.5 Troubleshooting Native SQL Errors 8-9

8.6 Converting Vision Files....................... 8-11
Using DCI_Migrate ... 8-11

Glossary Glossary-1

Index ... Index-1

©Copyright 1995-2008 CASEMaker Inc. v

 DCI User’s Guide1

©Copyright 1995-2008 CASEMaker Inc. iv

1 Introduction 1

1 Introduction

This book is intended for software developers who want to combine the reliability of
COBOL programs with the flexibility and efficiency of a relational database

management system (RDBMS). The manual gives systematic instructions on how to
use the DBMaker COBOL Interface (DCI), a program designed to allow for
efficient management and integration of data with COBOL using the DBMaker

database engine.
DCI provides a communication channel between COBOL programs and DBMaker.
DBMaker COBOL Interface (DCI) allows COBOL programs to efficiently access

information stored in the DBMaker relational database. In order to store data,
COBOL programs usually use standard B-TREE files. Information stored in B-
TREE files are traditionally accessed through standard COBOL I/O statements like

READ, WRITE and REWRITE.
COBOL programs can also access data stored in the DBMaker RDBMS.
Traditionally, COBOL programmers use a technique called embedded SQL to

embed SQL statements into the COBOL source code. Before compiling the source
code, a special pre-compiler translates SQL statements into "calls" to the database
engine. These calls are executed during the runtime in order to access the DBMaker

RDBMS.
Though this technique is a good solution for storing information on a database using
COBOL programs, it has some drawbacks. First, it implies COBOL programmers

have a good knowledge of the SQL language. Second, a program written in this way
is not portable. In other words, it cannot work both with B-TREE files and the
DBMaker RDBMS. Furthermore, SQL syntax often varies from database to

database. This means that a COBOL program embedding SQL statements tailored

©Copyright 1995-2008 CASEMaker Inc. 1-1

 DCI User’s Guide1

for a specific DBMaker RDBMS cannot work with another database. Finally
embedded SQL is difficult to implement with existing programs. In fact, embedded
SQL requires significant application re-engineering, including substantial additions
to the working storage, data storage, and reworking the logic of each I/O statement.
There is an alternative to embedded SQL. Some suppliers have developed seamless

interfaces from COBOL to the database. These interfaces translate COBOL I/O
commands into SQL statements on the fly. In this way, COBOL programmers need
not be familiar with SQL and COBOL programs can stay portable. However,

performance is the main problem here.
In fact, SQL has a different purpose than COBOL I/O statements. SQL is intended
to be a set-based, ad hoc query language that can find almost any combination of

data from a general specification. By contrast, COBOL B-TREE (or other data
structure) calls are designed for direct data access via well-defined traversal keys
and/or navigation logic. Therefore, forcing transaction rich, performance sensitive

COBOL applications to operate exclusively via SQL-based I/O is often an
inappropriate method.
CASEMaker's COBOL interface product, DCI, does not use SQL for this reason.

Instead, it provides for direct data storage access and traversal in a manner similar to
the way COBOL itself accesses any other user replaceable COBOL file system. DCI
provides a seamless interface between a COBOL program and the DBMaker file

system. Information exchange between the application and the database are invisible
to the end user. On the other hand, for desktop decision support systems (DSS),
data warehousing, or 4GL applications, DBMaker provides full SQL-based file/ data

storage access as required, as well as the reliability and robustness of a RDBMS.
CASEMaker’s Database and DCI products combine the power of 4GLs and
navigational data structures with the ad hoc flexibility of SQL-based database access

and reporting. They also provide startling performance.

©Copyright 1995-2008 CASEMaker Inc. 1-2

1 Introduction 1

1.1 Additional Resources
DBMaker provides a complete set of DBMS manuals in addition to this one. For
more detailed information on a particular subject, consult one of the books listed

below:
• For an introduction to DBMaker’s capabilities and functions, refer to the

“DBMaker Tutorial”.

• For more information on designing, administering, and maintaining a
DBMaker database, refer to the “Database Administrator's Guide”.

• For more information on DBMaker management, refer to the “JServer Manager
User’s Guide”.

• For more information on DBMaker configurations, refer to the “JConfiguration
Tool Reference”.

• For more information on DBMaker functions, refer to the “JDBA Tool User’s
Guide”.

• For more information on the dmSQL interface tool, refer to the “dmSQL User’s
Guide”.

• For more information on the SQL language used in dmSQL, refer to the “SQL
Command and Function Reference”.

• For more information on the ESQL/C programming, refer to the “ESQL/C
User’s Guide”.

• For more information on the native ODBC API, refer to the “ODBC
Programmer’s Guide”.

• For more information on error and warning messages, refer to the “Error and
Message Reference”.

©Copyright 1995-2008 CASEMaker Inc. 1-3

 DCI User’s Guide1

1.2 Technical Support
CASEMaker provides thirty days of complimentary email and phone support during
the evaluation period. When software is registered an additional thirty days of

support will be included. Thus, extending the total support period for software to
sixty days. However, CASEMaker will continue to provide email support for any
bugs reported after the complimentary support or registered support has expired (free

of charges).
Additional support is available beyond the sixty days for most products and may be
purchased for twenty percent of the retail price of the product. Please contact

sales@casemaker.com for more details and prices.
CASEMaker support contact information for your area (by snail mail, phone, or
email) can be located at: www.casemaker.com/support. It is recommended that the

current database of FAQ’s be searched before contacting CASEMaker support staff.
Please have the following information available when phoning support for a
troubleshooting enquiry or include the information with a snail mail or email

enquiry:
• Product name and version number
• Registration number

• Registered customer name and address
• Supplier/distributor where product was purchased
• Platform and computer system configuration

• Specific action(s) performed before error(s) occurred
• Error message and number, if any
• Any additional information deemed pertinent

©Copyright 1995-2008 CASEMaker Inc. 1-4

mailto:sales@casemaker.com
http://www.casemaker.com/support

1 Introduction 1

1.3 Document Conventions
This book uses a standard set of typographical conventions for clarity and ease of use.
The NOTE, Procedure, Example, and CommandLine conventions also have a

second setting used with indentation.

CONVENTION DESCRIPTION

Italics Italics indicate placeholders for information that must be
supplied, such as user and table names. The word in
italics should not be typed, but is replaced by the actual
name. Italics also introduce new words, and are
occasionally used for emphasis in text.

Boldface Boldface indicates filenames, database names, table
names, column names, user names, and other database
schema objects. It is also used to emphasize menu
commands in procedural steps.

KEYWORDS All keywords used by the SQL language appear in
uppercase when used in normal paragraph text.

small caps Small capital letters indicate keys on the keyboard. A plus
sign (+) between two key names indicates to hold down
the first key while pressing the second. A comma (,)
between two key names indicates to release the first key
before pressing the second key.

NOTE Contains important information.

Â Procedure
Indicates that procedural steps or sequential items will
follow. Many tasks are described using this format to
provide a logical sequence of steps for the user to follow

Â ∫
Example

Examples are given to clarify descriptions, and commonly
include text, as it will appear on the screen.

CommandLine Indicates text, as it should appear on a text delimited
screen. This format is commonly used to show input and
output for dmSQL commands or the content in the
dmconfig.ini file

Figure 1-1 Document Conventions Table

©Copyright 1995-2008 CASEMaker Inc. 1-5

 DCI User’s Guide1

©Copyright 1995-2008 CASEMaker Inc. 1-6

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-1

2 DCI Basics

This chapter provides essential information pertaining to setting up and configuring
a DCI environment for DBMaker. It also provides information on running the
demonstration program that assists in understanding the basic functions of DCI.

The following topics are covered in this chapter:
• Software and hardware requirements.
• Step-by-step setup instructions for UNIX and Windows platforms.

• Options for configuring DCI for DBMaker.
• Instructions on how to use the DCI demonstration program.

 DCI User’s Guide1

2.1 DCI Overview
Although traditional COBOL file systems and databases both contain data, they
differ significantly. Databases are generally more robust and reliable than traditional
file systems. Furthermore, they act as efficient systems for data recovery from

software or hardware crashes. In addition, in order to ensure data integrity,
DBMaker RDBMS provides support for referential actions, as well as domain,
column, and table constraints.

File System and Databases

There are some parallels in the way data is stored by a database and COBOL indexed
files. The following table shows the different data structures of each system and how
they correspond to one another.

COBOL INDEXED FILE SYSTEM

OBJECT
DATABASE OBJECT

Directory Database

File Table

Record Row

Field Column

Figure 2-1 COBOL and Database Object Structures
Indexed file operations are performed on records in COBOL and operations are

performed on columns in a database. Logically, a COBOL indexed file represents a
database table. Each record in a COBOL file represents a table row in a database and
each field represents a table column. Data can have multiple definition types in

COBOL while table columns in a database have to be associated with a particular
data type such as integer, character, or date.

©Copyright 1995-2008 CASEMaker Inc. 2-2

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-3

Â Example

A COBOL record is defined using the following format:
terms-record.
 03 terms-code PIC 999.
 03 terms-rate PIC s9v999.
 03 terms-days PIC 9(2).
 03 terms-descript PIC x(15).

The COBOL record displayed in the above example would be represented in a
database as shown below. Each row is an instance of the COBOL 01 level record
terms-record.

TERMS_CODE TERMS_RATE TERMS_DAYS TERMS_DESCRIPT

234 1.500 10 net 10

235 1.750 10 net 10

245 2.000 30 net 30

255 1.500 15 net 15

236 2.125 10 net 10

237 2.500 10 net 10

256 2.000 15 net 15

Figure 2-2 COBOL Records Converted to Database Rows

Accessing Data

ACUCOBOL-GT’s generic file handler interfaces with DCI and the Vision file
system. Vision is the standard indexed file system supplied with ACUCOBOL-GT.

Vision files are discussed in more detail in Chapter 9.
DCI, in combination with the data dictionaries, is a gateway between data access in a
COBOL based application program interface (API) and the DBMaker database

management system. Users may access data through the API. Furthermore, ad hoc
queries may be made on the data by using one of the DBMaker SQL interfaces:

 DCI User’s Guide1

dmSQL or JDBA Tool. Data dictionaries are created by the ACUCOBOL-GT
compiler and are discussed in more detail in Chapter 3, Data Dictionaries.

ACUCOBOL
Application Program Interface

(User)

Vision FilesGeneric File Handler

DCI

DBMaker
Client Process

Data Dictionaries

DBMaker Storage

Figure 2-3 Data Flowchart

©Copyright 1995-2008 CASEMaker Inc. 2-4

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-5

2.2 System Requirements
DCI for DBMaker is an add-on module that must be linked with the ACUCOBOL-
GT runtime system. For this reason, a C compiler is required to install the DCI
product. In order to interface, the ACUCOBOL-GT Version 4.3 or later compiler

and runtime must be used.

The README.TXT file located in the DCI directory lists the files that are shipped
with the product.
The following platforms are supported by DCI:
• SCO OpenServer
• Sun Solaris x86

• Windows 9x/ME/NT/2000/XP
• Linux 2.2, 2.3
• AIX

• HP/UX
• FreeBSD 4

The following software must be installed for DCI to function:
• DBMaker version 5.0 or higher
• ACUCOBOL-GT runtime version 4.3 or higher

• A “C” compiler for the local machine (Visual C++™ Version 6.0 for a
WINDOWS platform)

 DCI User’s Guide1

2.3 Setup Instructions
The latest DBMaker version must be installed and configured before configuring DCI.
Refer to the Quick Start insert included with the DBMaker CD for instructions on
installation of DBMaker.

Setup with Windows

The DCI files must be copied from the source directory on the DBMaker CD to a
target directory before proceeding to setup DCI.

Â To setup DCI:

1. Copy the DCI library dmdcic.lib, DBMaker library dmapi50.lib and the
DCI library for Acu 5.1 or 5.2 from the DBMaker CD into the
ACUCOBOL-GT installed directory.

For example

copy Drive:\DBMaker\5.0\lib\dmapi50.lib c:\acucobol\acugt\lib

copy CDROM:\DCI\WIN32\dmdcic.lib c:\acucobol\acugt\lib

To link DCI libraries with Acu 5.1 and previous versions:

copy CDROM:\DCI\WIN32\dmacu51.lib c:\acucobol\acugt\lib

To link DCI libraries with Acu 5.2 or newer versions:

copy CDROM:\DCI\WIN32\dmacu52.lib c:\acucobol\acugt\lib

2. Edit the ACUCOBOL runtime configuration file filetbl.c. It is in the
directory that contains the ACUCOBOL-GT libraries, for example:
c:\acucbl43\acugt\lib. There are three entries you should modify:

a) The original filetbl.c contains the entry:

#ifndef USE_VISION

#define USE_VISION 1

#endif

Add a new entry as follows:

#ifndef USE_DCI

#define USE_DCI 1

#endif

b) The original filetbl.c contains the entry:

©Copyright 1995-2008 CASEMaker Inc. 2-6

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-7

extern DISPATCH_TBL v4_dispatch,...;

 extern DISPATCH_TBL ...;

Add a new entry as follows:

extern DISPATCH_TBL DBM_dispatch;

c) The original filetbl.c contains the entry:

TABLE_ENTRY file_table[] = {

#if USE_VISION

 { &v4_dispatch, "VISIO" },

#endif /* USE_VISION */

Add a new entry as follows:

#if USE_DCI

 { &DBM_dispatch, "DCI" },

#endif /* USE_DCI */

3. Edit the ACUCOBOL runtime configuration file sub85.c. It is in the
directory that contains the ACUCOBOL-GT libraries, for example:
c:\acucbl43\acugt\lib.

The original sub85.c contains the entry:
struct PROCTABLE WNEAR LIBTABLE[] = {

 { "SYSTEM", call_system },

Add a new entry as follows:

extern int DCI_GETENV();

extern int DCI_SETENV();

extern int DCI_DISCONNECT();

extern int DCI_GET_TABLE_NAME();

extern int DCI_SET_TABLE_CACHE();

extern int DCI_BLOB_ERROR();

extern int DCI_BLOB_PUT();

extern int DCI_BLOB_GET();

extern int DCI_GET_TABLE_SERIAL_VALUE();

extern int DCI_FREE_XFD();

struct PROCTABLE WNEAR LIBTABLE[] = {

{ "SYSTEM", call_system },

{ "DCI_GETENV", DCI_GETENV },

{ "DCI_SETENV", DCI_SETENV },

{ "DCI_DISCONNECT", DCI_DISCONNECT },

 DCI User’s Guide1

{ "DCI_GET_TABLE_NAME", DCI_GET_TABLE_NAME },

{ "DCI_SET_TABLE_CACHE", DCI_SET_TABLE_CACHE },

{ "DCI_BLOB_ERROR", DCI_BLOB_ERROR },

{ "DCI_BLOB_PUT", DCI_BLOB_PUT },

{ "DCI_BLOB_GET", DCI_BLOB_GET },

{ "DCI_GET_TABLE_SERIAL_VALUE", DCI_GET_TABLE_SERIAL_VALUE },

{ "DCI_FREE_XFD", DCI_FREE_XFD },

{ NULL, NULL }

};

4. Edit the ACUCOBOL file direct.c It is in the directory that contains the
ACUCOBOL-GT libraries, for example: c:\acucbl43\acugt\lib.

The original direct.c contains the entry:

struct EXTRNTABLE EXTDATA[] = {

 { NULL, NULL }

 };

Add a new entry as follows:

extern char *dci_where_constraint;

struct EXTRNTABLE EXTDATA[] = {

 { "DCI-WHERE-CONSTRAINT", (char *) &dci_where_constraint },

 { NULL, NULL }

 };

5. If using AcuGT < 6.0, open the file wrun32.mak. This is located in
drive:\Acucorp\acucobol\acugt\lib. Add the dmdcic.lib and dmapi50.lib to
CLIENT_LIBS or LIBS for ACUCOBOL 5.1 or ACUCOBOL 5.2,
respectively. The files are located in the directory that contains the
ACUCOBOL-GT libraries, if using ACUCOBOL 5.1 or previous versions
install dmacu51.lib and if using ACUCOBOL 5.2 or newer versions install
dmacu52.lib.

If using ACUCOBOL 5.1 search for CLIENT_LIBS in wrun32.mak and
add the following library files:

CLIENT_LIBS=dmapi50.lib dmacu51.lib dmdcic.lib

If using ACUCOBOL 5.2 search for LIBS in wrun32.mak and add the
following library files:

CLIENT_LIBS=\

 dmapi50.lib\

 dmacu52.lib\

©Copyright 1995-2008 CASEMaker Inc. 2-8

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-9

 dmdcic.lib\

 ……..

6. If using ACUCOBOL 6.0 or 6.1, open the Visual C++ project named
wrun32.dsw located in lib\ directory of the AcuGT installation. Add the files
dmapi50.lib, dmacu52.lib, dmdcic.lib to the project. Build the project to
obtain the new wrun32.dll file.

7. If using ACUCOBOL 6.2, open the Visual .NET project named
wrundll.vcproj located in the lib\ directory of the AcuGT installation. Add
the files dmapi50.lib, dmacu52.lib, and dmdcic.lib to the project. In the
property, choose to use the MFC’s common DLL. Build the project to obtain
the new wrun32.dll file.

8. Open the command prompt and go to the directory that contains the
ACUCOBOL-GT libraries, like: c:\acucbl43\acugt\lib.

9. If using AcuGT < 6.0, enter the command nmake -f wrun32.mak
wrun32.exe at the command prompt to build the wrun32.exe.

If the nmake fails, execute the following to setup the VC++ environment:
vcvars32.bat <enter>

10. If using AcuGT < 6.0, enter the command nmake -f wrun32.mak
wrun32.dll at the command prompt to build the wrun32.dll.

11. Copy the new wrun32.exe and wrun32.dll files to a directory mentioned in
your execution path, for example c:\acucbl43\acugt\bin.

12. Verify the link: Type wrun32 –vv to verify the link. This will return version
information on all of the products linked into your runtime system. Ensure it
reports the version of the DBMaker interface.

Setup with UNIX

The DCI files must be copied from the source directory on the DBMaker CD
(CDROM:\DCI\OS\) to a target directory before proceeding to setup DCI.

Â To setup DCI:

1. Copy the DCI library libdmdcic.a, DBMaker library libdmapic.a and the
DCI library for Acu 5.1 or 5.2 to the ACUCOBOL-GT installed directories:

For example: if a user wants to get DCI libraries for Linux, the user should
issue the following command.

cp /home/dbmaker/5.0/bin/libdmapic.a /usr/acucobol/lib

 DCI User’s Guide1

cp /mnt/cdrom/dci/Linux2.x86/libdmdcic.a /usr/acucobol/lib

To link DCI libraries with Acu 5.1 and previous versions:

cp /mnt/cdrom/dci/Linux2.x86/libdmacu51.a /usr/acucobol/lib

To link DCI libraries with Acu 5.2 and newer versions:

cp /mnt/cdrom/dci/Linux2.x86/libdmacu52.a /usr/acucobol/lib

2. Edit the ACUCOBOL runtime configuration file filetbl.c. It is in the
directory that contains the ACUCOBOL-GT libraries. There are three
entries you should modify:

a) The original filetbl.c contains the entry:

#ifndef USE_VISION

#define USE_VISION 1

#endif

Add a new entry as follows:

#ifndef USE_DCI

#define USE_DCI 1

#endif

b) The original filetbl.c contains the entry:

extern DISPATCH_TBL etc...;

Add a new entry as follows:

#if USE_DCI

extern DISPATCH_TBL DBM_dispatch;

#endif /* USE_DCI */

c) The original filetbl.c contains the entry:

TABLE_ENTRY file_table[] = {

#if USE_VISION

 { &v4_dispatch, "VISIO" },

#endif /* USE_VISION */

Add a new entry as follows:

#if USE_DCI

 { &DBM_dispatch, "DCI" },

#endif /* USE_DCI */

3. Edit the ACUCOBOL runtime configuration file sub85.c. It is in the
directory that contains the ACUCOBOL-GT libraries.

The original sub85.c contains the entry:
struct PROCTABLE WNEAR LIBTABLE[] = {

©Copyright 1995-2008 CASEMaker Inc. 2-10

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-11

 { "SYSTEM", call_system },

Add a new entry as follows:

extern int DCI_GETENV();

extern int DCI_SETENV();

extern int DCI_DISCONNECT();

extern int DCI_GET_TABLE_NAME();

extern int DCI_SET_TABLE_CACHE();

extern int DCI_BLOB_ERROR();

extern int DCI_BLOB_PUT();

extern int DCI_BLOB_GET();

extern int DCI_GET_TABLE_SERIAL_VALUE();

extern int DCI_FREE_XFD();

struct PROCTABLE WNEAR LIBTABLE[] = {

{ "SYSTEM", call_system },

{ "DCI_GETENV", DCI_GETENV },

{ "DCI_SETENV", DCI_SETENV },

{ "DCI_DISCONNECT", DCI_DISCONNECT },

{ "DCI_GET_TABLE_NAME", DCI_GET_TABLE_NAME },

{ "DCI_SET_TABLE_CACHE", DCI_SET_TABLE_CACHE },

{ "DCI_BLOB_ERROR", DCI_BLOB_ERROR },

{ "DCI_BLOB_PUT", DCI_BLOB_PUT },

{ "DCI_BLOB_GET", DCI_BLOB_GET },

{ "DCI_GET_TABLE_SERIAL_VALUE", DCI_GET_TABLE_SERIAL_VALUE },

{ "DCI_FREE_XFD", DCI_FREE_XFD },

{ NULL, NULL }

};

4. Edit the ACUCOBOL file direct.c. It is in the directory that contains the
ACUCOBOL-GT libraries.

The original direct.c contains the entry:

struct EXTRNTABLE EXTDATA[] = {

 { NULL, NULL }

 };

Add a new entry as follows:

extern char *dci_where_constraint;

struct EXTRNTABLE EXTDATA[] = {

 DCI User’s Guide1

 { "DCI-WHERE-CONSTRAINT", (char *) &dci_where_constraint },

 { NULL, NULL }

 };

5. Open the file Makefile. This is located in /usr/acucobol/43/lib. If you need to
link in your own C routines, add them to a SUBS= line in the Makefile of
your C routine. See Appendix C of the ACUCOBOL-GT compiler
documentation for details on linking C subroutines.

6. Add $(DBMaker)/lib/libdmdcic.a and $(DBMaker)/lib/libdmapic.a to the
line FSI_LIBS=, where $(DBMaker) is the directory containing the
DBMaker installation. If DBMaker has been installed in the directory
/DB/DBMaker then the Makefile will contain the following string(s):

For ACUCOBOL 5.1 or previous versions:
FSI_LIBS=./libdmacu51.a libdmdcic.a ./libdmapic.a

For ACUCOBOL 5.2 or newer:
FSI_LIBS=./libdmacu52.a libdmdcic.a ./libdmapic.a

7. Next, ensure you are in the directory containing the ACUCOBOL-GT
runtime system.

Â Syntax 7a

At the UNIX prompt, type:
make -f Makefile <enter>

This will compile sub.c and filetbl.c, and will then link the runtime system.

Â Syntax 7b

If the make fails because of an out-of-date symbol table, execute the
following:

ranlib *.a <enter>

Then execute the make again; if the make fails for any other reason, call
ACUCORP Technical Support.

8. Then to verify the link.

Â Syntax 8a

Type:
./runcbl -vv

This will return version information on all of the products linked into your
runtime system. Ensure it reports the version of DCI for DBMaker.

©Copyright 1995-2008 CASEMaker Inc. 2-12

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-13

NOTE You may also link your own C routines with the runtime system.

9. Copy the new runcbl file to a directory in your execution path. This file
needs to have the execute permission for everyone who will be using the
runtime system. The remaining files can be left in the directory into which
they were installed from the distribution medium.

SHARED LIBRARIES
When you re-link the ACUCOBOL-GT runtime and try to execute it, you may
receive an error message of this kind:
"Could not load library; no such file or directory"

"Can't open shared library . . . "
That probably means that your operating system is using shared libraries but cannot
locate them. This can happen even if the shared libraries exist in the current

directory.
Each version of the UNIX operating system resolves this problem differently, so it is
recommended that you look up your UNIX documentation on this problem. Some

versions of UNIX require you to set an environment variable, which points to shared
libraries on your system. For example, on an IBM RS/6000 running AIX 4.1, the
environment variable LIBPATH have to indicate the directory where the shared

libraries reside. On HP/UX, the environment variable is SHLIB_PATH. On UNIX
SVR4, the environment variable is LD_LIBRARY_PATH. Please read the system
documentation for your operating system to find the appropriate method to locate

shared libraries.
Alternatively, you can link the shared libraries into the runtime with a static link to
resolve this type of error. Each version of the C development system uses its own flag

to accomplish this link. Please refer to the documentation for your C development
system to find the correct flag for your environment.

 DCI User’s Guide1

2.4 Basic Configuration
Two configuration files must have parameters set for DCI to work. The first is
cblconfig, the ACUCOBOL runtime configuration file. The second is the
DCI_CONFIG file that is located in a directory determined by an environment

variable (see “Configuration File Variables” for details). To start working with DCI
right away there are some important settings in the DCI_CONFIG file that need to
be set. The DCI_CONFIG file sets parameters for DCI that determine how data

appears in the database, as well as performs some basic DBA functions to allow access
to the database. The following configuration variables need to be set in order to get
DCI working.

• DCI_DATABASE
• DCI_LOGIN
• DCI_PASSWD

• DCI_XFDPATH

Â Example

The following shows a basic DCI_CONFIG file.
DCI_LOGIN SYSADM
DCI_PASSWD
DCI_DATABASE DBMaker_Test
DCI_XFDPATH /usr/DBMaker/Dictionaries

DCI_DATABASE

The database that all transactions from DCI are made to is specified by
DCI_DATABASE. The database must first be established in the DBMaker setup.

Note that database names are case-sensitive by default, and must be less than or equal
to eighteen characters in length. If the database used is called DBMaker_Test

Â Syntax

The following entry must be included in the configuration file.
DCI-DATABASE DBMaker_Test

NOTE Refer to the section on “DCI_DATABASE“ in Chapter 7 for more information.

©Copyright 1995-2008 CASEMaker Inc. 2-14

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-15

DCI_LOGIN

To ensure that your COBOL application has permission to access objects in the

database, it is given a username. The configuration variable DCI_LOGIN sets the
username for all COBOL applications that use DCI. Initially this variable is set to
SYSADM to ensure full access to the database. This value can be set to another

username. See “DCI_LOGIN” in chapter 7 for more information.

Â Syntax

In order to connect to the database via the username SYSADM, the following must
be specified in the DCI configuration file:
DCI_LOGIN SYSADM

DCI_PASSWD

Once a username has been specified via the DCI_LOGIN variable, a database

account is associated with it. Note, there is no password for SYSADM. This is the
default setting for DBMaker, but it can be changed. Consult with the database
administrator to ensure that the account information (LOGIN, PASSWD) is correct.

See “DCI_PASSWD” in chapter 7 for more information.

Â Syntax

If the database account is set to SYSADM, then the configuration file should appear
as follows.
DCI_PASSWD

DCI_XFDPATH

DCI_XFDPATH is used to specify the name of the directory where data dictionaries

are stored. The default value is the current directory.

Â Syntax 1

To have data dictionaries stored in the directory /usr/DBMaker/Dictionaries, it is
necessary to include the following entry in the configuration file:
DCI_XFDPATH /usr/DBMaker/Dictionaries

 DCI User’s Guide1

Â Syntax 2

If it is necessary to specify more than one path, different directories have to be
separated by spaces. For example:
DCI_XFDPATH /usr/DBMaker/Dictionaries /usr/DBMaker/Dictionaries1

Â Syntax 3

Using double-quotes in a WIN-32 environment can specify “embedded spaces”.
DCI_XFDPATH c:\tmp\xfdlist “c:\my folder with space\xfdlist”

©Copyright 1995-2008 CASEMaker Inc. 2-16

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-17

2.5 The Runsql Utility
DCI provides a utility program called runsql.acu. This program can access some of
the standard SQL commands. It can be called from a COBOL program or executed
from the command line. The SQL command may be up to 32767 characters in

length and may be a variable or a quoted command string in the CALL statement
As a general rule, runsql.acu may be used to issue all SQL commands except those
that perform data retrieval. The runsql.acu program cannot perform statements that

return data such as the SELECT statement. This category of statements will return
an error when passed to the runsql.acu program.
The global variable return-code will be 0 when a command has completed

successfully. If a command is not successful, the global variable return-code will
contain an error code.

Â Syntax 1

The following syntax is used to create a DBMaker view.
runcbl runsql.acu

Â Example 1

The following is used to pause a program in order to accept an SQL command.
create table TEST (col1 char(10), col2 char(10))
create view TESTW as select * from TEST

Â Syntax 2

The following is used to call sql.acu from within a COBOL program.
call "runsql.acu" using sql-command

Â Example 2
Call “runsql” using “create view TESTW as select * from TEST”.

 DCI User’s Guide1

2.6 Invalid Data
DCI uses some methods to manage data that is valid in COBOL applications but
invalid for the DBMaker RDBMS database. This section lists data types that cannot
be accepted by the RDBMS and lists solutions that DCI implements to solve this

problem.

COBOL VALUE WHERE IT IS CONSIDERED ILLEGAL

LOW-VALUES In USAGE DISPLAY NUMBERS and text fields

HIGH-VALUES In USAGE DISPLAY NUMBERS, COMP-2 numbers
and COMP-3 numbers

SPACES In USAGE DISPLAY NUMBERS and COMP-2 numbers

Zero In DATE fields

Figure 2-4 Illegal COBOL Data
See the internal storage format of other numeric types to determine which of the

above it applies to. BINARY numbers are always legal, as are all values in BINARY
text fields.
Certain data types must be converted before DBMaker will accept them. DCI

converts these values in the following ways:
• Illegal LOW-VALUES: stored as the lowest possible value (0 or - 99999...) or

DCI_MIN_DATE default value.

• Illegal HIGH-VALUES: stored as the highest possible value (99999...) or
DCI_MAX_DATE default value.

• Illegal SPACES: stored as zero (or DCI_MIN_DATE, in the case of a date

field).
• Illegal DATE values: stored as DCI_INV_DATE default value.
• Illegal TIME: stored as DCI_INV_DATE default value.
Null fields sent to DCI from the database are converted to COBOL in the following
ways:
• Numbers (including dates) are converted to zero.

• Text (including binary text) is converted to spaces.

©Copyright 1995-2008 CASEMaker Inc. 2-18

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-19

If you want to change above conversion rules except for the key fields, you can use
DCI_NULL_ON_ILLEGAL_DATE that convert to NULL illegal COBOL data.

 DCI User’s Guide1

2.7 Sample Application
A sample application program included with the DCI files demonstrates how DCI
maps application data to a DBMaker database. This section can be used as a mini-lab
to learn:

• How to setup the application program.
• How to compile the source code to create the application object code.
• How to input data to the application.

• How to access data using dmSQL and JDBA Tool.
• How the source code conforms to the schema of the generated table.

Setting up the Application

The application is located in the \DCI directory, and consists of the files

INVD.CBL, INVD.FD, INVD.SL, TOTEM.DEF, CBLCONFIG, INVD.XFD,
DCI.CFG, and the object file INVD.ACU. The application may be run directly
from the object code (INVD.ACU) (see “To run the application”, below), or may be

compiled from the source code (INVD.CBL) (see “To compile the source code”,
below).
NOTE To compile the sample application, users should already have installed

ACUCOBOL 4.3 or above.

Â To run the application:

1. Setup a database in DBMaker to accept data from DCI. As an example for
this procedure, we created the database DCI using JServer Manager. All
default settings were used for the database; specifically SYSADM was used for
the default login name with no password. For information on creating and
setting up a database, refer to the Database Administrator’s Reference or the
JServer Manager User’s Guide.

2. In the \DCI directory, open the DCI.CFG file with any text editor. Set the
configuration variables to appropriate values. Refer to section 2.4 “Basic
Configuration” for information on configuration file values.

Â Example
DCI_DATABASE DCI

©Copyright 1995-2008 CASEMaker Inc. 2-20

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-21

DCI_LOGIN SYSTEM

DCI_PASSWD

//DCI_LOGFILE

DCI_STORAGE_CONVENTION Dca

//DCI_XFDPATH C:\DCI

3. Run the DBMaker Server program (dmserver.exe). It will prompt you to start
a database as shown below. Select the database that has been designated in the
DCI.CFG file.

4. The database will start normally and the following window will appear. If any
problems or error messages occur, refer to the Error Message Reference or the
Database Administrator’s Guide.

5. Open the command prompt and go to the ..\DCI directory.

6. Define the DCI_CONFIG at the command prompt by entering the
following.

Â Syntax 6a
..\DCI\>SET DCI_CONFIG=C:\..\DCI\DCI.CFG

7. Run the COBOL program INVD.ACU using WRUN32.

 DCI User’s Guide1

Â Syntax 7a

At the command prompt in the same directory, enter the following line:
..\DCI\>WRUN32 –C CBLCONFIG INVD.ACU

8. The file CBLCONFIG contains the command line DEFAULT-HOST DCI
and is used to set the default file system. For more information refer to
Chapter 5, “Compiler and Runtime Options”.

9. The window of the COBOL application INVD.ACU will open as shown
below, allowing you to enter values into the fields.

NOTE For instructions on adding records, refer to “Adding Records” below.

Â To compile the sample application from the source code:

1. Follow steps 1 through 6 in “To run the application”, above.

2. Copy the following definition files from
the ..\Acucorp\Acucbl500\AcuGT\sample\def directory to the ..\DCI
directory: acucobol.def, acugui.def, crtvars.def, fonts.def, showmsg.def.

NOTE ACUCOBOL 4.3 users should copy the above definition files
 from the \Acucbl43\AcuGT\sample\

3. At the command prompt go to the ..\DCI directory.

©Copyright 1995-2008 CASEMaker Inc. 2-22

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-23

Â Syntax 3a

Enter the following line:
..\DCI\>ccbl32 –Fx INVD.CBL

4. The file will be compiled and will create a new object code file INVD.ACU
and data dictionary file INVD.XFD. To run the object file follow steps 6 and
7 in “To run the application”, above.

Adding Records

Once the application has been started (see “To run the application” above) it is a
simple matter to add records to the application, and subsequently, to the database.

The field INVD-INVLNO is a key field, so a unique value is required for a record to
be a valid entry. All other fields may be left blank. When you have finished entering
values into the field, click the Add button. The values entered into the fields will

now be saved in the DBMaker database specified by the DCI.CFG variable, DCI-
DATABASE.

Â Example

The file descriptor for the application looks like this:
FD INVD
 LABEL RECORDS ARE STANDARD
 01 INVD-R
 05 INVD-INVLNO PIC X(10).
 05 INVD-INVLSSTKNO PIC X(10).
 05 INVD-INVLDESC PIC X(30).
 05 INVD-INVLQTY PIC 9(8).
 05 INVD-INVLFREE PIC 9(8).
 05 INVD-INVLPRICE PIC 9(7)V99.
 05 INVD-MVTCODE PIC X(6).
 05 INVD-SUBTOTAL PIC 9(7)V99.

Once a record has been added, you may browse through the entries by selecting the
First, Previous, Next, or Last buttons on the Screen window. An individual record

may be selected from the drop-down menu at the top of the Screen window that
displays all the key field values. The section “ Accessing the Data” describes how to
browse data using DBMaker SQL based tools.

 DCI User’s Guide1

Figure 2-5 INVD-INVLNO Key Field Sample Entry

Accessing the Data

To browse and manipulate records created within the sample application is
straightforward. First, we recommend that you familiarize yourself with one of the

DBMaker tools: dmSQL, DBA Tool, or JDBA Tool. For information on the use of
these tools, refer to the Database Administrator’s Guide, or the JDBA Tool User’s
Guide. The following example shows how data can be accessed using JDBA Tool.

The INVD application must first be shut down, because it places a lock on the table
that has been created within the database. Connect to the database with JDBA. You
will be able to see the table by expanding the Tables node within the database tree as

shown below.

Figure 2-6 INVD Application Tables Tree Node

Double clicking on the SYSADM.invd table will allow you to view the table’s

schema. All of the columns and their properties can be viewed here.

©Copyright 1995-2008 CASEMaker Inc. 2-24

1DCI Basics 2

©Copyright 1995-2008 CASEMaker Inc. 2-25

Figure 2-7 SYSADM.invd Table Schema

Selecting the Edit Data tab will allow you to view the values of each field.

Figure 2-8 SYSADM.invd Edit Data Tab Field Values

 DCI User’s Guide1

©Copyright 1995-2008 CASEMaker Inc. 2-26

1Data Dictionaries 3

3 Data Dictionaries

Data Dictionaries describe how extended file descriptor (.XFD) files are created and
accessed. DCI avoids using SQL function calls embedded in COBOL code by using

a special feature of ACUCOBOL-GT. When a COBOL application is compiled
using the “–Fx” option data dictionaries are generated. These are known as
“extended file descriptors” (XFD files), which are based on COBOL file descriptors.

DCI uses the data dictionaries to map data between the fields of a COBOL
application and the columns of a DBMaker table. Every DBMaker table used by
DCI has at least one corresponding data dictionary file associated with it.
NOTE Refer to the ACUCOBOL-GT User’s Guide (chapter 5.3) for more detailed

information and rules concerning the creation of XFDs.

©Copyright 1995-2008 CASEMaker Inc. 3-1

 DCI User’s Guide1

3.1 Assigning Table Names
Database tables correspond to file descriptors in the FILE CONTROL section of the
COBOL application. The database tables must have unique names under 32 bytes in

length (32 ASCII characters).
It is possible for the DBMaker table to have more columns than the COBOL
program's corresponding file descriptor. It is also possible to have different orders

columns than the COBOL program's corresponding file descriptor.
The number of columns in the database table does not have to match up with the
number of fields in the COBOL program that is accessing the table. The DBMaker

table can have more columns than the COBOL program references; however, the
COBOL program may not have more fields than the DBMaker table. Ensure that
these "extra" columns are set correctly when new rows are added to the table.

ACUCOBOL generates XFD file names by default from the FILE CONTROL
section. If the SELECT statement for the file has a variable ASSIGN name (ASSIGN
TO filename), then specify a starting name for the XFD file using a FILE directive

(refer to $XFD FILE Directive in chapter 4). If the SELECT statement for the file
has a constant ASSIGN name (such as ASSIGN TO “EMPLOYEE”), then the
constant is used to generate the XFD file name. If the ASSIGN phrase refers to a

device and is generic (such as ASSIGN TO “DISK”), then the compiler uses the
SELECT name to generate the XFD file name.
File names and usernames are case-insensitive. All file descriptors containing

uppercase characters will be converted to lowercase. Users must be aware of this if
using a case sensitive operating system.

Â Example 1

If the FILE CONTROL section contains the following line of text:
SELECT FILENAME ASSIGN TO “Customer”

Â Example 2

DCI, based on dictionary information read in “customer.xfd”, will make a DBMaker
table called “username.customer”. The Acucobol-GT compiler always creates a file

name in lowercase. The “username” default is determined by the DCI_LOGIN value

©Copyright 1995-2008 CASEMaker Inc. 3-2

1Data Dictionaries 3

in the DCI_CONFIG file, or can be changed with the DCI_USER_PATH
configuration variable.
SELECT FILENAME ASSIGN TO “CUSTOMER”

Â Example 3

If the file has a file extension, DCI replaces “.” characters with “_”. DCI will open a

DBMaker table named “username.customer_dat”.
SELECT FILENAME ASSIGN TO “customer.dat”

Â Example 4

DCI_MAPPING can be used to make the dictionary customer.xfd available. Since
DCI uses the base name to look for the XFD dictionary, in this case it looks for an
XFD file named “customer_dat.xfd”. The following setting is based on an XFD file

named “customer.xfd”.
DCI_MAPPING customer*=customer

COBOL applications may use the same base file name in different directories. For
example a COBOL application opens a file named “customer” in different

directories such as “/usr/file/customer” and “/usr1/file/customer”. To make the file
names unique we would include directory paths in the file names. A way to do this is
to change the DCI_CONFIG variable DCI_USEDIR_LEVEL to “2”. DCI will

then open a table as follows:

COBOL RDBMS XFD FILENAME

/usr/file/customer usrfilecustomer usrfilecustomer.xfd

/usr1/file/customer usr1filecustomer usr1filecustomer.xfd

Figure 3-1 Sample DCI_USEDIR_LEVEL to “2”Ttable

NOTE Please remember there is a limit to the maximum length of DBMaker table names

and that DCI_MAPPING must be used to map .XFD file dictionary definitions.

©Copyright 1995-2008 CASEMaker Inc. 3-3

 DCI User’s Guide1

COBOL CODE
RESULTING FILE

NAME
RESULTING TABLE

NAME

ASSIGN TO
“usr/hr/employees.dat”

employees_dat.xfd employees_dat

SELECT DATAFILE,
ASSIGN TO DISK

datafile.xfd datafile

ASSIGN TO “-D
SYS$LIB:EMP”

emp.xfd emp

ASSIGN TO FILENAME (user specified) (user specified)

Figure 3-2 Example Table Names Formed From Different COBOL Statements

Â Example

Table names are, in turn, generated from the XFD file name. Another way to specify
the table name is to use the $XFD FILE directive.

 05 DATE-PURCHASED.
 10 YYYY PIC 9(04).
 10 MM PIC 9(02).
 10 DD PIC 9(02).
 05 PAY-METHOD PIC X(05).

In summary, the final name is formed as follows:
• The compiler converts extensions and includes them with the starting name by

replacing the “.” with an underscore “_”.
• It constructs a universal base name from the file name and directory information

as specified by the DCI_CONFIG variable DCI_USEDIR_LEVEL. It reduces

the base name to 32 characters and converts it to lowercase depending of
DCI_CASE value.

©Copyright 1995-2008 CASEMaker Inc. 3-4

1Data Dictionaries 3

3.2 Mapping Columns and Records
The table that is created is based on the largest record in the COBOL file. It contains
all of the fields from that record and any key fields. Key fields are specified in the

FILE CONTROL section using the KEY IS phrase. Key fields correspond to
primary keys in the database table and are discussed in detail in the next section.
Note that DCI will create column names for the database that are case-sensitive,

unlike table names.

Â Example 1

The following illustrates how data is transferred.
ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT HR-FILE
 ORGANIZATION IS INDEXED
 RECORD KEY IS EMP-ID
 ACCESS MODE IS DYNAMIC.
 DATA DIVISION.
 FILE SECTION.
 FD HR-FILE
 LABEL RECORDS ARE STANDARD.
 01 EMPLOYEE-RECORD.
 05 EMP-ID PIC 9(06).
 05 EMP-NAME PIC X(17).
 05 EMP-PHONE PIC X(10).
 WORKING-STORAGE SECTION.
 01 HR-NUMBER-FIELD PIC 9(05).
 PROCEDURE DIVISION.
 PROGRAM-BEGIN.
 OPEN I-O HR-FILE.
 PERFORM GET-NEW-EMPLOYEE-ID.
 PERFORM ADD-RECORDS UNTIL EMP-ID = ZEROS.
 CLOSE HR-FLE.
PROGRAM-DONE.
 STOP RUN.
GET-NEW-EMPLOYEE-ID.

©Copyright 1995-2008 CASEMaker Inc. 3-5

 DCI User’s Guide1

 PERFORM INIT-EMPLOYEE-RECORD.
 PERFORM ENTER-EMPLOYEE-ID.
 INIT-EMPLOYEE-ID.
 MOVE SPACES TO EMPLOYEE-RECORD.
 MOVE ZEROS TO EMP-ID.
 ENTER-EMPLOYEE-ID.
 DISPLAY “ENTER EMPLOYEE ID NUMBER (1-99999),”
 DISPLAY “ENTER 0 TO STOP ENTRY”.
 ACCEPT HR-NUMBER-FIELD.
 MOVE HR-NUMBER-FIELD TO EMP-ID.
 ADD-RECORDS.
 ACCEPT EMP-NAME.
 ACCEPT EMP-PHONE.
 WRITE EMPLOYEE-RECORD.
 PERFORM GET-NEW-EMPLOYE-NUMBER.

Â Example 2

The preceding program normally would write all fields sequentially to file. The
output would appear as follows:
ENTER EMPLOYEE ID NUMBER (1-99999), ENTER 0 TO STOP ENTRY
51100
LAVERNE HENDERSON
2221212999
ENTER EMPLOYEE ID NUMBER (1-99999), ENTER 0 TO STOP ENTRY
52231
MATTHEW LEWIS
2225551212
ENTER EMPLOYEE ID NUMBER (1-99999), ENTER 0 TO STOP ENTRY

In a traditional COBOL file system, records will be stored sequentially. Every time a

write command is executed, the data is sent to the file. When DCI is used, the data
dictionary will create a map for the data to be stored in the database. In this case, the
record (EMPLOYEE-RECORD) is the only record in the file.

Â Example 3

The database will create a distinct column for each field in the file descriptor. The

table name will be HR-FILE in accordance with the SELECT statement in the
FILE-CONTROL section. The database records in the example would therefore
have the following structure:

©Copyright 1995-2008 CASEMaker Inc. 3-6

1Data Dictionaries 3

EMP_ID (INT(6)) EMP_NAME
(CHAR(17))

EMP_PHONE
(DEC(10))

51100 LAVERNE HENDERSON 2221212999

52231 MATTHEW LEWIS 2225551212

Figure 3-3 Table EMPLOYEE-RECORD
In this table, the column EMP-ID is the primary key as defined by the KEY IS
statement of the input-output section. The data dictionary creates a “mapping” that

allows it to retrieve records and place them in the correct fields. A COBOL
application that stores information in this way can take advantage of the backup and
recovery features of the database, as well as take advantage of the capabilities of SQL.

Identical Field Names

In COBOL, fields with identical names are distinguished by qualifying them with a
group item. DBMaker does not allow for duplicate column names on a table. If
fields have the same name, DCI will not generate columns for those fields.

One solution to this situation is to add a NAME directive (Refer to $XFD NAME
Directive in chapter 4) that associates an alternate name with one or both of the
conflicting fields.

Â Example

In the following example you would reference PERSONNEL and PAYROLL in

your program:
FD HR-FILE
 LABEL RECORDS ARE STANDARD.
01 EMPLOYEE-RECORD.
 03 PERSONNEL.
 05 EMP-ID PIC 9(6).
 05 EMP-NAME PIC X(17).
 05 EMP PHONE PIC 9(10).
 03 PAYROLL.
 05 EMP-ID PIC 9(6).
 05 EMP-NAME PIC X(17).
 05 EMP PHONE PIC 9(10).

©Copyright 1995-2008 CASEMaker Inc. 3-7

 DCI User’s Guide1

Long Field Names

DBMaker allows for table names up to 32 characters in length. DCI will truncate
field names longer than this. In the case of the OCCURS clause described below, the
truncation is to the original name, not the appended index numbers. However, the

final name, including the index number, is limited to the 32 characters. For example,
if the field name were Employee-statistics-01 it would be truncated to form the table
name Employee_statis_01. It is important to ensure that field names are unique (and

meaningful) within the first 18 characters.
You can use the NAME to rename a field with a long name. Note that within the
COBOL application you must continue to use the original name. The NAME

directive affects only the corresponding column name in the database.

©Copyright 1995-2008 CASEMaker Inc. 3-8

1Data Dictionaries 3

3.3 Using Multiple Record Formats
The example in the previous section shows how fields are used to create a database
table. However, the example only shows the case of an application with one record.

A multiple record format will be stored differently from a single record format.
COBOL programs with multiple records will map all records from the
“master”(largest) record in the file and any key fields in the file. Smaller records are

mapped to the database table by the XFD file but will not appear as discrete, defined
columns in the table. Instead, they occupy new records in the existing columns of the
database.

Â Example 1

Take the previous example but modify the file descriptor to include more than one

record.
DATA DIVISION
FILE SECTION
FD HR-FILE
 LABEL RECORDS ARE STANDARD.
01 EMPLOYEE-RECORD.
 05 EMP-ID PIC 9(6).
 05 EMP-NAME PIC X(17).
 05 EMP PHONE PIC 9(10).
01 PAYROLL-RECORD.
 05 EMP-SALARY PIC 9(10).
 05 DD PIC 9(2).
 05 MM PIC 9(2).
 05 YY PIC 9(2).

In this case the data dictionary is created from the largest file. The record
EMPLOYEE-RECORD contains 33 characters, while the record PAYROLL-

RECORD contains only 16. Records are entered sequentially into the database in
this case. The record EMPLOYEE-RECORD is used to create the schema for the
table column size and data type.

EMP_ID (INT(6)) EMP_NAME (CHAR(17)) EMP_PHONE (DEC(10))

Figure 3-4 Preceding Example Table

©Copyright 1995-2008 CASEMaker Inc. 3-9

 DCI User’s Guide1

Fields from the following record would be written into the columns according to the
character positions of the fields. The result is that no discrete columns exist for the

smaller records. The data can be retrieved from the database by the COBOL
application because the XFD file contains the map for the fields, but there are no
columns in the table representing those fields.

In the previous example, when the first record is input into the database there is a
correlation between the columns and the COBOL fields. When the second record is
input there is no such correlation. The data occupies its corresponding character

position according to the field. So the first five characters of EMP_SALARY occupy
the EMP_ID column, the last five characters of EMP_SALARY occupy the
EMP_NAME column. The fields DD and MM and YY are also located within the

EMP_NAME column.

Â Example 2

The following example illustrates this. Given the following input to the COBOL
application:
ENTER EMPLOYEE ID NUMBER (1-99999), ENTER 0 TO STOP ENTRY
51100
LAVERNE HENDERSON
2221212999
5000000000
01
04
00

The fields have been merged and split according to the character positions of the

fields relative to the table’s schema. Furthermore, the data type of the column
EMP_NAME is CHAR. Because DCI has access to the data dictionary, all fields will
be mapped back to the COBOL application in the correct positions.

This is a very important fact; by default, the fields of the largest record are used to
create the schema of the table, therefore table schema must be carefully considered
when creating file descriptors. To take advantage of the flexibility of SQL, data types

is consistent between fields for different records that will occupy the same character
positions. If a PIC X field is written to a DECIMAL type database column, the
database will return an error to the application.

©Copyright 1995-2008 CASEMaker Inc. 3-10

1Data Dictionaries 3

Â Example 3

An SQL select on the first record of all columns in EMP_NAME would display the
following:
51100, LAVERNE HENDERSON, 2221212999

Â Example 4

An SQL select on the second record of all columns in EMP_NAME would display

the following:
500000, 0000010400

©Copyright 1995-2008 CASEMaker Inc. 3-11

 DCI User’s Guide1

3.4 Using XFD File Defaults
In many cases directives can be used to override the default behavior of DCI. Refer
to XFD Directives for more information.

The compiler uses special methods to deal with the following COBOL elements:
• REDEFINES Clause
• KEY IS phrase

• FILLER data items
• OCCURS Clauses

REDEFINES Clause

A REDEFINES clause creates multiple definitions for the same field. DBMaker does

not support more than one data definition per column. Therefore, a redefined field
will occupy the same position in the table as the original field. By default, the data
dictionary uses the field definition of the subordinate field to define the column data

type.
Multiple record definitions are essentially redefines of the entire record area. Refer to
the previous section for details on multiple record definitions.

Group items are not included in the data dictionary’s definition of the resultant
table’s schema. Instead, the individual fields within the group item are used to
generate the schema. Grouped fields may be combined using the USE GROUP

directive.

KEY IS Phrase

The KEY IS phrase in the input-output section of a COBOL program defines a field
or group of fields as a unique index for all records. The data dictionary maps fields

included in the KEY IS phrase to primary keys in the database. If the field named in
the KEY IS phrase is a group item, the subordinate fields of the group item will
become the primary key columns of the table. The USE GROUP directive can be

employed to collect all subordinate fields into one field (see $XFD USE GROUP
Directive in Chapter 7).

©Copyright 1995-2008 CASEMaker Inc. 3-12

1Data Dictionaries 3

FILLER Data Items

FILLER data items are placeholders in a COBOL file descriptor. They do not have
unique names and cannot be uniquely referenced. The data dictionary maps all other
named fields as if the fillers existed in terms of character position, but does not create

a distinct field for the FILLER data item.
If a FILLER must be included in the table schema it can be combined with other
fields using the USE GROUP directive (see $XFD USE GROUP Directive in

Chapter 7) or the NAME directive (see $XFD NAME Directive in Chapter 7).

OCCURS Clauses

The OCCURS clause allows a field to be defined as many times as the user wants.
DCI must assign a unique name for each database column, but multiple fields

defined with an OCCURS clause will all have the same name. To avoid this
problem, the field specified in the OCCURS clause is appended with a sequential
index number.

Â Example 1

Given the following part of a file descriptor:
 03 EMPLOYEE-RECORD OCCURS 20 TIMES.
 05 CUST-ID PIC 9(5).

Â Example 2

The following column names would be generated for the database:
EMP_ID_1
EMP_ID_2
.
.
.
EMP_ID_5
EMP_ID_6
.
.
.
EMP_ID_19
EMP_ID_20

©Copyright 1995-2008 CASEMaker Inc. 3-13

 DCI User’s Guide1

3.5 Mapping Multiple Files
It is possible at runtime to use a single XFD file for multiple files with different
names. If the record definitions of the files are the same then it is unnecessary to

create a separate XFD for each file.
The runtime configuration variable DCI_MAPPING determines which files are
mapped to an XFD. Below is a description of how it works.

Suppose the COBOL application has a SELECT with a variable ASSIGN name,
such as EMPLOYEE-RECORD. This variable assumes different values (such as
EMP0001 and EMP0002) during program execution. In order to provide a base

name for the XFD, use the FILE directive (see ((XFD DATE, USE GROUP)).

Â Example

If “EMP” is the base, then the compiler will generate an XFD named “Emp.xfd”.
The asterisk (“*”) in the example is a wildcard charcter that replaces any number of
characters in the file name. The file extension “.xfd” is not included in the map. This

statement would cause the XFD “emp.xfd’ to be used for all files with names that
begin with “EMP”. Add the following entry in the runtime configuration file to
ensure that all employee files, each having a unique but related name, use the same

XFD:
DCI_MAPPING EMP* = EMP

The DCI_MAPPING variable is read during the open file stage. The “ *” and “?”
wildcard characters can be used within the pattern:

* matches any number of characters
? matches a single occurrence of any character
EMP????? matches EMP00001 and EMPLOYEE, but does not match

EMP001 or EMP0001
EMP* matches all of the above
EMP*1 matches EMP001, EMP0001, and EMP00001, but does nor

match EMPLOYEE.
*OYEE matches EMPLOYEE
does not match EMP0001 or EMP00001

©Copyright 1995-2008 CASEMaker Inc. 3-14

1Data Dictionaries 3

Â Syntax

Where <pattern> consists of any valid filename characters and may include “*“ or “?”.
The DCI_MAPPING variable has the following syntax:
DCI_MAPPING [<pattern> = base-xfd-name],

©Copyright 1995-2008 CASEMaker Inc. 3-15

 DCI User’s Guide1

3.6 Mapping to Multiple Databases
It is possible to reference tables in different databases with DCI_DB_MAP by
specifing different files or COBOL file-prefix links to the DBMS. This scenario is

illustrated through the following example.

Â Example

To reference table idx1 in the databases DBSAMPLE5 (as default), DBCED, and
DBMULTI, add the following settings in the DCI_CONFIG configuration file.
DCI_DB_MAP /usr/CED=DBCED
DCI_DB_MAP /usr/MULTI=DBMULTI

To create the idx1 table in these databases by specifying different files:
...
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

 SELECT IDX-1-FILE
 ASSIGN TO DISK "/usr/CED/IDX1"
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 RECORD KEY IS IDX-1-KEY.

 SELECT IDX-2-FILE
 ASSIGN TO DISK "/usr/MULTI/IDX1"
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 RECORD KEY IS IDX-2-KEY.

 SELECT IDX-3-FILE
 ASSIGN TO DISK "IDX1"
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 RECORD KEY IS IDX-3-KEY.

 DATA DIVISION.
 FILE SECTION.
 FD IDX-1-FILE.

©Copyright 1995-2008 CASEMaker Inc. 3-16

1Data Dictionaries 3

 01 IDX-1-RECORD.
 03 IDX-1-KEY PIC X(10).
 03 IDX-1-ALT-KEY.
 05 IDX-1-ALT-KEY-A PIC X(30).
 05 IDX-1-ALT-KEY-B PIC X(10).
 03 IDX-1-BODY PIC X(50).

 FD IDX-2-FILE.
 01 IDX-2-RECORD.
 03 IDX-2-KEY PIC X(10).
 03 IDX-2-ALT-KEY.
 05 IDX-2-ALT-KEY-A PIC X(30).
 05 IDX-2-ALT-KEY-B PIC X(10).
 03 IDX-2-BODY PIC X(50).

 FD IDX-3-FILE.
 01 IDX-3-RECORD.
 03 IDX-3-KEY PIC X(10).
 03 IDX-3-ALT-KEY.
 05 IDX-3-ALT-KEY-A PIC X(30).
 05 IDX-3-ALT-KEY-B PIC X(10).
 03 IDX-3-BODY PIC X(50).
 WORKING-STORAGE SECTION.

 PROCEDURE DIVISION.
 LEVEL-1 SECTION.
 MAIN-LOGIC.
 set environment "default-host" to "dci"

 * make IDX1 table on DBCED

 OPEN OUTPUT IDX-1-FILE
 MOVE "IDX IN DBCED" TO IDX-1-BODY
 MOVE "A" TO IDX-1-KEY
 WRITE IDX-1-RECORD
 MOVE "B" TO IDX-1-KEY
 WRITE IDX-1-RECORD
 MOVE "C" TO IDX-1-KEY

©Copyright 1995-2008 CASEMaker Inc. 3-17

 DCI User’s Guide1

 WRITE IDX-1-RECORD
 CLOSE IDX-1-FILE

 * make IDX1 table on DBMULTI
 OPEN INPUT IDX-1-FILE
 OPEN OUTPUT IDX-2-FILE
 PERFORM UNTIL 1 = 2
 READ IDX-1-FILE NEXT AT END EXIT PERFORM END-READ
 MOVE IDX-1-RECORD TO IDX-2-RECORD
 MOVE "IDX IN DBMULTI" TO IDX-2-BODY
 WRITE IDX-2-RECORD
 END-PERFORM
 CLOSE IDX-1-FILE IDX-2-FILE

 * make IDX1 table on DBSAMPLE5
 OPEN INPUT IDX-1-FILE
 OPEN OUTPUT IDX-3-FILE
 PERFORM UNTIL 1 = 2
 READ IDX-1-FILE NEXT AT END EXIT PERFORM END-READ
 MOVE IDX-1-RECORD TO IDX-3-RECORD
 MOVE "IDX IN DBSAMPLE5" TO IDX-3-BODY
 WRITE IDX-3-RECORD
 END-PERFORM

 CLOSE IDX-1-FILE IDX-3-FILE

To read table idx-1 in these databases by file-prefix:
....
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.

 SELECT IDX-1-FILE
 ASSIGN TO DISK "IDX1"
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 RECORD KEY IS IDX-1-KEY.

 DATA DIVISION.
 FILE SECTION.

©Copyright 1995-2008 CASEMaker Inc. 3-18

1Data Dictionaries 3

 FD IDX-1-FILE.
 01 IDX-1-RECORD.
 03 IDX-1-KEY PIC X(10).
 03 IDX-1-ALT-KEY.
 05 IDX-1-ALT-KEY-A PIC X(30).
 05 IDX-1-ALT-KEY-B PIC X(10).
 03 IDX-1-BODY PIC X(50).

 WORKING-STORAGE SECTION.

 PROCEDURE DIVISION.
 LEVEL-1 SECTION.
 MAIN-LOGIC.
 set environment "default-host" to "dci"

 set environment "file-prefix" to "/usr/MULTI:/usr/CED".
 OPEN INPUT IDX-1-FILE
 READ IDX-1-FILE NEXT
 DISPLAY IDX-1-BODY
 ACCEPT OMITTED
 CLOSE IDX-1-FILE

 set environment "file-prefix" to "/usr/CED:/usr/MULTI".
 OPEN INPUT IDX-1-FILE
 READ IDX-1-FILE NEXT
 DISPLAY IDX-1-BODY
 ACCEPT OMITTED
 CLOSE IDX-1-FILE

 set environment "file-prefix" to ".:/usr/CED:/usr/MULTI".
 OPEN INPUT IDX-1-FILE
 READ IDX-1-FILE NEXT
 DISPLAY IDX-1-BODY
 ACCEPT OMITTED
 CLOSE IDX-1-FILE

©Copyright 1995-2008 CASEMaker Inc. 3-19

 DCI User’s Guide1

3.7 Using Triggers
COBOL Triggers are very useful and powerful features of DCI. COBOL triggers can
be used to automatically execute predefined COBOL program in response to specific
I/O events, regardless of which user or application program generated them.
COBOL triggers can be used to:

• Implement business rules.
• Create an audit trail for COBOL activities.
• Derive additional values from existing data.

• Replicate data across multiple files.
• Perform security authorization procedures.
• Control data integrity.

• Define unconventional integrity constraints.
Use the following XFD directives to define a COBOL trigger in order to specify the
COBOL program name to be called when an I/O event occurs.

Â Syntax
$XFD DCI COMMENT COBTRIGGER “cobolpgmname”

Â Example 1

The “cobolpgmname” is case-sensitive and looks in the CODE-PREFIX directory or
current running directory. The I/O events may be READ (any), WRITE,

REWRITE, DELETE, and OPEN. The COBOL trigger performs BEFORE and
AFTER I/O events except for OPEN that performs BEFORE I/O events.
$xfd dci comment cobtrigger “cobtrig”

Â Example 2

The “cobolpgmname” must following the LINKAGE SECTION rule :
LINKAGE SECTION.

01 op-code PIC x.
88 read-after value "R".
88 read-before value "r".
88 write-after value "W".

©Copyright 1995-2008 CASEMaker Inc. 3-20

1Data Dictionaries 3

88 write-before value "w".
88 rewrite-after value "U".
88 rewrite-before value "u".
88 delete-after value "D".
88 delete-before value "d".
88 open-before value "O".

01 record-image PIC x(32767).

01 rc-error PIC 99.

Â Example 3

Op-code is valued from DCI based on I/O events. The record-image contains the
COBOL record value before/after the I/O events. The rc-error could be used to force
the COBOL I/O events error using the following values:
88 F-IN-ERROR VALUES 1 THRU 99.
88 E-SYS-ERR VALUE 1.
88 E-PARAM-ERR VALUE 2.
88 E-TOO-MANY-FILES VALUE 3.
88 E-MODE-CLASH VALUE 4.
88 E-REC-LOCKED VALUE 5.
88 E-BROKEN VALUE 6.
88 E-DUPLICATE VALUE 7.
88 E-NOT-FOUND VALUE 8.
88 E-UNDEF-RECORD VALUE 9.
88 E-DISK-FULL VALUE 10.
88 E-FILE-LOCKED VALUE 11.
88 E-REC-CHANGED VALUE 12.
88 E-MISMATCH VALUE 13.
88 E-NO-MEMORY VALUE 14.
88 E-MISSING-FILE VALUE 15.
88 E-PERMISSION VALUE 16.
88 E-NO-SUPPORT VALUE 17.
88 E-NO-LOCKS VALUE 18.
88 E-INTERFACE VALUE 19.

©Copyright 1995-2008 CASEMaker Inc. 3-21

 DCI User’s Guide1

3.8 Using Views
DCI allows the use of DBMaker views instead of a table. In this case DCI users
must manually create a view and be aware of the following limitations:

• Users can open a view and do all DML operations when the view is a single
table view and the projection column on the original table is without an
expression, aggregate or UDF.

• For other kinds of views, user can open the view as an OPEN INPUT and
perform a READ operation only.

Â Example 1

The example below shows how to create the view in the COBOL program and open
it. It assumes that there are 2 tables named t2 and t3 created as follows:

create table t2 (c1 char(30), c2 int);
create table t3(c1 int);

and that such tables are filled with some data.

identification division.

 file-control.
 select miofile assign to ws-nomefile
 organization indexed
 access mode dynamic
 record key rec
 .
 data division.
 file section.
 $XFD FILE=miofile
 fd miofile.
 01 rec.
 03 c1 pic x(30).
 03 c2 pic 9(9).

 working-storage section.
 01 ws-nomefile pic x(30).
 01 sql-command pic x(1000).

©Copyright 1995-2008 CASEMaker Inc. 3-22

1Data Dictionaries 3

 procedure division.
 main.
 set environment "default_host" to "dci"
 display "Enter the name of the view to create:" no
 accept ws-nomefile

 inspect ws-nomefile replacing trailing spaces
 by low-value

 string "create view " delimited by size
 ws-nomefile delimited by low-value
 " as (select c1, c2 from t2 where c2 in (select max(c1)
 - " from t3));" delimited by size
 x"00" delimited by size
 into sql-command

 display sql-command
 accept omitted

 call "i$io" using 15, "dci", sql-command
 if return-code not = 0
 display "Errore : " return-code
 accept omitted
 stop run
 end-if

 string "commit;" delimited by size
 x"00" delimited by size
 into sql-command
 call "i$io" using 15, "dci", sql-command
 if return-code not = 0
 display "Errore : " return-code
 accept omitted
 stop run
 end-if
 open input miofile
 perform until 1=2
 read miofile next
 at end exit perform

©Copyright 1995-2008 CASEMaker Inc. 3-23

 DCI User’s Guide1

 end-read
 display rec
 end-perform
 close miofile

 exit program

©Copyright 1995-2008 CASEMaker Inc. 3-24

1Data Dictionaries 3

3.9 Using Synonyms
DCI allows the use of DBMaker synonyms instead of a table or view. Users can
create the synonym on a table, view or remote database’s table or view. If the

synonym for the view is not a single table view, the user can only OPEN INPUT
with that synonym.

©Copyright 1995-2008 CASEMaker Inc. 3-25

 DCI User’s Guide1

3.10 Open Tables in Remote
Databases
Users can access the remote database’s table or view by adding a special token “@” in
the COBOL SELECT statement. For example:
SELECT tb1 ASSIGN TO RANDOM, "lnk1@tb1"

The user must set DD_DDBMD=1 in the dmconfig.ini and create a remote
database link if the user wants to use a different user name and password.

Â Example

You want to connect to database dci_db1 and access a table in database dci_db2.

1. Set DD_DDBMD=1 in dmconfig.ini.

2. Then create the table in dci_db2

NOTE Use the dmSQL tool to create the tables in the dci_db2 database

3. Use a COBOL program to connect to dci_db1 and then open the table in
dci_db2.

dmconfig.ini
[DCI_DB1]
DB_SVADR = 127.0.0.1
DB_PTNUM = 22999
DD_DDBMD = 1

[DCI_DB2]
DB_SVADR = 127.0.0.1
DB_PTNUM = 23000
DD_DDBMD = 1

Use dmSQL tool to create the table
connect to DCI_DB2 SYSADM;
create table tb1 (c1 int not null, c2 int, c3 char(10), primary key c1);
commit;
disconnect;

COBOL program

©Copyright 1995-2008 CASEMaker Inc. 3-26

1Data Dictionaries 3

identification division.
program-id.RemoteTable.
date-written.
remarks.
environment division.
input-output section.
file-control.
 SELECT tb1 ASSIGN TO RANDOM, "dci_db2@tb1"
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 FILE STATUS IS I-O-STATUS
 RECORD KEY IS C1.

data division.
file section.
FD tb1.
01 tb1-record.
 03 C1 PIC 9(8) COMP-5.
 03 C2 PIC 9(8) COMP-5.
 03 C3 PIC X(10).
working-storage section.
77 I-O-STATUS pic xx.
procedure division.
main.
 set environment "default_host" to "dci"
 call "DCI_SETENV" using "DCI_DATABASE" "DCI_DB1"
 call "DCI_SETENV" using "DCI_LOGIN" "SYSADM"

 open i-o tb1
 move 100 TO C1.
 move 200 TO C2.
 move "AAAAAAAAAA" TO C3.
 write tb1-record.
 initialize tb1-record.
 read tb1 next.
 display C1, C2, " ", C3.
 close tb1.
 accept omitted.
 stop run.

©Copyright 1995-2008 CASEMaker Inc. 3-27

 DCI User’s Guide1

3.11 Using
DCI_WHERE_CONSTRAINT
DCI_WHERE_CONSTRAINT is used to specify an additional WHERE condition
for a succeeding START operation. To be compatible with Acu4gl, DCI also

supports the 4gl_where_constraint.

Â Example:

If you want to query city names that start with A, add the following to your code:

WORKING-STORAGE SECTION.
01 dci_where_constraint pic x(4095) is external.
...

PROCEDURE DIVISION.
...

* to pecify dci_where_constraint
move low-values to dci_where_constraint
 open i-o idx-1-file
 move "city_name = 'a%'" to dci_where_constraint
 inspect dci_where_constraint replacing trailing spaces by low-values.

 move spaces to idx-1-key
 start idx-1-file key is not less idx-1-key

©Copyright 1995-2008 CASEMaker Inc. 3-28

1XFD Directives 4

©Copyright 1995-2008 CASEMaker Inc. 4-1

4 XFD Directives

Directives are comments placed in COBOL file descriptors that alter how the
database table is built. Directives can be used to change the way data is defined in the

database and to assign names to database fields. The directives can also assign names
to .XFD files, assign data to binary large object (BLOB) fields, or add comments.

 DCI User’s Guide1

4.1 Using Directive Syntax
Each directive is placed on a line by itself, immediately before the related line of
COBOL code. All directives have the prefix $XFD; a $ symbol in the 7th column

followed immediately by XFD.

Â Syntax 1

The following command provides a unique database name for an undefined
COBOL variable. The directive is issued above the line it is intended to affect; in this
case the second instance of the COBOL defined variable qty.
. . .
 03 QTY PIC 9(03).
 01 CAP.
$XFD NAME=CAPQTY
 03 QTY PIC 9(03).

Â Syntax 2

Alternatively, directives may be specified using the following ANSI-compliant

syntax:
*((XFD NAME=CAPQTY))

Â Syntax 3

More than one directive may be combined together. Directives can be on the same
line, preceded by the prefix $XFD and separated by a space or comma.
$XFD NAME=CAPQTY, ALPHA

Â Syntax 4

Alternatively, the following can be used.
*((XFD NAME=CAPQTY, ALPHA))

©Copyright 1995-2008 CASEMaker Inc. 4-2

1XFD Directives 4

©Copyright 1995-2008 CASEMaker Inc. 4-3

4.2 Using XFD Directives
Directives are used when a COBOL file descriptor is mapped to a database field. The
$XFD prefix indicates to the compiler that the proceeding command is used during

the generation of the data dictionary.

$XFD ALPHA Directive

In order to store non-numeric data (like, LOW-VALUES or special codes) in
numeric keys, this directive allows a data item that has been defined as numeric in

the COBOL program to be treated as alphanumeric text (CHAR (n) n 1-max
column length) in the database.

Â Syntax 1
$XFD ALPHA

Â Syntax 2
*((XFD ALPHA))

Moving a non-numeric value such as “A234” to the key without using the $XFD
ALPHA directive would

Â Example 1

Let’s establish that the KEY IS code-key has been specified and we have the following
record definition. CODE-NUM is a numeric value and is the key field here, since

group items are disregarded in the database.
01 EMPLOYEE-RECORD.
 05 EMP-KEY.
 10 EMP-NUM PIC 9(5).

Â Example 2

Using the $XFD ALPHA directive will change a non-numeric value such as “A234”
so that the record will not be rejected by the database, since “A234” is an
alphanumeric value and CODE-NUM is a numeric value.
01 EMPLOYEE-RECORD.
 05 EMP-KEY.
$XFD ALPHA

 DCI User’s Guide1

 10 EMP-NUM PIC 9(5)

Â Example 3

Now, the following operation can be used without worrying about any rejection .
MOVE "C0531" TO CODE-KEY.
WRITE CODE-RECORD.

$XFD BINARY Directive

In order to allow for the data in a field to be alphanumeric data of any type (for
example, LOW-VALUES), you can use the BINARY directive. In the case of LOW-

VALUES, for example, COBOL allows both LOW and HIGH-VALUES in a
numeric field, while DBMaker does not.
BINARY directives transform the COBOL fields into DBMaker BINARY data

types.

Â Syntax 1
$XFD BINARY

Â Syntax 2
*((XFD BINARY))

Â Example

This will allow LOW-VALUES to be moved to CODE-NUM.
01 EMPLOYEE-RECORD.
 05 EMP-KEY.
 10 EMP-TYPE PIC X.
$((XFD BINARY))
 10 EMP-NUM PIC 9(05).
 10 EMP-SUFFIX PIC X(03).

$XFD COMMENT DCI SERIAL n Directive

This directive is used to define a serial data field and an optional starting number
“n”. To trigger DBMaker to generate a serial number, insert a record and supply 0
value for the serial field. If you insert a new row and supply an integer value instead

of a 0 value, DBMaker will not generate a serial number. If the supplied integer value

©Copyright 1995-2008 CASEMaker Inc. 4-4

1XFD Directives 4

©Copyright 1995-2008 CASEMaker Inc. 4-5

is greater than the last serial number generated, DBMaker will reset the sequence of
generated serial numbers to start with the supplied integer value.

Â Syntax 1
$XFD COMMENT DCI SERIAL 1000

Â Syntax 2
*((XFD COMMENT DCI SERIAL 1000))

Â Example
01 EMPLOYEE-RECORD.
 05 EMP-KEY.
 10 EMP-TYPE PIC X.
$((XFD COMMENT DCI SERIAL 250))
 10 EMP-COUNT PIC 9(05).

$XFD COMMENT DCI COBTRIGGER Directive

This directive lets you to define a COBOL program as trigger of I/O events like
READ WRITE REWRITE or DELETE. This defined COBOL program is
automatic called before and after every I/O events.

Â Syntax 1
$XFD COMMENT DCI COBTRIGGER “cblprogramname”

Â Syntax 2
*((XFD COMMENT DCI COBTRIGGER “cblprogramname”))

$XFD COMMENT Directive

This directive is used to include comments in an XFD file. In this way, information
can be embedded in an XFD file so that other applications can access the data

dictionary. Embedded information in the form of a comment using this directive
does not interfere with processing by DCI interfaces. Each comment will be
recognizable in the XFD file as having the “#”symbol in column 1.

Â Syntax 1
$XFD COMMENT text

 DCI User’s Guide1

Â Syntax 2
*((XFD COMMENT text))

$XFD DATE Directive

DATE type data is a special data format supported by DBMaker that is not
supported by COBOL. In order to take advantage of the properties of this data type

fields must be converted from numeric type data. The DATE directive’s purpose is
to store a field in the database as a date. This directive differentiates dates from other
numbers, so that they enjoy the properties associated with dates in the RDBMS.

Â Syntax 1
$((XFD DATE=date-format-string))

Â Syntax 2
*((XFD DATE=))

If no date-format-string is specified, then six-digit (or six-character) fields are
retrieved as YYMMDD from the database. Eight-digit fields are retrieved as

YYYYMMDD.
The date-format-string is a description of the desired date format, composed of
characters.

CHARACTER DESCRIPTION

M Month (01-12)

Y Year (2 or 4 digit)

D Day of month (01-31)

J Julian day (00000000-99999999)

E Day of year (001-366)

H Hour (00-23)

N Minute (00-59)

S Second (00-59)

T Hundredths of a second

©Copyright 1995-2008 CASEMaker Inc. 4-6

Figure 4-1 date-format-string Characters

1XFD Directives 4

©Copyright 1995-2008 CASEMaker Inc. 4-7

Each character in a date format string can be considered a placeholder that represents

the type of information stored at that location. The characters also determine how
many digits will be used for each type of data.
For example, although you would typically represent the month with two digits, if

you specify MMM as part of your date format, the resulting date will use three digits
for the month, with a left-zero filling the value. If the month is given as M, the
resulting date will use a single digit, and will truncate on the left.

JULIAN DATES
The definition of Julian dates varies, so the DATE directive allows for a flexible
representation of Julian dates. Many sources define the Julian day as the day of the

year, with January 1st being 001, January 2nd being 002, etc. To use this definition
for Julian day, simply use FEE (day of year) in the date formats.
Other references define the Julian day as the number of days since a specific base

date. This definition is represented in the DATE directive by the letter J (for
example, a six-digit date field would be preceded with the directive $XFD
DATE=JJJJJJ). The default base date for this form of Julian date is 01/01/0001AD.

You may define your own base date for Julian date calculations by setting the
configuration variable DCI_JULIAN_BASE_DATE.
DCI considers dates in the following range to be valid:

01/01/0001 to 12/31/9999
If a COBOL program attempts to write a record containing a date that DCI knows
is invalid, DCI inserts a date value that depends on the setting specified by the

DCI_INV_DATE, DCI_MIN_DATE, and DCI_MAX_DATE configuration
variables into the date field and writes the record.
If a COBOL program attempts to insert into a record from a table with a NULL

date field, zeroes are inserted into that field in the COBOL record.
If a date field has two-digit years, then years 0 through 19 are inserted as 2000
through 2019, and years 20 through 99 are inserted as 1920 through 1999. You can

change this behavior by changing the value of the variable DCI_DATE_CUTOFF.
Also, refer to the configuration variables DCI_MAX_DATE and DCI_MIN_DATE
for information regarding invalid dates when the date is in a key.

NOTE If a field is used as part of a key, the field cannot be a NULL value.

 DCI User’s Guide1

USING GROUP ITEMS
You may place the DATE directive in front of a group item, so long as you also use
the USE GROUP directive.

Â Example 1
$XFD DATE
 05 DATE-PURCHASED PIC 9(08).
 05 PAY-METHOD PIC X(05).

The column date-hired will have eight digits and will be type DATE in the database,

with a format of YYYYMMDD.

Â Example 2
$((XFD DATE, USE GROUP))
 05 DATE-PURCHASED.
 10 YYYY PIC 9(04).
 10 MM PIC 9(02).
 10 DD PIC 9(02).
 05 PAY-METHOD PIC X(05).

$XFD FILE Directive

The FILE directive names the data dictionary with the file extension .XFD. This
directive is required when creating a different .XFD name from that specified in the
SELECT COBOL statement. Another case that requires this kind of directive is

when the COBOL file name is not specific.

Â Syntax 1
$XFD FILE=filename

Â Syntax 2
*((XFD FILE=filename))

Â Example

In this case, the ACUCOBOL-GT compiler makes an XFD file name called
CUSTOMER.xfd.
ENVIRONMENT DIVISION.
 FILE-CONTROL.
 SELECT FILENAME ASSIGN TO VARIABLE-OF-WORKING.

©Copyright 1995-2008 CASEMaker Inc. 4-8

1XFD Directives 4

©Copyright 1995-2008 CASEMaker Inc. 4-9

 . . .
 DATA DIVISION.
 FILE SECTION.
$XFD FILE=CUSTOMER
 FD FILENAME
 . . .

$XFD NAME Directive

The NAME directive assigns a DBMaker RDBMS column name to the field defined
on the next line. In DBMaker all column names are unique and must be less than or

equal to eighteen characters in length. This directive can be used to avoid problems
created by columns with incompatible or duplicate names.

Â Syntax 1
$XFD NAME=columnname

Â Syntax 2
*((XFD NAME=columnname))

Â Example

In DBMaker RDBMS, the COBOL field cus-cod will map to a RDBMS field

named customercode.
$XFD NAME=customercode
 05 cus-cod PIC 9(05).

$XFD NUMERIC Directive

The NUMERIC directive causes the subsequent field to be treated as an unsigned
integer if it is declared as alphanumeric.

Â Syntax 1
$XFD NUMERIC

Â Syntax 2
*((XFD NUMERIC))

 DCI User’s Guide1

Â Example

The field customer-code will be stored as INTEGER type data in the DBMaker
table.
$xfd numeric
 03 customer-code PIC x(7).

$XFD USE GROUP Directive

The USE GROUP directive assigns a group of items to a single column in the
DBMaker table. The default data type for the resultant dataset in the database
column is alphanumeric (CHAR (n), where n=1-max column length). The directive

may be combined with other directives if the data is stored as a different type
(BINARY, DATE, NUMERIC). Combining fields into groups improves processing
speed on the database, so effort is made to determine which fields can be combined.

Â Syntax 1
$XFD USE GROUP

Â Syntax 2
*((XFD USE GROUP))

Â Example 1

By adding the USE GROUP directive, the data is stored as a single numeric field
where the column name is code-key.
01 CODE-RECORD.
$XFD USE GROUP
 05 CODE-KEY.
 10 AREA-CODE-NUM PIC 9(03).
 10 CODE-NUM PIC 9(07).

Â Example 2

The USE GROUP directive can be combined with other directives. The fields are
mapped into a single DATE type data column in the database.
$((XFD DATE, USE GROUP))
 05 DATE-PURCHASED.
 10 YYYY PIC 9(04).
 10 MM PIC 9(02).
 10 DD PIC 9(02).

©Copyright 1995-2008 CASEMaker Inc. 4-10

1XFD Directives 4

©Copyright 1995-2008 CASEMaker Inc. 4-11

$XFD VAR-LENGTH Directive

VAR-LENGTH directives force DBMaker to use a BLOB field to save COBOL
fields. This is useful if the COBOL field is close to or above the maximum allowable
column size for regular data types (refer to COBOL conversion).

Since BLOB fields cannot be used in any key field and are slower to retrieve then
normal data type fields such as CHAR, we suggest you use this directive only when
needed.

Â Syntax 1
$XFD USE VAR-LENGTH

Â Syntax 2
*((XFD USE VAR-LENGTH))

Â Example
$XFD USE VAR-LENGTH
 05 LARGE-FIELD PIC X(10000).

$XFD WHEN Directive for File Names

The WHEN directive is used to build certain columns in DBMaker that wouldn’t
normally be built by default. By specifying a WHEN directive in the code, the field
(and subordinate fields in the case of a group item) immediately following this

directive will appear as an explicit column, or columns, in the database tables.
The database stores and retrieves all fields regardless of whether they are explicit or
not. Furthermore, key fields and fields from the largest record automatically become

explicit columns in the database table. The WHEN directive is only used to
guarantee that additional fields will become explicit columns when you want to
include multiple record definitions or REDEFINES in a database table.

One condition for how the columns are to be used is specified in the WHEN
directive. Additional fields you want to become explicit columns in a database table
must not be FILLER or occupy the same area as key fields.

Â Syntax 1

(Equal to)
$XFD WHEN field=value

 DCI User’s Guide1

Â Syntax 2

(Less than or equal to)
$XFD WHEN field<=value

Â Syntax 3

(Less than)
$XFD WHEN field<value

Â Syntax 4

(Greater than or equal to)
$XFD WHEN field>=value

Â Syntax 5

(Greater than)
$XFD WHEN field>value

Â Syntax 6

(Not equal to)
$XFD WHEN field!=value

Â Syntax 7

OTHER can only be used with the symbol “=”. In this case, the field or fields after
OTHER must be used only if the WHEN condition or conditions listed at the same

level are not met. OTHER can be used before one record definition, and, within
each record definition, once at each level. It is necessary to use a WHEN directive
with OTHER in the eventuality that the data in a field doesn’t meet the explicit

conditions specified in the other WHEN directives. Otherwise, the results will be
undefined.
$XFD WHEN field=OTHER

Â Syntax 8

Value is an explicit data value used in quotes, and field is a previously defined
COBOL field.
*((XFD WHEN field(operator)value))

Â Example

Explicit data values in quotes (“”) are permitted.
 05 AR-CODE-TYPE PIC X.

©Copyright 1995-2008 CASEMaker Inc. 4-12

1XFD Directives 4

©Copyright 1995-2008 CASEMaker Inc. 4-13

$XFD WHEN AR-CODE-TYPE=”S”
 05 SHIP-CODE-RECORD PIC X(04).
$XFD WHEN AR-CODE-TYPE=”B”
 05 BACKORDER-CODE-RECORD REDEFINES SHIP-CODE-RECORD.
$XFD WHEN AR-CODE-TYPE=OTHER
 05 OBSOLETE-CODE-RECORD REFEFINES SHIP-CODE-RECORD.

TABLENAME OPTION
The WHEN directive has the TABLENAME option to change the table name

according to the value of the WHEN directive during runtime.
When using the TABLENAME option in a WHEN statement, be aware of the
DCI_DEFAULT_RULES and filename_RULES DCI configuration variables.

Â Example 1

A COBOL FD structure using the “When” directive with two table names.
FILE SECTION.
$XFD FILE=INV
 FD INVOICE.
$XFD WHEN INV-TYPE = "A" TABLENAME=INV-TOP
 01 INV-RECORD-TOP.
 03 INV-KEY.
 05 INV-TYPE PIC X.
 05 INV-NUMBER PIC 9(5).
 05 INV-ID PIC 999.
 03 INV-CUSTOMER PIC X(30).
$XFD WHEN INV-TYPE = "B" TABLENAME=INV-DETAILS
 01 INV-RECORD-DETAILS.
 03 INV-KEY-D.
 05 INV-TYPE-D PIC X.
 05 INV-NUMBER-D PIC 9(5).
 05 INV-ID-B PIC 999.
 03 INV-ARTICLES PIC X(30).
 03 INV-QTA PIC 9(5).
 03 INV-PRICE PIC 9(17).

 DCI User’s Guide1

Â Example 2

The DCI interface makes two tables named “inv-top” and “inv-details” based on the
value of the inv-type fields in example 1. DCI checks the value of the inv-type field

to know where to fill the record.
*MAKE TOP ROW
 MOVE “A” TO INV-TYPE
 MOVE 1 TO INV-NUMBER
 MOVE 0 TO INV-ID
 MOVE “acme company” TO INV-CUSTOMER
 WRITE INV-RECORD-TOP
*MAKE DETAIL ROWS
 MOVE “B” TO INV TYPE
 MOVE 1 TO INV-NUMBER
 MOVE 0 TO INV-ID
 MOVE “floppy disk” TO INV-ARTICLES
 MOVE 10 TO INV-QTA
 MOVE 123 TO INV-PRICE
 WRITE INV-RECORD-DETAILS

Running the preceding code, DCI fills the “TOP-ROW” record in the “INV-TOP”
table and “DETAIL-ROW” in the “INV-DETAILS” table. When DCI reads the

above record, it can use sequential reading, or use the key to access filled records. If
you plan to use sequential reading through record types, you must set
DCI_DEFAULT_RULES = POST or = COBOL. Alternately, if you plan to use

sequential reading inside record types you must set
DCI_DEFAULT_RULES=BEFORE or = DBMS.
There are advantages and disadvantages to using this rule. To have a 100% COBOL

ANSI reading behavior, you should use the “POST” or “COBOL” method, but this
method can degrade performance (more records are read and all involved tables are
open at the same time).

If you use the “BEFORE” or “DBMS” method, the involved table is opened when
the $WHEN condition matches at the read record level.

Â Example 3

In other words, if you use the previous records, and code the following statements
 OPEN INPUT INVOICE.
* to see the customer invoice

©Copyright 1995-2008 CASEMaker Inc. 4-14

1XFD Directives 4

©Copyright 1995-2008 CASEMaker Inc. 4-15

 READ INVOICE NEXT.
 DISPLAY “Customer: “ INV-CUSTOMER
 DISPLAY “Invoice number: “ INV-NUMBER
* to see the invoice details
 READ INVOICE NEXT.
 DISPLAY INV-ARTICLES.

If the method is “POST” or “COBOL”, the “open input” opens both tables and
“read next”, reads thru different tables.

Â Example 4

The matched table is opened at the “start” statement level.

If the method is “BEFORE” or “DBMS” the code is changed as follows.
 open input invoice.
* to see the customer invoice
 move "A" to inv-type
 move 1 to inv-number
 move 0 to inv-id
 start invoice key is = inv-key.
 read invoice next
 display "Customer " inv-customer
display "Invoice number "inv-number
* to see the invoice details
 move "B" to inv-type
 move 1 to inv-number
 move 0 to inv-id
start invoice key is = inv-key.
 read invoice next
 display inv-articles

$XFD COMMENT DCI SPLIT

The DCI SPLIT directive is used to define one or more table splitting points starting

where the DCI interface makes a new DBMS table.

Â Example 1

A COBOL FD structure using DCI SPLIT directive.

 DCI User’s Guide1

In this example three DBMaker tables named INVOICE, INVOICE_A, and
INVOICE_B are created with fields between the split points.

FILE SECTION.
FD INVOICE.
01 INV-RECORD-TOP.
 03 INV-KEY.
 05 INV-TYPE PIC X.
 05 INV-NUMBER PIC 9(5).
 05 INV-ID PIC 999.
 03 INV-CUSTOMER PIC X(30).
$XFD DCI SPLIT
 03 INV-KEY-D.
 05 INV-TYPE-D PIC X.
 05 INV-NUMBER-D PIC 9(5).
 05 INV-ID-B PIC 999.
$XFD DCI SPLIT
 03 INV-ARTICLES PIC X(30).
 03 INV-QTA PIC 9(5).
 03 INV-PRICE PIC 9(17).

©Copyright 1995-2008 CASEMaker Inc. 4-16

1Compiler and Runtime Options 5

©Copyright 1995-2008 CASEMaker Inc. 5-1

5 Compiler and
Runtime Options

This section describes configuration settings for ACUCOBOL-GT used to specify
what file system to use.

 DCI User’s Guide1

5.1 Using ACUCOBOL-GT Default
File System
Existing files opened with a COBOL application are associated with their respective
file systems as defined in the ACUCOBOL-GT configuration file. When new files

are created by a COBOL application, you need to specify what file system to use.
The ACUCOBOL-GT configuration file needs to be set so that new files use the file
system of choice.

The DEFAULT-HOST setting tells ACUCOBOL which file system to use if no
other system is specified for a new file. If no value has been given to this variable,
ACUCOBOL will use the Vision file system as default. The filename-HOST setting

allows you to set a file system for a specific file. The name of the file should replace
filename in the setting.
The following variables in the ACUCOBOL-GT configuration file allow the file

system of choice to be used.

Â Syntax 1
DEFAULT-HOST (*)

Â Syntax 2
filename-HOST (*)

©Copyright 1995-2008 CASEMaker Inc. 5-2

1Compiler and Runtime Options 5

©Copyright 1995-2008 CASEMaker Inc. 5-3

5.2 Using DCI Default File System
In order to take advantage of DBMaker’s reliability and features such as replication,
backup and integrity constraints, we suggest using the DEFAULT-HOST DCI to

avoid use of the ACUCOBOL-GT Vision file system. If no file system is specified,
the Vision file system will be used by default.

Â Syntax 1

In this case, all new files will be DBMaker files, unless the new files have been
designated to a different file system.
DEFAULT-HOST DCI

Â Syntax 2

In order to establish that all new files, unless otherwise specified, will be Vision files,

use the following.
DEFAULT-HOST VISION

 DCI User’s Guide1

5.3 Using Multiple File Systems
Filename-HOST is used to associate new files to a particular file system. It differs
from the DEFAULT-HOST variable in that it associates single data files to a file

system. In this way, files that use a different file system than the default file system
can be used.
In order to accomplish this, substitute the configuration file “DEFAULT” value,

with the name of a file, without using directory names, or file extensions.
DEFAULT-HOST and filename-HOST can be used together.

Â Example

In this case, file 1 and 2 will use DBMaker, while the other files will use the vision
file system.
DEFAULT-HOST VISION
file1-HOST DCI
file2-HOST DCI

©Copyright 1995-2008 CASEMaker Inc. 5-4

1Compiler and Runtime Options 5

©Copyright 1995-2008 CASEMaker Inc. 5-5

5.4 Using the Environment
Variable
In order to allow the file system to be setup during execution of a program, specify
the following in the COBOL code. The (*) is only used for the ACUCOBOL

runtime. Also, be aware that specification of a file system is usually done in the
runtime configuration file and NOT changed in the COBOL program.
NOTE Refer to the ACUCOBOL-GT, User’s Manual (chapter 2.1 and 2.2) for detailed

instructions on how to use the ACUCOBOL-GT compiler and runtime.

Â Syntax 1
SET ENVIRONMENT "filename-HOST" TO filesystem (*)

Â Syntax 2
SET ENVIRONMENT "DEFAULT-HOST" TO filesystem (*)

 DCI User’s Guide1

©Copyright 1995-2008 CASEMaker Inc. 5-6

1Configuration File Variables 6

©Copyright 1995-2008 CASEMaker Inc. 6-1

6 Configuration File
Variables

This section lists the acceptable ranges of data for DCI, as well as tables specifying
how COBOL data types are mapped to DBMaker data types. Configuration file

variables are used to modify the standard behavior of DCI and are stored in a file
called DCI_CONFIG.

 DCI User’s Guide1

6.1 Setting DCI_CONFIG Variables
It is possible to give a configuration file a different address by setting a value to an
environment variable called DCI_CONFIG. The value assignable to this

environment variable can be either a full pathname or simply the directory where the
configuration file resides. In this case, DCI will look for a file called DCI_CONFIG
stored in the directory specified in the environmental variable. If the file specified in

the configuration variable doesn't exist, DCI doesn't display an error and assumes
that no configuration variables have been assigned. This variable is set in the
COBOL runtime configuration file.

Â Syntax 1

In Unix, DCI will look for the file DCI_CONFIG. This environment variable is

used to establish the path and name of the DCI configuration file. Working with the
Bourne shell, the following command can be used.
DCI_CONFIG=/usr/marc/config;export DCI_CONFIG

Â Syntax 2

In DOS, DCI reads the configuration file called DCI_CONFIG in the directory
c:\etc\test.
set DCI_CONFIG=c:\etc\test

Â Syntax 3

In UNIX, DCI utilizes the file called “DCI” in the directory /home/test.
DCI_CONFIG=/home/test/dci; export DCI_CONFIG

DCI_CASE

File names in COBOL are case insensitive, however table names are case sensitive.
This configuration variable determines how file names are translated into table
names. Setting this configuration variable to lower means that file names are

translated into table names with all lowercase characters. Setting this configuration
variable to upper means that file names are translated into table names with all
uppercase characters. Setting this configuration variable to ignore means that file

names will not be translated into table names with all lowercase or uppercase

©Copyright 1995-2008 CASEMaker Inc. 6-2

1Configuration File Variables 6

©Copyright 1995-2008 CASEMaker Inc. 6-3

characters. The default setting for DCI_CASE is lower. If your file names are DBCS
words, set DCI_CASE to ignore.

Â Example:
DCI_CASE IGNORE

DCI_COMMIT_COUNT

The DCI_COMMIT_COUNT configuration variable indicates the conditions

under which a COMMIT WORK operation is issued. There are two possible values,
0 and <n>.

DCI_COMMIT_COUNT=0
No automatic commit is done (default value).

DCI_COMMIT_COUNT=<N>
Under this condition DCI waits until the number of WRITE, REWRITE, AND

DELETE operations are equal to the value <n> before issuing a COMMIT WORK
statement. This rules is applied just if the file is open in “output” or “exclusive”
mode.

DCI_DATABASE

DCI_DATABASE is used to specify the name of the database established during the
setup of DBMaker.

Â Example 1

The following entry has to be included in the configuration file if the database used
is named DBMaker_Test.
DCI_DATABASE DBMaker_Test

Â Example 2

Sometimes, the database name is not known in advance, and for this reason it is

necessary to set it dynamically during runtime. In cases like this, it is possible to
write special code in the COBOL program similar to the one listed below. The

 DCI User’s Guide1

following code has to be executed before the first OPEN statement has been
executed.
CALL "DCI_SETENV" USING "DCI_DATABASE" , "DBMaker_Test"

Â Example 3

Sometimes we want to access a table on a different database. You can use

DCI_DATABASE to connect to more than one database and dynamically switch
between databases.
* connect to DBSAMPLE5 to access idx-1-file
CALL "DCI_SETENV" USING "DCI_DATABASE" "DBSAMPLE5"
....
open output idx-1-file
....
* connect to DCIDB to access idx-2-fileCALL "DCI_SETENV" USING "DCI_DATABASE"
"DCIDB"
....
open output idx-2-file

* to switch dynamically to DBSAMPLE5 connection
CALL "DCI_SETENV" USING "DCI_DATABASE" "DBSAMPLE5"
close idx-1-file
...

DCI_DATE_CUTOFF

This variable uses a two-digit value and establishes the two-digit years that will be

interpreted by the program as being in the 20th Century and the two-digit years that
will be interpreted by the program as being in the 21st Century.
The default value for the DCI_DATE_CUTOFF is 20. In this case, 2000 will be

added to the two-digit years that are smaller than “20” (or whatever value you give to
this variable), and will therefore make them part of the 21st Century. 1900 will be
added to the two-digit years that are larger than “20” (or whatever value you give to

this variable), making them part of the 20th Century. A COBOL date like 99/10/10
will be translated into 1999/10/10. A COBOL date like 00/02/12 will be translated
into 2000/02/12.

©Copyright 1995-2008 CASEMaker Inc. 6-4

1Configuration File Variables 6

©Copyright 1995-2008 CASEMaker Inc. 6-5

DCI_DEFAULT_RULES

Default management methods for the WHEN directive located in multi-definition
files. The BEFORE statement indicates that a table be open when the $WHEN
condition is matched. The POST statement indicates that all related tables be open

when the COBOL application opens multi-definition files.
The possible values are:
POST or COBOL

BEFORE or DBMS

DCI_DEFAULT_TABLESPACE

This variable is used to set the default tablespace where new tables are to be stored.
The tablespace specified must already exist in the database. If no tablespace is

specified by this variable, then new tables will be created in the default user
tablespace.

DCI_DUPLICATE_CONNECTION

DCI_DUPLICATE_CONNECTION is used to acquire a lock when opening the

same table and locking the same record two times in the same COBOL application
by opening the same table using the same COBOL process but with a different
database connection.

The default value is off (0).

Â Example

To allow a COBOL application to acquire a lock on a table using different database
connections:
DCI_DUPLICATION_CONNECTION 1

DCI_GET_EDGE_DATES

DCI_SET_EDGE_DATE is used to specify the value to be displayed if a user enters

a low/high value in the DATE field. When a user inputs low/high value for a DATE
field in a COBOL program, for example, by entering 00010101/99991231, the date
will be displayed using COBOL's low/high value 00000000/99999999. When this

 DCI User’s Guide1

variable is used, the low/high value of theDATE field will be displayed using the
database's low/high value 00010101/99991231. This rule is also applied when the

DATE field is a part of a key. The default value is off.

Â Syntax:

The following line must be added in the dci.cfg file:
DCI_GET_EDGE_DATES 1

DCI_INV_DATE

This variable is used to establish an invalid date (like 2000/02/31) in order to avoid
problems that can occur when an incorrect date format has been written to the

database. The default for this variable is 99991230 (December 30th, 9999).

DCI_LOGFILE

This variable specifies the pathname of the DCI log file used to write all of the I/O
operations executed by the interface. The dci_trace.log log file, stored in the /tmp

directory is used for debugging purposes. The use of a log file slows down the
performance of DCI. For this reason it is recommended not add this variable in the
configuration file unless deemed absolutely necessary.

Â Example

A sample log file entry in the Config.ini file:
DCI_LOGFILE /tmp/dci_trace.log

DCI_LOGIN

DCI_LOGIN is a variable that allows for specification of a username in order to
connect to the database system. It has no default value. Therefore, if no username is
specified, no login will be used.

The username specified by the DCI_LOGIN variable should have RESOURCE
authority or higher with the database. Additionally, the user should have permission
with existing data tables. New users may be created using the JDBA Tool, or

dmSQL.

©Copyright 1995-2008 CASEMaker Inc. 6-6

1Configuration File Variables 6

©Copyright 1995-2008 CASEMaker Inc. 6-7

NOTE For more detailed information on creating new users, refer to the JDBA Tool

User’s Guide or the Database Administrator’s Guide.

Â Example

A sample username entry, JOHNDOE, made in the Config.cfg file:
 DCI_LOGIN JOHNDOE

DCI_JULIAN_BASE_DATE

This variable, used with the DATE directive, sets the base date for Julian date
calculations. It utilizes the format YYYYMMDD. The default value for this variable
is January 1st, 1 AD.

One usage of this variable could be a COBOL program that uses dates from 1850
onwards. These dates can be stored in a database by setting the DATE directive to
$XFD DATE=JJJJJJ (the date field must have the same number of characters) and

setting the DCI configuration variable DCI_JULIAN_BASE_DATE to 18500101.

DCI_LOGTRACE

This variable sets different levels for the trace log.
• 0: no trace

• 1: connect trace
• 2: record i/o trace
• 3: full trace

• 4: internal debug trace

DCI_MAPPING

This variable is used to associate particular filenames with a specific XFD in the DCI
system. In this way, one XFD can be used in conjunction with multiple files. A

“pattern” can be made up of any valid filename characters. It may include the
wildcard “*” symbol, which stands for any number of characters, or the question
mark “?”, which stands for a single occurrence of any one character and can be used

multiple times.

 DCI User’s Guide1

Â Syntax
DCI_MAPPING [pattern = base-xfd-name] ...

Â Example 1

The pattern “CUST*1” and base-XFD-name “CUSTOMER” will cause filenames
such as “CUST01”, “CUST001”, “CUST0001” and “CUST00001” to be associated
with the XFD “customer.XFD”.
DCI_MAPPING CUST*1=CUSTOMER ORD*=ORDER “ord cli*=ordcli”

Â Example 2

The pattern “CUST????” and base-XFD-name “CUST” will cause filenames such as

“CUSTOMER” and “CUST0001” to be associated with the XFD “cust.XFD”.
DCI_MAPPING CUST????=CUST

DCI_MAX_ATTRS_PER_TABLE

A DBMaker table may only have up to 252 columns. A COBOL file with more than
252 field s will not be able to map all fields to columns in the table. DCI

provides the DCI_MAX_ATTRS_PER_TABLE configuration variable to define the
number of fields at which the table will be split into two or more distinct tables. The
multiple resulting tables must have unique names, so DCI appends the table name

with an underscore (_) character followed by letters in consecutive order (A, B, C,
etc.).

Â Example 1

A COBOL file has 300 fields, and the following statement:
SELECT FILENAME ASSIGN TO “customer”

Â Syntax

The following line must be added in the dci.cfg file:
DCI_MAX_ATTRS_PER_TABLE = 100.

Â Example 2

Three tables will be created with the following names:
customer_a
customer_b
customer_c

©Copyright 1995-2008 CASEMaker Inc. 6-8

1Configuration File Variables 6

©Copyright 1995-2008 CASEMaker Inc. 6-9

DCI_MAX_BUFFER_LENGTH

DCI_MAX_BUFFER_LENGTH is used to split a cobol data record into multiple
database tables, similar to the function performed by DCI_MAX_ATTRS_PER_
TABLE. However, the cutoff value used to determine where a table will be split is

determined by buffer length. The default value is 4096.

Â Example 1

A COBOL record size contains 9000 bytes of data, and the following statement:
SELECT FILENAME ASSIGN TO "customer"

Â Syntax:

The following line must be added in the dci.cfg file:
DCI_MAX_BUFFER_LENGTH 3000

Â Example 2

Three tables will be created with the following names:
customer_a
customer_b
customer_c

DCI_MAX_DATE

This variable is used to establish a high-value date in order to avoid problems in cases
where invalid dates have been incorrectly written to the database. The default for this

variable is 99991231 (December 31st, 9999).

DCI_MIN_DATE

This variable is used to establish a low-value, 0 or space date in order to avoid
problems that can occur when invalid dates have been incorrectly written to the

database. The default for this variable is 00010101 (January 1st, 1AD).

DCI_NULL_ON_ILLEGAL_DATE

DCI_NULL_ON_ILLEGAL_DATE determines how COBOL data that is
considered illegal by the database will be converted before it is stored. The value 1

 DCI User’s Guide1

causes all illegal data (except key fields) to be converted to null before it is stored.
The value 0 (default value) causes the following conversions to occur:

• Illegal LOW-VALUES: stored as the lowest possible value (0 or - 99999...) or
DCI_MIN_DATE default value.

• Illegal HIGH-VALUES: stored as the highest possible value (99999...) or

DCI_MAX_DATE default value.
• Illegal SPACES: stored as zero (or DCI_MIN_DATE, in the case of a date

field).

• Illegal DATE values: stored as DCI_INV_DATE default value.
• Illegal TIME: stored as DCI_INV_DATE default value.
• Illegal data in key fields is always converted, regardless of the value of this

configuration variable.

DCI_PASSWD

Once a username has been specified via the DCI_LOGIN variable, a database
account is associated with it. A password needs to be designated to this database

account. This can be done using the variable DCI_PASSWD.

Â Example 1

If the password you want to designate to the database account is SUPERVISOR, the
following must be specified in the configuration file:
DCI_PASSWD SUPERVISOR

Â Example 2

A password can also be accepted from a user upon execution of the program. This
allows for greater reliability. To do this, the DCI_PASSWD variable must be set

according to the response:
ACCEPT RESPONSE NO-ECHO.
CALL “DCI_SETENV” USING "DCI_PASSWD" , RESPONSE.

In this case, however, you should furnish a native API to call in order to read and
write environment variables,

Â Syntax 1

This statement can be used in the COBOL program to write or update the

environment variable.

©Copyright 1995-2008 CASEMaker Inc. 6-10

1Configuration File Variables 6

©Copyright 1995-2008 CASEMaker Inc. 6-11

 CALL “DCI_SETENV” USING “environment variable”, value.

Â Syntax 2

This statement can be used in the COBOL program to read the environment
variable.
 CALL “DCI_GETENV” USING “environment variable”, value.

DCI_STORAGE_CONVENTION

This variable sets the COBOL storage convention. There are four value types

currently supported by DBMaker.

DCI
Selects the IBM storage convention. It is compatible with IBM COBOL, as well as

with several other COBOL versions including RM/COBOL-85. It is also compatible
with the X/Open COBOL standard.

DCM
Selects the Micro Focus storage convention. It is compatible with Micro Focus
COBOL when the Micro Focus "ASCII" sign-storage option is used (this is the
Micro Focus default).

DCN
Causes a different numeric format to be used. The format is the same as the one used
when the "-DCI" option is used, except that positive COMP-3 items use "x0B" as

the positive sign value instead of "x0C". This option is compatible with NCR
COBOL.

DCA
Selects the ACUCOBOL-GT storage convention. It is the default setting. This
convention is also compatible with data produced by RM/COBOL (not
RM/COBOL-85) and previous versions of ACUCOBOL-GT.

DCI_USEDIR_LEVEL

If this variable is set > 0, use the directory in addition to the name of the table.

 DCI User’s Guide1

Â Example 1

The following line is equal to; /usr/test/01/clients 01clients
DCI_USEDIR_LEVEL 1

Â Example 2

The following line is equal to; /usr/test/01/clients test01clients
DCI_USEDIR_LEVEL 2

Â Example 3

The following line is equal to; /usr/test/01/clients usrtest01clients
DCI_USEDIR_LEVEL 3

DCI_USER_PATH

When DCI looks for a file or files, the variable DCI_USER_PATH allows for

specification of a username, or names. The user argument can be a period (.) with
regard to the files, or the name of a user on the system.

Â Syntax
DCI_USER_PATH user1 [user2] [user3] .

The type of OPEN statement issued for a file will determine the results of this
setting.

©Copyright 1995-2008 CASEMaker Inc. 6-12

1Configuration File Variables 6

©Copyright 1995-2008 CASEMaker Inc. 6-13

OPEN
STATEMENT

DCI_USER_PATH DCI
SEARCH
SEQUENCE

RESULT

OPEN INPUT or
OPEN I/O

Yes 1-list of users in
USER_PATH

2-the current user

The first valid file
will be opened.

OPEN INPUT or
OPEN I/O

No The user associated
with
DCI_LOGIN.

The first file with
a valid user/file-
name will be
opened.

OPEN OUTPUT Yes or no Doesn’t search for
a user.

A new table will
be made for the
name associated
with
DCI_LOGIN.

Figure 6-1 Types of OPEN Statements

DCI_XFDPATH

DCI_XFDPATH is used to specify the name of the directory where data dictionaries
are stored. The default value is the current directory.

Â Example 1

Include the following entry in the configuration file in order to store data
dictionaries in the directory /usr/DBMaker/Dictionaries.
DCI_XFDPATH /usr/DBMaker/Dictionaries

Â Example 2

If it is necessary to specify more than one path, different directories have to be

separated by spaces.
DCI_XFDPATH /usr/DBMaker/Dictionaries /usr/DBMaker/Dictionaries1

Â Example 3

In a WIN-32 environment, “embedded spaces” can be specified using double-quotes.
DCI_XFDPATH c:\tmp\xfdlist “c:\my folder with space\xfdlist”

 DCI User’s Guide1

<filename>_RULES

Default management for a multi-definition file. The actual file name replaces
<filename>.

Â Example

All of the files will use the POST rule except for the CLIENT file when the
following commands are used.
DCI_DEFAULT_RULES POST
CLIENT_RULES BEFORE

DCI TABLE CACHE Variables

By default, DCI pre-reads data into the client data buffer to reduce client/server
network traffic. The default maximum pre-read buffer is the smaller of 8kb/(record
size) or 5 records.

It is possible that user's application will read a small table and only read a few records
which are less than 8kb/(record size). For example, for a table with an average record
size of 20 bytes and a total of 1000 records, DBMaker will be able to read about 400

records (8kb/20) but the user's application may only read 4 or 5 records then call the
START statement again. In this case, set the following variable to reduce the cache
size and improve performance. Consider the application and data's behavior carefully

when using these variables, or it may increase network traffic and cause reductions in
performance.
The following are the three DCI_CACHE variables to set in the DCI_CONFIG

file:
• DCI_DEFAULT_CACHE_START – sets the first read records to cache for

START or READ. The default is the maximum of 8kb/(record size) or 5

records.
• DCI_DEFAULT_CACHE_NEXT – sets the next read records after the first

cached record for START or READ have been read or discarded. The default

is the maximum of 8kb/(record size) or 5 records.
• DCI_DEFAULT_CACHE_PREV – sets the read records for caching the

previous records after the first cache record for START or READ have been

read or discarded.

©Copyright 1995-2008 CASEMaker Inc. 6-14

1Configuration File Variables 6

©Copyright 1995-2008 CASEMaker Inc. 6-15

The default is DCI_DEFAULT_CACHE_NEXT/2.
Setting these variables in the DCI_CONFIG will affect all the tables in the user's

application.

Â Example:
DCI_DEFAULT_CACHE_START 10
DCI_DEFAULT_CACHE_NEXT 10
DCI_DEFAULT_CACHE_PREV 5

DCI_TABLESPACE

This allows you to define in which tablespace to create a table. It also works with
wildcards. It is important only when a table is first created. Once the table exists,
DCI does not monitor the value of this variable.

Â Example 1:

You want to create the customer table in tablespace tbs1:
DCI_TABLESPACE customer=tbs1

Â Example 2:

You want to create all tables that begin with cust in tablespace tbs1.
DCI_TABLESPACE cust*=tbs1

DCI_AUTOMATIC_SCHEMA_ADJUST

This variable directs DCI to alter the table schema definition when the XFD differs
from the table schema. This variable is incompatible with the split tables (those with
a number of columns > 250, and those who's record size is greater than 4 KB -

exclude the BLOB field).
The possible values of this variable are:
0 Default, does nothing

1 Add the new fields to the table, and drop the ones who are not in the XFD
2 Add the new fields to the table, but do not drop the ones who are not in the
XFD

DCI_INCLUDE

This variable permits the inclusion an additional DCI_CONFIG file. It works as the
COBOL COPY statement, and allows you to define more complex configurations.

Â Example:
DCI_INCLUDE /etc/generic_dci_config

DCI_IGNORE_MAX_BUFFER_LENGTH

This variable is used to ignore the setting of DCI_MAX_BUFFER_LENGTH value.
It will not split the table when the record length > 4k. The default is off.

DCI_NULL_DATE

When DCI writes a date field with this value it will write NULL, and when DCI
reads a date with a NULL value, it will return DCI_NULL_DATE to a COBOL
program.

DCI_NULL_ON_MIN_DATE

With this variable set to 1 the following action occurs. When a COBOL program
writes a value of 0 to a DATE field, the value is stored in the database as NULL.
Likewise, when a NULL value is read from the database the COBOL FD will be 0.

DCI_DB_MAP

This variable is used to map files in different directories as tables of different
databases. Refer to Mapping to Multiple Databases for more info.

DCI_VARCHAR

With this variable set to 1 the following action occurs: When a COBOL program

creates a new table (trought OPEN OUTPUT verb) all fields that were created as
CHAR will become VARCHAR.

 DCI User’s Guide1

1Configuration File Variables 6

©Copyright 1995-2008 CASEMaker Inc. 6-17

DCI_GRANT_ON_OUTPUT
This new option allows you to specify the permission on the table during table creation
(OPEN OUTPUT).

Â Example:

After open output, user1 will be able to select from the table, user2 will be able to select
and modify data.

DCI_GRANT_ON_OUTPUT user1=SELECT
DCI_GRANT_ON_OUTPUT user2=SELECT,INSERT,UPDATE

 DCI User’s Guide1

©Copyright 1995-2008 CASEMaker Inc. 6-18

DCI Functions 7

©Copyright 1995-2008 CASEMaker Inc. 7-1

7 DCI Functions

This section lists the DCI functions that could be called in the COBOL program.
To enable these functions, user need to add these functions in the sub85.c and

rebuild the DCI runtime.

 DCI User’s Guide1

7.1 Calling DCI functions
You can call these DCI functions by writing:
CALL “dci_function_name” USING variable [, variable, ...]

in your COBOL program.

DCI_SETENV

This function is used to write or update the environment variable.

Â Syntax:
 CALL “DCI_SETENV” USING “environment variable”, value

Â Example
call "DCI_SETENV" using "DCI_DATABASE" , "DBSAMPLE5"

DCI_GETENV

This function is used to read the environment variable.

Â Syntax
CALL “DCI_GETENV” USING “environment variable”, variable

Â Example
CALL "DCI_GETENV" USING "DCI_DATABASE”, ws_dci_database

DCI_DISCONNECT

This function is used to disconnect a database connection.

Â Example 1

If there is only one connection in the cobol program, use the following code to
disconnect from the database.
CALL "DCI_DISCONNECT".

Â Example 2

If there is more than one connection the COBOL program, use the following code

to disconnect a specific database.

©Copyright 1995-2008 CASEMaker Inc. 7-2

DCI Functions 7

©Copyright 1995-2008 CASEMaker Inc. 7-3

CALL "DCI_DISCONNECT" USING "DBSAMPLE5"

DCI_GET_TABLE_NAME

This function is used to get the table name of the passed COBOL name (It's not
always so immediate to know the effective table name, because there can be some

manipulation in these cases: XFD WHEN ... TABLENAME.).
CALL "DCI_GET_TABLE_NAME" USING ws-filename, ws-dci-file-name

DCI_SET_TABLE_CACHE

This function is used to dynamically change the cache for tables set these variables
before START or READ statements.

Â Example:
…
WORKING-STORAGE SECTION.
 01 CACHE-START PIC 9(5) VALUE 10.
 01 CACHE-NEXT PIC 9(5) VALUE 20.
 01 CACHE-PREV PIC 9(5) VALUE 30.
…
PROCEDURE DIVISION.
 OPEN INPUT IDX-1-FILE
 MOVE SPACES TO IDX-1-KEY
 CALL "DCI_SET_TABLE_CACHE" USING CACHE-START
 CACHE-NEXT
 CACHE-PREV
 START IDX-1-FILE KEY IS NOT LESS IDX-1-KEY.
 PERFORM VARYING IND FROM 1 BY 1 UNTIL IND = 10000
 READ IDX-1-FILE NEXT AT END EXIT PERFORM END-READ
 DISPLAY IND AT 0101
 END-PERFORM
 CLOSE IDX-1-FILE

 DCI User’s Guide1

DCI_BLOB_ERROR

This function is used to get the error after calling DCI_BLOB_GET or
DCI_BLOB_PUT.

Â Example:
 working-storage section.
 77 BLOB-ERROR-ERRNO pic S9(4) COMP-5.
 77 BLOB-ERROR-INT-ERRNO pic S9(4) COMP-5.

 PROCEDURE DIVISION.
 CALL "DCI_BLOB_ERROR" USING BLOB-ERROR-ERRNO
 BLOB-ERROR-INT-ERRNO
 DISPLAY "BLOB-ERROR-ERRNO=" BLOB-ERROR-ERRNO.
 DISPLAY "BLOB-ERROR-INT-ERRNO=" BLOB-ERROR-INT-ERRNO.

DCI_BLOB_GET

This function is used to give users more effectively use of BLOB data in a COBOL
program. By using the DCI_BLOB_GET command you can quickly and efficiently

access BLOB data using COBOL. When using the DCI_BLOB_GET command
you must follow the rules listed below:
• The user’s table must have a BLOB (long varchar/long varbinary) data type

• Users cannot set the field with BLOB type in the COBOL FD
• Users can only use the DCI_BLOB_GET command after the READ, READ

NEXT or READ PREVIOUS command

Â Example

A user creates a table by:
CREATE TABLE BLOBTB (
 SB_CODCLI char(8),
 SB_PROG SERIAL,
 IL_BLOB LONG VARBINARY,
 PRIMARY KEY ("sb_codcli")) LOCK MODE ROW NOCACHE;

The following gives a practical application of the use of the DCI_BLOB_GET in the
COBOL program..
 identification division.
 program-id. blobtb.

©Copyright 1995-2008 CASEMaker Inc. 7-4

1DCI Functions 7

©Copyright 1995-2008 CASEMaker Inc. 7-5

 date-written.
 remarks.
 environment division.
 input-output section.
 file-control.
 SELECT BLOBTB ASSIGN TO RANDOM, "BLOBTB"
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 FILE STATUS IS I-O-STATUS
 RECORD KEY IS SB-CODCLI.
 ==
 data division.
 file section.
 FD BLOBTB.
 01 SB-RECORD.
 03 SB-CODCLI PIC X(8).
 03 SB-PROG PIC S9(9) COMP-5.
 ==
 working-storage section.
 77 I-O-STATUS pic xx.
 77 BLOB-ERROR-ERRNO pic S9(4) COMP-5.
77 BLOB-ERROR-INT-ERRNO pic S9(4) COMP-5.

procedure division.
main.
 open i-o blobtb
 initialize sb-record.
 READ blobtb next.
 CALL "DCI_BLOB_GET" USING "il_blob" "laecopy.bmp" 1.
 CALL "DCI_BLOB_ERROR" USIG BLOB-ERROR-ERRNO
 BLOB-ERROR-INT-ERRNO
 DISPLAY "BLOB-ERROR-ERRNO=" BLOB-ERROR-ERRNO.
 DISPLAY "BLOB-ERROR-INT-ERRNO=" BLOB-ERROR-INT-ERRNO.
 DISPLAY "SB-CODCLI=" SB-CODCLI.
 DISPLAY "SB-PROG=" SB-PROG.
 close blobtb.
 ACCEPT OMITTED.
 stop run.

 DCI User’s Guide1

DCI_BLOB_PUT

This function is used to enable users to more effectively use BLOB data in a
COBOL program. Using the DCI_BLOB_PUT command you can insert data into
a BLOB. When using the DCI_BLOB_PUT command you must follow the rules

listed below:
• The user’s table must have a BLOB (long varchar/long varbinary) data type.
• Users cannot set the field with BLOB type in the COBOL FD.

• Users can only call the DCI_BLOB_PUT command before a WRITE or
REWRITE command.

• If user does not call DCI_BLOB_PUT before a WRITE statement, the

default value will be inserted in the blob column.
• If user does not call DCI_BLOB_PUT before REWRITE statement,

the blob column will not be updated.

Â Example:

The following gives a practical application of the use of the DCI_BLOB_PUT in the

COBOL program.
First the user creates a table:
CREATE TABLE BLOBTB (
 SB_CODCLI char(8),
 SB_PROG SERIAL,
 IL_BLOB LONG VARBINARY,
 PRIMARY KEY ("sb_codcli")) LOCK MODE ROW NOCACHE;

Once the table is created the user continues with the following.
identification division.
 program-id. blobtb.
 date-written.
 remarks.
 environment division.
 input-output section.
 file-control.
 SELECT BLOBTB ASSIGN TO RANDOM, "BLOBTB"
 ORGANIZATION IS INDEXED
 ACCESS IS DYNAMIC
 FILE STATUS IS I-O-STATUS
 RECORD KEY IS SB-CODCLI.

©Copyright 1995-2008 CASEMaker Inc. 7-6

1DCI Functions 7

©Copyright 1995-2008 CASEMaker Inc. 7-7

 ==
 data division.
 file section.
 FD BLOBTB.
 01 SB-RECORD.
 03 SB-CODCLI PIC X(8).
 03 SB-PROG PIC S9(9) COMP-5.
 ==
 working-storage section.
 77 I-O-STATUS pic xx.
 77 BLOB-ERROR-ERRNO pic S9(4) COMP-5.
77 BLOB-ERROR-INT-ERRNO pic S9(4) COMP-5.

procedure division.
main.
 open i-o blobtb
 move "AAAAAAAA" TO SB-CODCLI.
 move 0 TO SB-PROG.
 CALL "DCI_BLOB_PUT" USING "il_blob" "laetitia.bmp".
 WRITE SB-RECORD.
 close blobtb.
 ACCEPT OMITTED.
 stop run.

DCI_GET_TABLE_SERIAL_VALUE

This function is used to get the serial value after a WRITE statement.

Â Example:
 FD SERIALTB.

 01 SB-RECORD.

 03 SB-CODCLI PIC X(8).

 $XFD COMMENT dci serial

 03 SB-PROG PIC S9(9) COMP-5.

 working-storage section.

 77 I-O-STATUS pic xx.

 77 SERIAL-NUM pic S9(9) COMP-5.

 DCI User’s Guide1

 procedure division.

 main.

 open i-o serialtb

 move "AAAAAAAA" TO SB-CODCLI.

 move 0 TO SB-PROG.

 WRITE SB-RECORD.

 CALL "DCI_GET_TABLE_SERIAL_VALUE" USING SERIAL-NUM.

 DISPLAY "SERIAL-NUM=" SERIAL-NUM.

DCI_FREE_XFD

This function is used to purge the XFD image DCI keeps in cache. This can be

useful, to reload a XFD that changed after a table has already been opened by this
connection.
CALL "DCI_FREE_XFD"

©Copyright 1995-2008 CASEMaker Inc. 7-8

DCI_UNLOAD_CONFIG

This function is used to unload the current configuration. Then you can create a new
configuration by calling DCI_SETENV. Very useful in ThinClient environment.

call "DCI_UNLOAD_CONFIG"

1COBOL Conversions 8

©Copyright 1995-2008 CASEMaker Inc. 8-1

8 COBOL Conversions

Transactions are enforced in DCI during conversions. All I/O operations are done
using transactions. DCI sets AUTOCOMMIT off and manages DBMaker

transactions to make record changes for users available. DCI fully supports COBOL
transaction statements like START TRANSACTION, COMMIT/ROLLBACK
TRANSACTION.

DCI doesn’t support record encryption, record compression, or the alternate
collating sequence. If these options are included in code, they will be disregarded.
DCI also doesn’t support the “P” PICture edit function in the XFD data definition

and all file names are converted to lowercase.

DBMAKER DATABASE SETTINGS RANGE LIMIT

Indexed key size. 1024

Number of columns per key. 16

Length for a CHAR field. 3992 bytes

Simultaneous RDBMS connections. 1200

Character for column names. 32

Database tables simultaneously open by a single process. 256

Figure 8-1 DBMaker Database Settings Range Limits table

 DCI User’s Guide1

8.1 Using Special Directives
DBMaker can use the same sort or retrieval sequence as the Vision file system, but it
requires that a BINARY directive be placed before each key field containing signed

numeric data. High and low values can create complications in key fields.
The DBMaker OID, VARCHAR(size), and FILE data types are not currently
supported with special directives.

DBMAKER DATA TYPE DIRECTIVE

DATE Using XFD DATE

TIME Using XFD DATE

TIMESTAMP Using XFD DATE

LONGVARCHAR Using XFD VAR-LENGH

LONGVARBINARY Using XFD VAR-LENGH*

BINARY Using XFD BINARY

SERIAL Using XFD COMMENT DCI SERIAL

Figure 8-2 DBMaker Data Types Supported using Special Directives

©Copyright 1995-2008 CASEMaker Inc. 8-2

1COBOL Conversions 8

©Copyright 1995-2008 CASEMaker Inc. 8-3

8.2 Mapping COBOL Data Types
DCI establishes what it considers to be the best match for COBOL data types in the
creation of all columns in a DBMaker database table. Any data the COBOL date

type can contain can also be contained in the database column. The XFD directives
that have been specified will be checked first.

 DCI User’s Guide1

COBOL DBMAKER COBOL DBMAKER

9(1-4) SMALLINT 9(5-9) comp-4 INTEGER

9(5-9) INTEGER 9(10-18) comp-4 DECIMAL(10-18)

9(10-18) DECIMAL(10-18) 9(1-4) comp-5 SMALLINT

s9(1-4) SMALLINT 9(5-10) comp-5 DECIMAL(10)

s9(5-9) INTEGER s9(1-4) comp-5 SMALLINT

s9(10-18 DECIMAL(10-18) s9(5-10) comp-5 DECIMAL(10)

9(n) comp-1 n (1-
17)

INTEGER 9(1-4) comp-6 SMALLINT

s9(n) comp-1 n (1-
17)

INTEGER 9(5-9) comp-6 INTEGER

9(1-4) comp-2 SMALLINT 9(10-18) comp-6 DECIMAL(10-18)

9(5-9) comp-2 INTEGER s9(1-4) comp-6 SMALLINT

9(10-18) comp-2 DECIMAL(10-18) s9(5-9) comp-6 INTEGER

s9(1-4) comp-2 SMALLINT s9(10-18) comp-6 DECIMAL(10-18)

s9(5-9) comp-2 INTEGER signed-short SMALLINT

s9(10-18) comp-2 DECIMAL(10-18) unsigned-short SMALLINT

9(1-4) comp-3 SMALLINT signed-int CHAR(10)

9(5-9) comp-3 INTEGER unsigned-int CHAR(10)

9(10-18) comp-3 DECIMAL(10-18) signed-long CHAR(18)

s9(1-4) comp-3 SMALLINT unsigned-long CHAR(18)

s9(5-9) comp-3 INTEGER float FLOAT

s9(10-18) comp-3 DECIMAL(10-18) Double DOUBLE

9(1-4) comp-4 SMALLINT PIC x(n) CHAR(n) n 1-
max column length

Figure 8-3 COBOL to DBMaker Data Type Conversion Chart

©Copyright 1995-2008 CASEMaker Inc. 8-4

1COBOL Conversions 8

©Copyright 1995-2008 CASEMaker Inc. 8-5

8.3 Mapping DBMaker Data Types
DCI reads data from the database by doing a COBOL-like MOVE from the native
data types to the COBOL data types (most of which have a CHAR representation so

you can display them by using dmSQL).
It is not necessary to worry about exactly matching the database data types to
COBOL data types. PIC X(nn) can be used for each column with regards to

database types having a CHAR representation. PIC 9(9) is a closer COBOL match
for databases that have INTEGER types. The more you know about a database type,
the more flexible you can be in finding a matching COBOL type. For example, if a

column in a DBMaker database only contains values between zero and 99 (0-99),
PIC 99 would be a sufficient COBOL date match.
Choosing COMP-types can be left to the discretion of the programmer since it has

little effect on the COBOL data used. BINARY data types will usually be re-written
without change, because they are foreign to COBOL. However, a closer analysis of
BINARY columns might allow you to find a different solution. The DECIMAL,

NUMERIC, DATE and TIMESTAMP types have no exact COBOL matches. They
are returned from the database in character form, so the best COBOL data type
equivalent would be USAGE DISPLAY.

The following table illustrates the best matches for database data types and COBOL
data types:

 DCI User’s Guide1

DBMAKER COBOL DBMAKER COBOL

SMALLINT 9(1-4) INTEGER 9(5-9) comp-4

INTEGER 9(5-9) DECIMAL(10-18) 9(10-18) comp-4

DECIMAL(10-18) 9(10-18) SMALLINT 9(1-4) comp-5

SMALLINT s9(1-4) DECIMAL(10) 9(5-10) comp-5

INTEGER s9(5-9) SMALLINT s9(1-4) comp-5

DECIMAL(10-18) s9(10-18 DECIMAL(10) s9(5-10) comp-5

INTEGER 9(n) comp-1 n (1-17) SMALLINT 9(1-4) comp-6

INTEGER s9(n) comp-1 n (1-17) INTEGER 9(5-9) comp-6

SMALLINT 9(1-4) comp-2 DECIMAL(10-18) 9(10-18) comp-6

INTEGER 9(5-9) comp-2 SMALLINT s9(1-4) comp-6

DECIMAL(10-18) 9(10-18) comp-2 INTEGER s9(5-9) comp-6

SMALLINT s9(1-4) comp-2 DECIMAL(10-18) s9(10-18) comp-6

INTEGER s9(5-9) comp-2 SMALLINT signed-short

DECIMAL(10-18) s9(10-18) comp-2 SMALLINT unsigned-short

SMALLINT 9(1-4) comp-3 CHAR(10) signed-int

INTEGER 9(5-9) comp-3 CHAR(10) unsigned-int

DECIMAL(10-18) 9(10-18) comp-3 CHAR(18) signed-long

SMALLINT s9(1-4) comp-3 CHAR(18) unsigned-long

INTEGER s9(5-9) comp-3 FLOAT float

DECIMAL(10-18) s9(10-18) comp-3 DOUBLE Double

SMALLINT 9(1-4) comp-4 CHAR(n) n 1-max
column length

PIC x(n)

Figure 8-4 DBMaker to COBOL Data Type Conversion Chart

©Copyright 1995-2008 CASEMaker Inc. 8-6

1COBOL Conversions 8

©Copyright 1995-2008 CASEMaker Inc. 8-7

8.4 Troubleshooting Runtime
Errors
Runtime errors have the format “9D, xx”, where “9D” indicates a file system error
(reported in the FILE STATUS variable) and “xx” indicates a secondary error code.

 DCI User’s Guide1

ERROR DEFINITION INTERPRETATION SOLUTION

9D,01 There is a read error on
the dictionary file.

An error occurred
while reading the XFD
file. The XFD file is
corrupt.

Recompile with -Fx to
re-create the dictionary
file.

9D,02 There is a corrupt
dictionary file. The
dictionary file cannot be
read.

The dictionary file for
a COBOL file is
corrupt.

Recompile with -Fx to
re-create the dictionary
file.

9D,03 A dictionary file (.xfd)
has not been found.

The dictionary file for
a COBOL file cannot
be found.

Specify a correct
directory in the
DCI_XFDPATH
configuration file
variable (it may be
necessary to recompile
using –Fx).

9D,04 There are too many
fields in the key.

There are more
than16 fields in a key.

Check key definitions,
re-structure illegal key,
recompile with –Fx.

9D,12 There is an unexpected
error on a DBMaker
library function.

A DBMaker library
function returned an
unexpected error.

9D,13 The size of the “xxx”
variable is illegal.

An elementary data
item in an FD is larger
than 255 bytes.

9D,13 The type of data for
the“xxx” variable is
illegal.

There is no DBMaker
type that matches the
data type used.

9D,14 There is more than one
table with the same
name.

More than one table
had the same name
when they were listed.

Figure 8-5 DCI Secondary Errors Chart

©Copyright 1995-2008 CASEMaker Inc. 8-8

1COBOL Conversions 8

©Copyright 1995-2008 CASEMaker Inc. 8-9

8.5 Troubleshooting Native SQL
Errors
Some native SQL errors may be generated by a database while using DCI for
DBMaker. The exact error number and wording may vary from database to database.

 DCI User’s Guide1

NUMBER DEFINITION INTERPRETATION SOLUTION
9D,
6523,6018

Invalid column
name or
reserved word.

A column was named using
a word that has been
reserved for the database.

Compare a file trace of
CREATE TABLE to the list
of database reserved words.
Apply the NAME directive to
the FD field of an invalid
column and recompile to
create a new XFD file.

9D, 1310 Journal full,
command
rolled back to
internal
savepoint

 Add "start
transaction/commit/rollback"
code in the COBOL program.
Or set
DCI_COMMIT_COUNT
in the DCI configuration file.

9D, 5503 invalid key
name

The table does not have the
index

Create the index with correct
index name and columns

9D, 5504 Cannot use
host variable

 User cannot use host variable
in the runsql.acu

9D, 5508 do not have
INSERT/UPD
ATE/DELETE
privilege

User cannot open I-O for
table that they does not have
the insert/delete/update
privilege

OPEN INPUT with that
table

9D, 5512 cannot issue
select query

 User cannot issue select
statement in the runsql.acu

9D,5513 client-server
version
mismatch when
dci connect

User’s DCI runtime is newer
than the dmserver

User should upgrade their
dmserver before running new
DCI runtime

9D, 5514 invalid column
number

COBOL FD column
number > table column
number

User need to check the FD
column number and table
column number

9D, 5515 invalid XFD
column name
or data type and
length does not
match

COBOL FD column name
or column type does not
match with table definition

Compare the FD and table
definition. Fix this problem
by either change the COBOL
FD or alter table.

9D, 5518 DCI blob data
is null

When user get blob from a
column and the data is null

Figure 8-6 Native SQL Errors Char

©Copyright 1995-2008 CASEMaker Inc. 8-10

9D, 5519 DCI blob file
does not exist

User should ensure the blob
file has existed.

1COBOL Conversions 8

©Copyright 1995-2008 CASEMaker Inc. 8-11

8.6 Converting Vision Files
DCI provides a sample program to convert COBOL files into RDBMS tables.
Before using the DCI_MIGRATE program, a Vision file to be converted and an

XFD data dictionary for the Vision file are required. The ACUCOBOL runtime
system 4.3 or higher linked to DCI must be installed and a DCI_MIGRATE object
program must be ready.

Using DCI_Migrate

This is a general-purpose program that converts any COBOL vision file into a
DBMaker table. To run correctly the minimum DCI configuration settings must be
defined to work with DBMaker (DCI_LOGIN, DCI_DATABASE, DCI_PASSWD

etc) and match the .XFD file name with dbm_table_name or use DCI_MAPPING to
specify the name and location.
The program DCI_MIGRATE reads vision files and writes DBMaker tuples

through DCI. In addition, after migration, it checks if all records are correct by
reading vision records and comparing them by reading DBMaker rows.
The DCI_MIGRATE program will report the following:

• Total record read successful
• Total record write successful
• Total record read unsuccessful

• Total record write unsuccessful
• Total record compared successful
• Total record compared unsuccessful

 DCI User’s Guide1

DCI_MIGRATE
OPTIONS

RESULT

--help Displays the online help.

--nowait Doesn’t wait for user confirmation during interactive mode.

--noverify Skips the verify process.

--nomigrate Skips the migrate process.

--visdbm Converts vision files to DBMaker tables (default).

--dbmvis Converts DBMaker tables to vision files.

Figure 8-7 DCI_MMIGRATE Options Result table

Â Syntax 1

The vision_file_name is the name of the Vision file to be converted and

dbm_table_name is the name of the DBMaker table.
runcbl DCI_MIGRATE vision_file_name dbm_table_name [options]

Â Syntax 2

Setting the environment variable named DCI_MIGRATE to “yes” can turn off the
report. The report will then append a file named “dbm_table_name.log”.
DCI_MIGRATE = yes

Â Syntax 3

The record can be dumped for an unsuccessful operation by adding, “dump” to the
DCI_MIGRATE setting (Spaces will be considered separators. Log file names with

embedded spaces are not permitted).
DCI_MIGRATE = yes dump

©Copyright 1995-2008 CASEMaker Inc. 8-12

1Glossary

Glossary

API
Application Programming Interface: The API is an interface between an application

and an operating system.
Binary Large Object (BLOB)
A large block of data stored in the database that is not stored as distinct records in a

table. A BLOB cannot be accessed through the database in the same way as ordinary
records. The database can only access the name and location of a BLOB; typically,
another application is used to read the data.

Buffer
A buffer is an internal memory space (zone) where data is temporarily stored during
input or output operations.

Client
A computer that can access and manipulate data that is stored on a central server
computer.

Column
A set of data in a database table defined as multiple records consisting of the same
data type.

Data dictionaries
Also known as extended file descriptors; they serve as maps (links) between database
schema and the file descriptors in a COBOL application.

©Copyright 1995-2008 CASEMaker Inc. Glossary-1

 DCI User's Guide1

Directive
An optional comment placed in the COBOL code that sets the proceeding field or

fields to a data type other than the default DCI setting.

Field
A part of a COBOL file descriptor roughly corresponding to a database column. It is

a discrete data item contained in a COBOL record.

File Descriptor
A file descriptor is an integer that identifies a file that is operated on by a process.

Operations that read, write, or close a file use the file descriptor as an input
parameter.

Indexed file
Files containing a list of keys that uniquely identify all records.

Key
A unique value used to identify a record in a database. (See Primary Key for more

details.)

Primary key
A primary key consists of a column of unique (or key) values , which can be used to

identify individual records contained in a table.

Query
In DBMaker, SQL commands used to execute data query requests made by a user to

obtain specific information.

Record
In COBOL, a group of related fields defined in the Data Division. In DBMaker, a

record is also referred to as a row, and defines a set of related data items in table
columns.

Relational Database
A relational database is a database system where internal database tables on different
databases may be related to one another by the use of keys or unique indexes.

©Copyright 1995-2008 CASEMaker Inc. Glossary-2

1Glossary

Schema
The structure of a database table as defined by its columns. Data type, size, number

of columns, keys, and constraints all define a table’s schema.

Server
A server is a central computer that stores and handles network configuration files,

which also can consist of a database management system to store data (database) and
distribute data to clients via a network connection.

SQL
Structured Query Language: The language which DBMaker and other ODBC
compliant programs use to access and manipulate data.

Table
A logical storage unit in a database that consists of columns and rows used to store
records.

XFD file
An acronym for extended file descriptor or data dictionary. It also forms the file
extension for the data dictionary.

©Copyright 1995-2008 CASEMaker Inc. Glossary-3

 DCI User's Guide1

©Copyright 1995-2008 CASEMaker Inc. Glossary-4

1Index

Index

A

ALPHA Directive, 4-3

B

BINARY Directive, 4-4

B-TREE
Files, 1-1

C

Column Names
Maximum Length, 8-2

Columns, 3-5

COMMENT Directive, 4-4, 4-5
Configuration

Basic, 2-14

Configuration file variables, 6-1
Configuration File Variables

_DCI_MAPPING, 6-7

CDI_LOGFILE, 6-6
DCI Table Cache, 6-13

DCI_AUTOMATIC_SCHEMA_ADJUS

T, 6-15
DCI_DATABASE, 6-3
DCI_DATE_CUTOFF, 6-4

DCI_DB_MAP, 6-16
DCI_IGONRE_MAX_BUFFER_LENGT

H, 6-15

DCI_INCLUDE, 6-15
DCI_INV_DATE, 6-6
DCI_JULIAN_BASE_DATE, 6-7

DCI_LOGIN, 6-6
DCI_LOGTRACE, 6-7
DCI_MAX_DATE, 6-9

DCI_MIN_DATE, 6-9
DCI_NULL_DATE, 6-15
DCI_NULL_ON_MIN_DATE, 6-16

DCI_PASSWD, 6-10
DCI_STORAGE_CONVENTION, 6-11
DCI_TABLESPACE, 6-14

DCI_USEDIR_LEVEL, 6-11
DCI_USER_PATH, 6-12
DCI_XFDPATH, 6-13

DEFAULT_RULES, 6-5

©Copyright 1995-2008 CASEMaker Inc. Index-1

 DCI User's Guide1

filename_RULES, 6-13

D

Data Dictionaries
Storage Location, 6-13

Data Structures, 2-2

Data Types
COBOL to DBMaker, 8-3
DBMaker to COBOL, 8-5

Not Supported, 8-2
Supported, 8-2

Database Name

Specifying, 6-3
DATE Directive, 4-6
DCI_CONFIG, 6-1

DCI_DATABASE, 6-3
DCI_DATE_CUTOFF, 6-4
DCI_INV_DATE, 6-6

DCI_JULIAN_BASE_DATE, 6-7
DCI_LOGFILE, 6-6
DCI_LOGIN, 6-6

DCI_LOGTRACE, 6-7
DCI_MAPPING, 3-14, 6-7
DCI_MAX_DATE, 6-9

DCI_MIN_DATE, 6-9
DCI_PASSWD, 6-10
DCI_STORAGE_CONVENTION, 6-11

DCI_USEDIR_LEVEL, 6-11
DCI_USER_PATH, 6-12
DCI_XFDPATH, 6-13

Default Filing System, 5-3
DEFAULT_RULES, 6-5
DEFAULT-HOST setting, 5-2

Directives, 4-1
ALPHA, 4-3

BINARY, 4-4
COMMENT, 4-4, 4-5
DATE, 4-6

FILE, 4-9
NAME, 4-9
NUMERIC, 4-10

Supported, 4-3
Syntax, 4-2
USE GROUP, 4-10

VAR-LENGH, 4-11
WHEN, 4-12

Document Conventions, 1-5

E

embedded SQL, 1-1
Errors

Runtime, 8-7
SQL, 8-9

Extended File Descriptors, 3-1

F

Field Names
Identical, 3-7

Long, 3-8
FILE CONTROL section, 3-2
FILE Directive, 4-9

File System, 2-2
FILE=Filename Directive, 4-9
filename_RULES(*), 6-13

Filing System Options, 5-2
FILLER data items, 3-13

©Copyright 1995-2008 CASEMaker Inc Index-2

1Index

I

I/O Statements, 1-1

Illegal DATE values, 2-18, 6-10
Illegal HIGH-VALUES, 2-18, 6-10
Illegal LOW-VALUES, 2-18, 6-10

Illegal SPACES, 2-18, 6-10
Illegal time, 2-18, 6-10
Invalid Data, 2-18

J

Julian dates, 4-7

K

Key fields, 3-5
KEY IS phrase, 3-5, 3-12

L

Login, 6-6

M

Multiple Record Formats, 3-9

N

NAME Directive, 4-9
NUMERIC Directive, 4-10

O

OCCURS Clauses, 3-13

P

Password, 6-10

Platforms
Supported, 2-5

Primary Keys, 3-5

R

Records, 3-5

REDEFINES Clause, 3-12
Requirements

Software, 2-5

System, 2-5
Runtime Configuration File, 2-6, 2-7, 2-10
Runtime Errors, 8-7

Runtime Options, 5-1

S

Sample Application, 2-20

Schema, 3-10
SELECT statement, 3-2, 3-6
Setup, 2-6

UNIX, 2-9
Windows, 2-6

Shared Libraries, 2-13

Software Requirements, 2-5
Sources of Information, 1-3
SQL

Embedded, 1-1
Errors, 8-9

Supported Features, 8-1

Supported Platforms, 2-5
System Requirements, 2-5

T

Table Schema, 3-10

©Copyright 1995-2008 CASEMaker Inc. Index-3

 DCI User's Guide1

Tables, 3-2
Technical Support:, 1-4

U

USE GROUP Directive, 4-10
User Name, 6-6

V

VAR-LENGH Directive, 4-11

Vision file system, 5-2

W

WHEN Directive, 4-12

X

XFD files, 3-1

©Copyright 1995-2008 CASEMaker Inc Index-4

	Introduction
	Additional Resources
	Technical Support
	Document Conventions

	DCI Basics
	DCI Overview
	File System and Databases
	Accessing Data

	System Requirements
	Setup Instructions
	Setup with Windows
	Setup with UNIX

	Basic Configuration
	DCI_DATABASE
	DCI_LOGIN
	DCI_PASSWD
	DCI_XFDPATH

	The Runsql Utility
	Invalid Data
	Sample Application
	Setting up the Application
	Adding Records
	Accessing the Data

	Data Dictionaries
	Assigning Table Names
	Mapping Columns and Records
	Identical Field Names
	Long Field Names

	Using Multiple Record Formats
	Using XFD File Defaults
	REDEFINES Clause
	KEY IS Phrase
	FILLER Data Items
	OCCURS Clauses

	Mapping Multiple Files
	Mapping to Multiple Databases
	Using Triggers
	Using Views
	Using Synonyms
	Open Tables in Remote Databases
	Using DCI_WHERE_CONSTRAINT

	XFD Directives
	Using Directive Syntax
	Using XFD Directives
	$XFD ALPHA Directive
	$XFD BINARY Directive
	$XFD COMMENT DCI SERIAL n Directive
	$XFD COMMENT DCI COBTRIGGER Directive
	$XFD COMMENT Directive
	$XFD DATE Directive
	$XFD FILE Directive
	$XFD NAME Directive
	$XFD NUMERIC Directive
	$XFD USE GROUP Directive
	$XFD VAR-LENGTH Directive
	$XFD WHEN Directive for File Names
	$XFD COMMENT DCI SPLIT

	Compiler and Runtime Options
	Using ACUCOBOL-GT Default File System
	Using DCI Default File System
	Using Multiple File Systems
	Using the Environment Variable

	Configuration File Variables
	Setting DCI_CONFIG Variables
	DCI_CASE
	DCI_COMMIT_COUNT
	DCI_DATABASE
	DCI_DATE_CUTOFF
	DCI_DEFAULT_RULES
	DCI_DEFAULT_TABLESPACE
	DCI_DUPLICATE_CONNECTION
	DCI_GET_EDGE_DATES
	DCI_INV_DATE
	DCI_LOGFILE
	DCI_LOGIN
	DCI_JULIAN_BASE_DATE
	DCI_LOGTRACE
	DCI_MAPPING
	DCI_MAX_ATTRS_PER_TABLE
	DCI_MAX_BUFFER_LENGTH
	DCI_MAX_DATE
	DCI_MIN_DATE
	DCI_NULL_ON_ILLEGAL_DATE
	DCI_PASSWD
	DCI_STORAGE_CONVENTION
	DCI_USEDIR_LEVEL
	DCI_USER_PATH
	DCI_XFDPATH
	<filename>_RULES
	DCI TABLE CACHE Variables
	DCI_TABLESPACE
	DCI_AUTOMATIC_SCHEMA_ADJUST
	DCI_INCLUDE
	DCI_IGNORE_MAX_BUFFER_LENGTH
	DCI_NULL_DATE
	DCI_NULL_ON_MIN_DATE
	DCI_DB_MAP
	DCI_VARCHAR
	DCI_GRANT_ON_OUTPUT

	DCI Functions
	Calling DCI functions
	DCI_SETENV
	DCI_GETENV
	DCI_DISCONNECT
	DCI_GET_TABLE_NAME
	DCI_SET_TABLE_CACHE
	DCI_BLOB_ERROR
	DCI_BLOB_GET
	DCI_BLOB_PUT
	DCI_GET_TABLE_SERIAL_VALUE
	DCI_FREE_XFD
	DCI_UNLOAD_CONFIG

	COBOL Conversions
	Using Special Directives
	Mapping COBOL Data Types
	Mapping DBMaker Data Types
	Troubleshooting Runtime Errors
	Troubleshooting Native SQL Errors
	Converting Vision Files
	Using DCI_Migrate

	Glossary
	Index

