
DBMaker
SQL Command and Function Reference

CASEMaker Inc./Corporate Headquarters

1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.

www.casemaker.com

www.casemaker.com/support

©Copyright 1995-2004 by CASEMaker Inc.
Document No. 645049-231147/DBM42-M07232004-SQLR

Publication Date: 2004-07-23

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any
form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README.TXT
after installing the CASEMaker DBMaker software.

Trademarks
CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-
DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark
of The Open Group. ANSI is a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only
form information purposes. SQL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

Notices
The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the
merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for
any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or
humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for
inaccuracies. This manual is subject to change without notice.

This text is not here.

http://www.casemaker.com
http://www.casemaker.com/support

 1Contents

©Copyright 1995-2004 CASEMaker Inc. i

Contents

1 Introduction1-1
1.1 Additional Resources............................ 1-2
1.2 Technical Support 1-3
1.3 Document Conventions......................... 1-4

2 SQL Basics...2-1
2.1 Syntax Diagrams................................... 2-2
2.2 Data Types.. 2-3

BINARY(size)... 2-3
CHAR(size) ... 2-4
DATE... 2-4
DECIMAL (NUMERIC) ... 2-5
DOUBLE .. 2-6
FILE ... 2-6
FLOAT .. 2-7
INTEGER... 2-8
LONG VARBINARY (BLOB)... 2-8
LONG VARCHAR (CLOB) ... 2-9
NCHAR(size).. 2-9
NCLOB.. 2-10

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. ii

NVARCHAR(size)...2-11
OID .. 2-12
SERIAL(start) ... 2-12
SMALLINT... 2-13
TIME.. 2-14
TIMESTAMP ... 2-14
VARCHAR(size) .. 2-15
Media Types .. 2-16

2.3 RESERVED WORDS 2-17

3 SQL Commands 3-1
3.1 ABORT BACKUP.................................... 3-2
3.2 ADD TO GROUP..................................... 3-4
3.3 ALTER DATAFILE 3-6
3.4 ALTER PASSWORD................................ 3-8
3.5 ALTER REPLICATION ADD REPLICATE3-10
3.6 ALTER/DROP REPLICATION 3-14
3.7 ALTER SCHEDULE 3-16
3.8 ALTER TABLE ADD COLUMN 3-21

Column Definition... 3-21
3.9 ALTER TABLE DROP COLUMN 3-26
3.10 ALTER TABLE DROP FOREIGN KEY 3-27
3.11 ALTER TABLE DROP PRIMARY KEY.... 3-29
3.12 ALTER TABLE FOREIGN KEY 3-31
3.13 ALTER TABLE MODIFY COLUMN......... 3-35

Column Definitions ... 3-35
3.14 ALTER TABLE PRIMARY KEY.............. 3-40
3.15 ALTER TABLE RENAME....................... 3-42
3.16 ALTER TABLE SET OPTIONS 3-43

 1Contents

©Copyright 1995-2004 CASEMaker Inc. iii

3.17 ALTER TABLESPACE........................... 3-46
3.18 ALTER TABLESPACE DROP DATAFILE 3-51
3.19 ALTER TRIGGER ENABLE 3-52
3.20 ALTER TRIGGER REPLACE 3-54

For Each Row Clause.. 3-56
For Each Statement Clause .. 3-57

3.21 BEGIN BACKUP................................... 3-60
3.22 BEGIN WORK 3-66
3.23 CHECK .. 3-67
3.24 CHECKPOINT 3-70
3.25 CLOSE DATABASE LINK 3-72
3.26 COMMIT WORK 3-74
3.27 CREATE COMMAND............................. 3-76
3.28 CREATE DATABASE LINK 3-78
3.29 CREATE DOMAIN 3-81
3.30 CREATE GROUP 3-85
3.31 CREATE HASH INDEX 3-86
3.32 CREATE INDEX 3-88
3.33 CREATE REPLICATION 3-92
3.34 CREATE SCHEDULE 3-97
3.35 CREATE SCHEMA.............................. 3-104
3.36 CREATE SYNONYM 3-106
3.37 CREATE TABLE 3-108

Column Definitions ... 3-110
Primary Key and Unique Definitions ...3-112
Foreign Key Definitions ... 3-113
Table Options ...3-116

3.38 CREATE TABLESPACE 3-121

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. iv

3.39 CREATE TEXT INDEX........................ 3-126
Signature Text Index..3-127
Inverted File Text Index ...3-129

3.40 CREATE TRIGGER............................. 3-131
For Each Row Clause ..3-133
For Each Statement Clause...3-134

3.41 CREATE VIEW 3-137
3.42 DELETE ... 3-139
3.43 DROP COMMAND............................... 3-141
3.44 DROP DATABASE LINK 3-142
3.45 DROP DOMAIN 3-144
3.46 DROP GROUP 3-145
3.47 DROP INDEX 3-146
3.48 DROP REPLICATION 3-147
3.49 DROP SCHEDULE 3-148
3.50 DROP SCHEMA.................................. 3-149
3.51 DROP SYNONYM 3-150
3.52 DROP TABLE 3-151
3.53 DROP TABLESPACE 3-152
3.54 DROP TEXT INDEX............................ 3-153
3.55 DROP TRIGGER 3-154
3.56 DROP VIEW 3-155
3.57 END BACKUP 3-156
3.58 EXECUTE COMMAND 3-159
3.59 GRANT (Execute Privileges) 3-161
3.60 GRANT (Object Privileges)................ 3-163
3.61 GRANT (Security Privileges)............. 3-167

 1Contents

©Copyright 1995-2004 CASEMaker Inc. v

3.62 INSERT ... 3-169
3.63 KILL CONNECTION 3-172
3.64 LOAD STATISTICS 3-173
3.65 LOCK TABLE 3-174
3.66 REBUILD INDEX 3-176
3.67 REBUILD TEXT INDEX....................... 3-177
3.68 REMOVE FROM GROUP 3-179
3.69 RESUME SCHEDULE 3-181
3.70 REVOKE (Execute Privileges) 3-182
3.71 REVOKE (Object Privileges) 3-184
3.72 REVOKE (Security Privileges)........... 3-187
3.73 ROLLBACK .. 3-189
3.74 SAVEPOINT....................................... 3-191
3.75 SELECT ... 3-192

SELECT WITHOUT FROM ... 3-193
SELECT Clause..3-194
FROM Clause ... 3-195
WHERE Clause.. 3-198
Compound Comparisons.. 3-203
Join Conditions...3-204
GROUP BY Clause ...3-208
HAVING Clause.. 3-209
ORDER BY Clause ...3-210
FOR BROWSE Clause ... 3-213

3.76 SET CONNECTION OPTIONS............. 3-215
No Value Options..3-215
ON/OFF Options...3-216
Number Options ..3-218
String Options...3-220
Symbol Options..3-223

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. vi

Transaction Options ..3-227
3.77 SUSPEND SCHEDULE........................ 3-228
3.78 SYNCHRONIZE SCHEDULE 3-229
3.79 UNLOAD STATISTICS........................ 3-230

UNLOAD STATISTICS Object List...3-231
3.80 UPDATE .. 3-232
3.81 UPDATE STATISTICS 3-234

UPDATE STATISTICS Object List ..3-234
3.82 UPDATE TABLESPACE STATISTICS.. 3-236

4 Built-in Functions 4-1
4.1 ABS ... 4-2
4.2 ACOS... 4-3
4.3 ADD_DAYS... 4-4
4.4 ADD_HOURS.. 4-5
4.5 ADD_MINS ... 4-6
4.6 ADD_MONTHS 4-7
4.7 ADD_SECS... 4-8
4.8 ADD_YEARS .. 4-9
4.9 ASCII... 4-10
4.10 ASIN.. 4-12
4.11 ATAN... 4-13
4.12 ATAN2... 4-14
4.13 ATOF... 4-15
4.14 BLOBLEN .. 4-16
4.15 CEILING .. 4-17
4.16 CHAR .. 4-18

 1Contents

©Copyright 1995-2004 CASEMaker Inc. vii

4.17 CHAR_LENGTH.................................... 4-20
4.18 CHARACTER_LENGTH......................... 4-21
4.19 CHECKMEDIATYPE 4-22
4.20 CONCAT .. 4-23
4.21 COS... 4-25
4.22 COSH .. 4-26
4.23 COT... 4-27
4.24 CURDATE .. 4-28
4.25 CURRENT_DATE.................................. 4-29
4.26 CURRENT_TIME 4-31
4.27 CURRENT_TIMESTAMP 4-33
4.28 CURRENT_USER.................................. 4-35
4.29 CURTIME... 4-37
4.30 DATABASE .. 4-38
4.31 DATEPART .. 4-39
4.32 DAYNAME ... 4-40
4.33 DAYOFMONTH 4-41
4.34 DAYOFWEEK 4-42
4.35 DAYOFYEAR.. 4-43
4.36 DAYS_BETWEEN 4-44
4.37 DEGREES .. 4-45
4.38 DMLIC ... 4-46
4.39 EXP ... 4-48
4.40 FILEEXIST... 4-49
4.41 FILELEN .. 4-50
4.42 FILENAME ... 4-51

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. viii

4.43 FIX .. 4-52
4.44 FLOOR... 4-53
4.45 FREXPE... 4-54
4.46 FREXPM .. 4-55
4.47 FTOA... 4-56
4.48 HIGHLIGHT ... 4-57
4.49 HITCOUNT .. 4-58
4.50 HITPOS ... 4-59
4.51 HMS .. 4-61
4.52 HOUR .. 4-62
4.53 HTMLHIGHLIGHT 4-63
4.54 HTMLTITLE ... 4-65
4.55 HYPOT .. 4-66
4.56 INSERT ... 4-67
4.57 INVDATE ... 4-69
4.58 INVTIME.. 4-70
4.59 INVTIMESTAMP 4-71
4.60 LAST_DAY ... 4-72
4.61 LCASE ... 4-73
4.62 LDEXP ... 4-74
4.63 LEFT ... 4-75
4.64 LENGTH .. 4-76
4.65 LOCATE... 4-77
4.66 LOG... 4-79
4.67 LOG10 ... 4-80
4.68 LOWER .. 4-81

 1Contents

©Copyright 1995-2004 CASEMaker Inc. ix

4.69 LTRIM ... 4-82
4.70 MDY .. 4-83
4.71 MINUTE... 4-84
4.72 MOD .. 4-85
4.73 MODFI ... 4-86
4.74 MODFM.. 4-87
4.75 MONTH.. 4-88
4.76 MONTHNAME 4-89
4.77 NEXT_DAY... 4-90
4.78 NOW .. 4-91
4.79 PI .. 4-92
4.80 POSITION.. 4-93
4.81 POW .. 4-95
4.82 QUARTER.. 4-96
4.83 RADIANS ... 4-97
4.84 RAND .. 4-98
4.85 REPEAT... 4-99
4.86 REPLACE... 4-100
4.87 RIGHT ... 4-101
4.88 RND... 4-102
4.89 ROUND.. 4-103
4.90 RTRIM ... 4-104
4.91 SECOND .. 4-105
4.92 SECS_BETWEEN................................ 4-106
4.93 SESSION_USER 4-107
4.94 SIGN.. 4-108

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. x

4.95 SIN .. 4-109
4.96 SINH ... 4-110
4.97 SPACE... 4-111
4.98 SQRT... 4-112
4.99 STRTOINT ... 4-113
4.100 SUBBLOB 4-114
4.101 SUBBLOBTOBIN 4-115
4.102 SUBBLOBTOCHAR....................... 4-116
4.103 SUBSTRING 4-117
4.104 TAN ... 4-119
4.105 TANH ... 4-120
4.106 TIMEPART 4-121
4.107 TIMESTAMPADD 4-122
4.108 TIMESTAMPDIFF 4-123
4.109 TO_DATE 4-124
4.110 TRIM.. 4-125
4.111 UCASE ... 4-127
4.112 UPPER ... 4-128
4.113 USER ... 4-129
4.114 WEEK... 4-130
4.115 YEAR ... 4-131

5 System-Stored Procedures................ 5-1
5.1 SOADD .. 5-2
5.2 SOCREATE .. 5-3
5.3 SODROP .. 5-4
5.4 SOLOCK .. 5-5

 1Contents

©Copyright 1995-2004 CASEMaker Inc. xi

5.5 SOREAD .. 5-6
5.6 SOSET... 5-7
5.7 SOUNLOCK ... 5-8
5.8 XMLEXPORT.. 5-9

Constructing XMLEXPORT Arguments.................................... 5-10
Exporting XML Files... 5-12

5.9 XMLIMPORT .. 5-18
Constructing XMLIMPORT Arguments..................................... 5-19
Importing XML Files .. 5-24

6 dmSQL Commands6-1
6.1 CREATE DATABASE 6-2
6.2 CONNECT.. 6-10
6.3 DEF TABLE.. 6-14
6.4 DEF VIEW .. 6-15
6.5 DISCONNECT 6-16
6.6 EXPORT .. 6-17

EXPORT COMMAND INTERFACE....................................... 6-17
DESCRIPTION FILE.. 6-18

6.7 IMPORT... 6-24
IMPORT COMMAND INTERFACE 6-24
DESCRIPTION FILE.. 6-25

6.8 LOAD... 6-34
6.9 SET DUMP PLAN 6-38
6.10 START DATABASE 6-39
6.11 TERMINATE DATABASE 6-41
6.12 UNLOAD .. 6-42

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. xii

1Introduction 1

©Copyright 1995-2004 CASEMaker Inc. 1-1

1 Introduction

Welcome to the DBMaker SQL Command and Function Reference manual.
DBMaker is a powerful and flexible SQL Database Management System (DBMS)

that supports an interactive Structured Query Language (SQL), a Microsoft Open
Database Connectivity (ODBC) compatible interface, and Embedded SQL for C
(ESQL/C). The unique open architecture and native ODBC interface adds the

freedom to build custom applications using a wide variety of programming tools, or to
query a database using ODBC-compliant applications.

DBMaker is easily scalable from personal single-user databases to distributed

enterprise-wide databases. Regardless of the configuration of a database, the advanced
security, integrity, and reliability features of DBMaker ensure the safety of critical
data. Extensive cross-platform support permits leveraging of existing hardware and

allows for expansion and upgrading when required.

DBMaker provides excellent multimedia-handling capabilities to store, search,
retrieve, and manipulate all types of multimedia data. Binary Large Objects (BLOBs)

ensure the integrity of multimedia data by taking full advantage of the advanced
security and crash recovery mechanisms included in DBMaker. File Objects (FOs)
manage multimedia data while maintaining the capability to edit individual files in

source applications.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 1-2

1.1 Additional Resources
DBMaker provides a complete set of DBMS manuals in addition to this one. Consult
one of the books listed below for more information on a particular subject.

• For an introduction to Baker's capabilities and functions, refer to the
“DBMaker Tutorial”.

• For more information on designing, administering, and maintaining a

DBMaker database, refer to the “Database Administrator's Guide”.

• For more information on DBMaker management, refer to the “JServer Manager
User’s Guide”.

• For more information on DBMaker configurations, refer to the “JConfiguration
Tool Reference”.

• For more information on DBMaker functions, refer to the “JDBA Tool User’s
Guide”.

• For more information on the dmSQL interface tool, refer to the “dmSQL User’s
Guide”.

• For more information on the DCI COBOL Interface, refer to the “DCI User’s
Guide”.

• For more information on the ESQL/C programming, refer to the “ESQL/C
User’s Guide”.

• For more information on the native ODBC API, refer to the “ODBC
Programmer’s Guide”.

• For more information on error and warning messages, refer to the “Error and
Message Reference”.

1Introduction 1

©Copyright 1995-2004 CASEMaker Inc. 1-3

1.2 Technical Support
CASEMaker provides thirty days of complimentary email and phone support during
the evaluation period. When software is registered an additional thirty days of support

will be included. Thus, extending the total support period for software to sixty days.
However, CASEMaker will continue to provide email support for any bugs reported
after the complimentary support or registered support has expired (free of charges).

Additional support is available beyond the sixty days for most products and may be
purchased for twenty percent of the retail price of the product. Please contact
sales@casemaker.com for more details and prices.

CASEMaker support contact information for your area (by snail mail, phone, or
email) can be located at: www.casemaker.com/support. It is recommended that the
current database of FAQ’s be searched before contacting CASEMaker support staff.

Please have the following information available when phoning support for a
troubleshooting enquiry or include the information with a snail mail or email enquiry:

• Product name and version number

• Registration number

• Registered customer name and address

• Supplier/distributor where product was purchased

• Platform and computer system configuration

• Specific action(s) performed before error(s) occurred

• Error message and number, if any

• Any additional information deemed pertinent

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 1-4

1.3 Document Conventions
This book uses a standard set of typographical conventions for clarity and ease of use.
The NOTE, Procedure, Example, and Command Line conventions also have a

second setting used with indentation.

Convention Description

Italics
Italics indicate placeholders for information that must be supplied,
such as user and table names. A word in italics should not be typed,
but replaced by the actual name. In addition, italics can be used to
introduce new words and are occasionally used for emphasis in text.

Boldface
Boldface indicates filenames, database names, table names, column
names, user names, and other database schema objects. It is also
used to emphasize menu commands in procedural steps.

KEYWORDS
All keywords used by the SQL language appear in uppercase when
used in normal paragraph text.

small caps
Small capital letters indicate keys on the keyboard. A plus sign (+)
between two key names indicates to hold down the first key while
pressing the second. A comma (,) between two key names indicates
to release the first key before pressing the second key.

NOTE
Contains important information.

Procedure
Indicates that procedural steps or sequential items will follow. Many
tasks are described using this format to provide a logical sequence of
steps for the user to follow

 Example
Examples are given to clarify descriptions, and commonly include
text, as it will appear on the screen.

Command Line Indicates text, as it should appear on a text-delimited screen. This
format is commonly used to show input and output for dmSQL
commands or the content in the dmconfig.ini file

Table 1-1 Document Conventions Table

1SQL Basics 2

©Copyright 1995-2004 CASEMaker Inc. 2-1

2 SQL Basics

This manual is intended for anyone using the SQL language with DBMaker. This
includes everyone from, users performing ad-hoc queries using the dmSQL command

line utility, to programmers developing custom applications using ESQL/C and the
DBMaker ODBC-compliant interface.

This manual also provides a complete reference to the Structured Query Language

found in DBMaker, and provides the syntax for each SQL statement. Examples and
illustrations are provided throughout the manual to assist with more clarity of
understanding the contents.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 2-2

2.1 Syntax Diagrams
Syntax diagrams demonstrate the syntax for all SQL commands. These diagrams
provide assistance when constructing a statement on the command line. To use the

syntax diagram, simply follow the line(s) and arrows from start to finish. Any elements
of the command that cannot be navigated around are required. Any elements that can
be navigated around are optional, but provide additional options and/or flexibility.

Any words that appear in italics are placeholders for the actual names used in a
database. Substitute the actual names for these placeholders. In the diagram, replace
the table_name placeholder with the name of a table in the database. For example, in

the tutorial database, you could replace the table_name placeholder with Customers to
execute this command on the Customers table.

Sometimes it is possible to have a list of items in a command, which are shown in the

syntax diagram as a circular path. The column name field can include a list of column
names, separated by commas, as indicated by the circular path following the arrows.

ALTER TABLE table_name SET

ON

OFF

NOCACHE

FILLFACTOR number

TABLE

PAGE

ROW

LOCK MODE

UPDATE STATISTICS EVERY n DAYS

Figure 2-1: A sample syntax diagram

1SQL Basics 2

©Copyright 1995-2004 CASEMaker Inc. 2-3

2.2 Data Types
When defining a column in a table, choose a data type for the field. Understand how
to use each field in order to make the right choice of data type. Choosing the wrong

data type can waste space in the database, or make the application program take extra
steps to convert the data into a usable form.

DBMaker supports the following data types:

BINARY(size), CHAR(size), NCHAR(size), DATE, DECIMAL(NUMERIC),
DOUBLE, FILE, FLOAT, INTEGER, LONG VARBINARY(BLOB), LONG
VARCHAR(CLOB), NATIONAL LONG VARCHAR (NCLOB), OID,

SERIAL(start), SMALLINT, TIME, TIMESTAMP, VARCHAR(size), and
NVARCHAR(size).

BINARY(size)

The BINARY data type is a fixed-length data type that can contain any binary value.

The minimum length of BINARY columns is 1 byte and the maximum length is
3992 bytes. Enter a value for the size parameter when creating a BINARY column.
Any data entered in a BINARY column shorter than the column length is padded

with a zero-value byte.

Enter character data by enclosing the data in single quotes (‘ ’), the same as when
entering CHAR data. However, in BINARY columns the data is stored as

hexadecimal values representing the ASCII code of the characters, not as the actual
characters entered.

Alternatively, enter hexadecimal values directly by enclosing them in single quotes and

appending the ‘x’ character (‘ ’x) to indicate the string contains a hexadecimal value. It
requires two digits to represent all possible values for each byte in hexadecimal; use an
even number of digits when entering values.

 Example 1
 ‘AaBbCcDdEe’x

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 2-4

 Example 2
 ‘41614262436344644565’x

CHAR(size)

The CHAR data type is a fixed-length data type that can contain any character from
the keyboard. CHAR columns can have a minimum length of 1 byte, and a maximum

length of 3992 bytes. Enter a value for the size parameter when creating a CHAR
column.

Any CHAR data in a column that is shorter than the column length is padded with

spaces. When entering CHAR data, enclose it in single quotes (‘ ’). Double-byte
characters occupy two bytes. If using double-byte characters, account for this when
specifying the length of the column.

 Example 1
 ‘This is a CHAR string.’

 Example 2
‘This is another CHAR string.’

DATE

There are two types of DATE data; DATE literal and DATE constant. Date literal
represents the present date. DATE constant is a set point in time. The DATE data

type is a fixed-length that contains the calendar date (year, month, and day). The
DATE data type uses 4 bytes of storage and has a precision of 10. Valid values for the
year are from 0001 to 9999.

The DATE data type has multiple input/output formats. If the values in the database
do not appear correctly, or you are not able to enter dates you think are valid, check
the date input/output formats to ensure that they are correct.

 Example 1a
 ‘0001/01/01’

 Example 1b
‘0001/01/01’d

1SQL Basics 2

©Copyright 1995-2004 CASEMaker Inc. 2-5

 Example 1c
DATE ‘0001/01/01’

 Example 2a
‘1999/12/31’

 Example 2b
‘1999/12/31’d

 Example 2c
DATE ‘1999/12/31’

DECIMAL (NUMERIC)

The DECIMAL data type is an exact signed numeric value with a variable precision
and scale. Precision refers to the total number of digits in the mantissa, both to the left

and to the right of the decimal point. The default value for precision is 17 with a
maximum value of = 38. Scale refers to the number of digits to the right of the
decimal point. The default value for scale is 6.

The amount of storage used by a DECIMAL column is based on the actual value
entered, not on the default precision and scale values or the precision and scale values
entered when defining the column.

To calculate the amount of storage, use the following formula:

2
2

2
 bytes of # +

+
=
p

For example, the number 9283.83 would be stored as 6 bytes.

The actual calculation used is:

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 2-6

6

2
2

26

2
2

2
 bytes of #

=

+
+

=

+
+

=
p

If you attempt to move a value larger than the allowed maximum from a data type
such as FLOAT or DOUBLE, DBMaker displays a conversion error and does not

move the data. The DECIMAL data type may be abbreviated as DEC.

 Example 1
3452.8373645

 Example 2
736.383732652

DOUBLE

The DOUBLE data type is an approximate signed numeric data type with a mantissa

of precision 15. Precision refers to the total number of digits in the mantissa, both to
the left and to the right of the decimal point. The DOUBLE data type uses 8 bytes of
storage and has a valid input range of 1.0E308 to –1.0E308.

The smallest valid input values are 1.0E-308 and –1.0E-308.

 Example 1
2.89837457884451E285

 Example 2
-1.93873634847372E-174

FILE

The FILE data type is a structured data type that occupies 24 bytes of storage. This

data type is similar to the CLOB and BLOB data types and stores the contents of any
existing file as an external file that DBMaker can reference the same as any other data..
DBMaker stores the data externally as a file instead of internally as an object. This

allows third-party tools to access and manipulate the data in its native format, without

1SQL Basics 2

©Copyright 1995-2004 CASEMaker Inc. 2-7

having to re-import the data to register any changes in the database. A file object has a
maximum path length of 255 characters.

The FILE column stores a reference to a record in the system catalog tables. The
system catalog contains information that the database uses to find the file object.
When you display a FILE column, you do not actually see what is stored in the FILE

column itself. Instead, DBMaker shows one of three views of information stored in
the system catalog or the file itself the filename, the file size, or the file contents.

The FILE data type can store data in two ways, as a system file object or as a user file

object. A system file object copies an existing file to the file object directory of the
database and gives it a unique name. The database manages this file, and deletes it
when there are no references to it in the database. A user file object creates a link to an

existing file, while leaving the file in the original location with the original name.
Since, the user created this file, it will not be deleted when there are no references
made to it in the database. DBMaker must have the read permission on a file before

you can insert it into the database as a user file object.

When multiple records reference the same file, DBMaker will store only a single copy
of the file and share it between records to save disk space. However, from the user's

point of view, there is always a dedicated file for each record. DBMaker transparently
generates a new file when updating a shared file. Other records sharing that file are
not changed, and other users still see the original file. This prevents any changes made

to a file in one record from influencing any other records.

FLOAT

The FLOAT data type is an approximate signed numeric data type with a mantissa of
precision 7. Precision refers to the total number of digits in the mantissa, both to the

left and to the right of the decimal point. The FLOAT data type uses 4 bytes of
storage and has a valid input range of 3.402823466E38 to –3.402823466E38. The
smallest valid input values are1.175494351E-38 and –1.175494351E-38. If you

attempt to move a value larger than the allowed maximum from a data type such as
DOUBLE, DBMaker displays a conversion error and does not move the data.

 Example 1
3.583837E34

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 2-8

 Example 2
-1.873653E-21

INTEGER

The INTEGER data type is an exact signed numeric data type with a precision of 10
and a scale of 0. The INTEGER data type uses 4 bytes of storage and has a maximum

value of 2,147,483,647 and a minimum value of -2,147,483,647.

If you attempt to move a value larger than the allowed maximum from a data type
such as DOUBLE, DBMaker displays a conversion error and does not move the data.

The INTEGER data type may be abbreviated as INT.

 Example 1
393848

 Example 2
-298376

LONG VARBINARY (BLOB)

The BLOB data type is a variable-length data type that can contain any binary value.

The maximum length of BLOB columns is 2 gigabytes, or about 2,000,000,000
bytes. Unlike the BINARY data type, which uses zero-value bytes for padding, only
the bytes entered are stored in the database.

You can enter character data by enclosing the data in single quotes (‘ ’), the same as
when entering CHAR data. However, in BLOB columns the data is stored as
hexadecimal values representing the ASCII code of the characters, not as the actual

characters entered.

Alternately, enter hexadecimal values directly by enclosing the data in single quotes
and appending the ‘x’ character (‘ ’x) to indicate a string containing a hexadecimal

value. Two digits represent all possible values for each byte in hexadecimal; use an
even number of digits when entering values.

 Example 1
‘AaBbCcDdEe’x

1SQL Basics 2

©Copyright 1995-2004 CASEMaker Inc. 2-9

 Example 2
 ‘41614262436344644565’x

LONG VARCHAR (CLOB)

The CLOB data type is a variable-length data type that can contain any character that
can be entered from the keyboard. The maximum length of CLOB columns is 2

gigabytes, or more than 2147483647 characters.

Unlike the CHAR data type, which uses spaces for padding, only the characters
entered are stored in the database. When entering data in a CLOB column, enclose it

in single quotes (‘ ’). Double-byte characters occupy two bytes each, account for this
when specifying the length of the column.

 Example 1
‘This is a varchar string.’

 Example 2
‘This is another varchar string.’

NCHAR(size)

The NCHAR data type is a fixed-length data type that can contain any Unicode
character. Each Unicode character occupies two bytes of storage in UTF16 Little-
Endian (LE) encoding. The (size) parameter determines the number of 2 byte

characters in the column. The (size) parameter must be entered when creating an
NCHAR column, and may range from a minimum of 1 to a maximum of 1996.

If NCHAR data is entered into a column that is shorter than the column length, the

data will be padded with spaces. When entering NCHAR data, enclose the Unicode
character with single quotes and prefix the quotes with 'N'.

 Example 1

The following demonstrates the syntax of a Unicode data entry:
N'Unicode Data'

If NCHAR data is input in hexadecimal format, enclose the hexadecimal string with

quotes and append a 'u' character.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 2-10

 Example 2

The following demonstrates the syntax of a three-character hexadecimal Unicode data
entry:
'610a620b63f1'u

When a character string is input to a Unicode column but is not prefixed by 'N', then
it will automatically be converted from local code to Unicode. If Unicode characters
are entered into a regular CHAR type column, then the Unicode character will be

converted to the local code defined by the dmconfig.ini parameter Db_LCode.
Characters that are not defined in the local code will be represented by .

Synonyms for the NCHAR data type include NATIONAL CHAR(size), and

NATIONAL CHARACTER(size).

NCLOB

The NCLOB data type is a variable length data type that can contain any Unicode
character. Each Unicode character occupies 2 bytes of storage in UTF16 Little-Endian

(LE) encoding. The maximum length for an NCLOB column is 1 gigabyte (GB).

When entering NCLOB data, enclose the Unicode character with single quotes and
prefix the quotes with 'N'.

 Example 1

The following demonstrates the syntax of a Unicode data entry:
N'Unicode Data'

If NCLOB data is input in hexadecimal format, enclose the hexadecimal string with
quotes and append a 'u' character.

 Example 2

The following demonstrates the syntax of a three-character hexadecimal Unicode data
entry:
'610a620b63f1'u

When a character string is input to a Unicode column but is not prefixed by 'N', then
it will automatically be converted from local code to Unicode. If Unicode characters

1SQL Basics 2

©Copyright 1995-2004 CASEMaker Inc. 2-11

are entered into a regular CLOB type column, then the Unicode character will be
converted to the local code defined by the dmconfig.ini parameter Db_LCode.

Characters that are not defined in the local code will be represented by .

Synonyms for the NCLOB data type include NATIONAL CHAR LARGE
OBJECT, NCHAR LARGE OBJECT, and NATIONAL LONG VARCHAR.

NVARCHAR(size)

The NVARCHAR data type is a variable-length data type that can contain any
Unicode character. Each Unicode character occupies two bytes of storage in UTF16
Little-Endian (LE) encoding. The (size) parameter determines the number of 2 byte

characters in the column. The (size) parameter must be entered when creating an
NVARCHAR column, and may range from a minimum of 1 to a maximum of 1996.

If NVARCHAR data is entered into a column that is shorter than the column length,

the data is not padded with spaces. When entering NVARCHAR data, enclose the
Unicode character with single quotes and prefix the quotes with 'N'.

 Example 1

The following demonstrates the syntax of a Unicode data entry:
N'Unicode Data'

If NVARCHAR data is input in hexadecimal format, enclose the hexadecimal string

with quotes and append a 'u' character.

 Example 2

The following demonstrates the syntax of a three-character hexadecimal Unicode data
entry:
'610a620b63f1'u

When a character string is input to a Unicode column but is not prefixed by 'N', then

it will automatically be converted from local code to Unicode. If Unicode characters
are entered into a regular VARCHAR type column, then the Unicode character will
be converted to the local code defined by the dmconfig.ini parameter Db_LCode.

Characters that are not defined in the local code will be represented by .

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 2-12

Synonyms for the NVARCHAR data type include NATIONAL CHAR
VARYING(size), NCHAR VARYING(size), NATIONAL VARCHAR(size), and

NATIONAL CHARACTER VARYING(size).

OID

The OID (object identifier) data type is a special data type that provides a unique ID
for each object, record or BLOB, stored in a database. A structured data type has a

precision of 10 and a scale of 0, and occupies 8 bytes of storage. DBMaker
automatically generates and inserts an OID with each record. The OID is internally
managed and maintained by DBMaker and cannot be used directly.

The value generated for an OID is related to the storage location of objects in the
database. This means that two OIDs generated consecutively may not necessarily be
sequential.

The OID values act as a hidden pseudo-column in tables, and will not appear in
queries such as SELECT * FROM CUSTOMERS. Explicitly select the OID column
by using ‘OID’ as a column name in a query.

Although it is possible to use an OID in a query to select data from a table and then
use the OIDs to update the table data, this is not common practice when using the
SQL language. OIDs are usually used in the internal programming interface, and not

directly in the interactive dmSQL environments.

SERIAL(start)

The SERIAL data type is a special data type that provides a sequence of consecutive
values. DBMaker allocates an integer number for each table contained in a database

and uses those numbers to generate a unique sequence for the corresponding table.
DBMaker manages and maintains these integer numbers internally. The value of each
integer value is automatically increased by one each time it is used.

Providing an integer value for the optional START parameter when defining a
SERIAL column can specify the first value in a number sequence, or the START
parameter omitted to use the default value of 1. Each table in a database can have only

one column with the SERIAL data type.

1SQL Basics 2

©Copyright 1995-2004 CASEMaker Inc. 2-13

The internal value used to generate a SERIAL number is actually an integer value; the
SERIAL data type shares all of the properties of the INTEGER data type. It is an

exact signed numeric data type with a precision of 10 and a scale of 0, which occupies
4 bytes of storage. The SERIAL data type also has the same range of values as the
INTEGER data type, with a maximum value of 2,147,483,646 and a minimum value

of –2,147,483,646.

Place a NULL, or empty value in the SERIAL column when inserting a new row to
insert a sequential number into a SERIAL column. DBMaker will insert the

sequential number for that table into the SERIAL column of the new record, and
automatically increase the internal value by one.

If inserting a new column, and supplying an integer value for the SERIAL instead of a

NULL or empty value, DBMaker will use the supplied integer value instead of the
next sequential number; the internal value will not be incremented by 1. If the
supplied integer value is greater than the last sequential number generated, DBMaker
will reset the sequence of generated sequential numbers to start with the supplied
integer value.

 Example 1
100, 101, 102, 103, 104, 105, 106, 107

 Example 2
100, 101, 50, 102, 103, 110, 111, 112

SMALLINT

The SMALLINT data type is an exact signed numeric data type with a precision of
five and a scale of zero. The SMALLINT data type uses two bytes of storage and has a
maximum value of 32,767 and a minimum value of -32,768.

If attempting to move a value larger than the permitted maximum value from a data
type such as INTEGER or DOUBLE, DBMaker displays a conversion error and does
not move the data.

 Example 1
4769

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 2-14

 Example 2
8376

TIME

There are two types of TIME data, TIME literal, and TIME constant. A TIME literal
displays the present time, which is an ever-changing value. A TIME constant is a fixed

moment in time. Both TIME data type settings are fixed-lengths, a precision of 8 and
both use 4 bytes of storage. All time values are entered in twenty-four hour format by
default unless the optional ‘AM’ or ‘PM’ values are specified.

Both TIME data types have multiple input/output formats. If the values in the
database do not appear correctly or you are unable to enter perceived valid times then,
check the time input/output formats for validity.

 Example 1a
‘22:04:05’

 Example 1b
‘22:04:05’t

 Example 1c
TIME ‘22:04:05’

 Example 2a
‘10:04:05 PM’

 Example 2b
10:04:05 PM’t

 Example 2c
TIME 10:04:05 PM’

TIMESTAMP

There are two types of TIMESTAMP, TIMESTAMP literal, and TIMESTAMP
constant. A TIMESTAMP literal displays the present time, which is an ever-changing
value. A TIMESTAMP constant is a fixed moment in time.

1SQL Basics 2

©Copyright 1995-2004 CASEMaker Inc. 2-15

Both TIMESTAMP data type settings are a fixed-length data type that contains
calendar data and the time-of-day. Both TIMESTAMP data type settings use 11 bytes

of storage, has a precision of 17, and a scale of 10. Valid years range from 0001 to
9999. All time values are entered in twenty-four hour format by default unless the
optional ‘AM’ or ‘PM’ values are specified.

Both TIMESTAMP data type settings use the input and output formats for the
TIME and DATE data types to display values and determine if input values are valid.
If the values in the database do not appear correctly or you are unable to enter

perceived valid times then, check the time input and output formats for validity.

 Example 1a
‘1997/01/01 10:02:03’

 Example 1b
‘1997/01/01 22:02:03’ts

 Example 1c
TIMESTAMP ‘1997/01/01 10:02:03’

 Example 2a
‘01.01.1997 22:02:03’

 Example 2b
‘01.01.1997 22:02:03’ts

 Example 2c
TIMESTAMP ‘01.01.1997 22:02:03’

VARCHAR(size)

The VARCHAR data type is a variable-length data type that can contain any
character that can be entered from the keyboard. VARCHAR columns have a

minimum length of 1 character and a maximum length of 3992 characters. Enter a
value for the size parameter when creating a VARCHAR column.

Only the VARCHAR characters entered are stored in the database. When entering

data in a column, use single quotes (‘ ’). If using double-byte characters, account for
two bytes for each character when specifying the length of a column.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 2-16

 Example 1
‘ This is a VARCHAR string.’

 Example 2
‘ This is another VARCHAR string.’

Media Types

Large object columns may also be specified as media types to aid in media process
functions such as full text search for Microsoft Word documents. The following
media types are available: MsWordType, HtmlType, XmlType, MsWordFileType,

HtmlFileType, and XmlFileType.

Media types are domains of existing data types; MsWordType derives from LONG
VARBINARY, HtmlType and XmlType derive from LONG VARCHAR, and

MsWordFileType, HtmlFileType, and XmlFileType derive from FILE type columns.
This is important to consider if you choose to use the ALTER TABLE function to
change a column from one data type to another. The characteristics of each of the

media types is similar to the characteristics of the data type from which it is derived.

Data other than the specified type may be entered into a media type column. For
example, it is possible to insert a PowerPoint file into an MsWordType column, but a

MATCH operation will return an error, as will building a text index.

Example:
CREATE TABLE minutes (id INT, date DATE, doc MSWORDFILETYPE);
INSERT INTO minutes VALUES (1, 3/3/2003, ‘c:\meeting\20030303.doc’);

1SQL Basics 2

©Copyright 1995-2004 CASEMaker Inc. 2-17

2.3 RESERVED WORDS
The following list of keywords should not be used as identifiers. DBMaker will return
the ERR_RESERVED_WORD error message if the following reserved words are

used as keywords and not perform the desired command.

ABSOLUTE | ACTION | ADD | ADMIN | AFTER | AGGREGATE | ALIAS |
ALLOCATE | ALTER | AND | ANY | ARE | ARRAY | AS | ASC | ASSERTION |

AT | AUTHORIZATION | BEFORE | BEGIN | BINARY | BIT | BLOB |
BOOLEAN | BOTH | BREADTH | BY | CALL | CASCADE | CASCADED | CASE
| CAST | CATALOG | CHECK | CLASS | CLOB | CLOSE | COLLATE |

COLLATION | COLUMN | COMMIT | COMPLETION| CONNECT |
CONNECTION | CONSTRAINT | CONSTRAINTS | CONSTRUCTOR |
CONTINUE | CORRESPONDING | CREATE | CROSS | CUBE | CURRENT |

CURRENT_DATE | CURRENT_PATH | CURRENT_ROLE |
CURRENT_TIME | CURRENT_TIMESTAMP | CURRENT_USER | CURSOR |
CYCLE| DAY | DEALLOCATE | DEC | DECIMAL | DECLARE | DEFAULT |

DEFERRABLE | DEFERRED | DELETE | DEPTH | DEREF | DESC | DESCRIBE
| DESCRIPTOR | DESTROY| DESTRUCTOR | DETERMINISTIC |
DICTIONARY | DIAGNOSTICS | DISCONNECT | DISTINCT | DOMAIN |

DOUBLE | DROP | DYNAMIC | EACH | ELSE | END | END-EXEC | EQUALS |
ESCAPE | EVERY | EXCEPT| EXCEPTION | EXEC | EXECUTE | EXTERNAL |
FALSE | FETCH | FIRST | FLOAT | FOR | FOREIGN | FOUND | FROM| FREE |

FULL | FUNCTION | GENERAL | GET | GLOBAL | GO | GOTO | GRANT |
GROUP | GROUPING | HAVING | HOST | IDENTITY | IGNORE |
IMMEDIATE | IN | INDICATOR | INITIALIZE | INITIALLY | INNER |

INOUT | INPUT | INT | INTEGER | INTERSECT | INTO | IS | ISOLATION |
ITERATE | JOIN | KEY | LANGUAGE | LARGE | LAST | LATERAL | LEADING
| LESS | LEVEL | LIKE | LIMIT | LOCAL | LOCALTIME | LOCALTIMESTAMP |

LOCATOR | MAP | MATCH | MODIFIES | MODIFY | MODULE | NAMES |
NATIONAL | NATURAL | NCHAR | NCLOB | NEXT | NO | NONE | NOT |
NULL | NUMERIC | OBJECT | OF | OFF | ON | ONLY | OPEN | OPERATION |

OPTION | OR | ORDINALITY | OUT | OUTER | OUTPUT | PAD | PARTIAL |
PATH | POSTFIX | PREFIX | PREORDER | PREPARE | PRESERVE | PRIMARY |

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 2-18

PRIOR | PRIVILEGES | PROCEDURE | READ | READS | REAL | RECURSIVE |
REFERENCES | REFERENCING | RELATIVE | RESTRICT | RESULT |

RETURN | RETURNS | REVOKE | ROLE | ROLLBACK | ROLLUP | ROUTINE
| ROW | ROWS|SAVEPOINT | SCHEMA | SCROLL | SCOPE | SEARCH |
SECTION | SELECT| SEQUENCE | SESSION | SESSION_USER | SET | SETS |

SIZE | SMALLINT | SOME | SPECIFIC | SPECIFICTYPE | SQL |
SQLEXCEPTION | SQLSTATE | SQLWARNING | START | STATIC |
STRUCTURE | SYSTEM_USER | TABLE | TEMPORARY | TERMINATE |

THAN | THEN | TIME | TIMESTAMP | TIMEZONE_HOUR|
TIMEZONE_MINUTE | TO | TRAILING | TRANSACTION | TRANSLATION
| TREAT | TRIGGER | TRUE | UNDER | UNION | UNKNOWN | UNNEST |

UPDATE | USAGE | USING|VALUES | VARCHAR | VARIABLE | VARYING |
VIEW | WHEN | WHENEVER | WHERE | WITH | WITHOUT | WORK |
WRITE | ZONE

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-1

3 SQL Commands

DBMaker provides a comprehensive SQL query language. SQL (Structured Query
Language) is a query language standardized by ANSI. The current standard is ANSI-

99 SQL. This chapter contains the DBMaker version of all supported ANSI-99
commands.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-2

3.1 ABORT BACKUP
The ABORT BACKUP command cancels an online backup. Cancel a backup if
errors occur during the backup operation or to perform the backup at another time.

Only users with SYSADM or DBA security privileges can execute the ABORT
BACKUP command.

Backup mode indicates whether DBMaker will perform online incremental backups,

and what data to backup. There are three backup modes NONBACKUP, BACKUP-
DATA, and BACKUP-DATA-AND-BLOB. Set the backup mode in three ways
using the DB_BMODE keyword in the dmconfig.ini configuration file, SQL SET

command at the dmSQL command prompt, or Server Manager utility.

NONBACKUP mode provides no protection for data inserted or updated after the
last full backup. A database can use the Journal to fully recover from a program

failure, but a disk failure may result in loss of data. Immediately reuse Journal blocks
not in use by an active transaction, after a checkpoint. Once overwritten, the database
can only restore to the point in time of the last full backup.

BACKUP-DATA mode provides protection for data; excluding BLOB data inserted or
updated since the last full backup. In this mode, DBMaker can perform an online
incremental backup; only non-BLOB data will be stored in the backup files. A

database can use the Journal to fully recover from a program failure and can partially
recover from a disk failure. Journal blocks not in use by an active transaction can only
be reused after a checkpoint has taken place and the Journal file has been backed up.

BACKUP-DATA-AND-BLOB mode provides protection for all data including BLOB
data inserted or updated since the last full backup. In this mode, DBMaker can
perform an online incremental backup; all data will be stored in the backup files. A

database can use the Journal to fully recover from a program failure and fully recover
from a disk failure. Use the last backup to completely restore the database to the point
in time of the media failure, including all BLOB data. Journal blocks not in use by an

active transaction can only be reused after a checkpoint has taken place and the
Journal file has been backed up.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-3

Issuing the ABORT BACKUP command does not change the backup mode of the
database. The database will remain in the same backup mode it was in before the

backup started.

ABORT BACKUP

Figure 3-1 ABORT BACKUP syntax

 Example

The following aborts a backup operation.
dmSQL> BEGIN BACKUP

dmSQL> ABORT BACKUP

dmSQL>

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-4

3.2 ADD TO GROUP
The ADD TO GROUP command adds a user to an existing group. The user will
gain all current and future object privileges granted to the group. Only users with

SYSADM or DBA security privileges can execute the ADD TO GROUP command.

Groups simplify the management of object privileges in a database with a large
number of users. Use a group to collect several users and/or groups. Any object

privileges granted to the group are automatically granted to all members in a group.

Members added to a group also maintain previously assigned privileges. Members
removed from a group lose object privileges to that group, but retain any other

privileges granted to them directly or to another group.

Specify a group name in place of a user name, as long as the group does not already
contain a reference to that group. User and group names have a maximum length of

eight characters and may contain letters, numbers, the underscore character, and the $
and # symbols. The first character may not be a number.

user_nameName of an existing user that has at least the connect privilege.

group_nameName of an existing group.

ADD
user_name

,
TO GROUP group_name

Figure 3-2 ADD TO Group Syntax

 Example 1

The following adds users Joe and John, to the Manager group.
ADD Joe, John TO GROUP Manager

 Example 2

The following adds the groups FullTime and PartTime, to the Staff group.
ADD FullTime, PartTime TO GROUP Staff

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-5

 Example 3

The following adds user Bill and the group FlexTime, to the Staff group.
ADD Bill, FlexTime TO GROUP Staff

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-6

3.3 ALTER DATAFILE
The ALTER DATAFILE command enlarges the size of a data or BLOB file by adding
a specified number of pages. Only users with SYSADM or DBA security privileges can

execute the ALTER DATAFILE command.

Files are physical units of storage that contain data in a database. The operating
system manages files the DBMS managed data in the files. DBMaker uses Data,

BLOB, and Journal type files.

Data files and BLOB files store user and system data. Although they have similar
characteristics, DBMaker manages these two file types in different ways to improve

performance. Data files store table and index data, while BLOB files store Binary
Large Objects.

Journal files are special files that provide a real-time, historical record of all changes

made to a database and the status of each change. This allows the database to undo
changes made by a transaction that fails, or to redo changes made successfully but not
written to disk after a database crash. Journal files are used only by the database

management system, and are not used to store user data.

To ensure data independence of a database, operating system files cannot be
referenced directly. Each database file has two names a physical file name and a logical

file name. The physical file name is the name used by the operating system, while the
logical file name is the name used by the database. These two file names interact via an
entry in the dmconfig.ini file.

When using the ALTER DATAFILE command, specify the name of the logical file.
Add 1 to 2147483645 pages to a file, providing the total number of pages in the file
does not exceed 2147483647, and there is sufficient disk space. The total size of a file

or all files in the same tablespace cannot exceed 8TB.

file_nameName of the logical file to enlarge

numberNumber of pages to add

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-7

ALTER DATAFILE file_name ADD number PAGES

Figure 3-3 ALTER DATAFILE syntax

 Example 1

The following is an excerpt from a dmconfig.ini file displaying entries for four
database files with the logical and physical file names. The logical file names display
on the left and the physical file names display on the right.
customer_data = d:\dbmaker\tutorial\database\custdata.db 500
customer_blob = d:\dbmaker\tutorial\database\custblob.bb 1000

 Example 2

The following example adds 1000 pages to the customer_data file.
ALTER DATAFILE customer_data ADD 1000 PAGES

 Example 3

From the same dmconfig.ini file including the increased number of pages for the

customer_data file.
customer_data = d:\dbmaker\tutorial\database\custdata.db 1500
customer_blob = d:\dbmaker\tutorial\database\custblob.bb 1000

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-8

3.4 ALTER PASSWORD
The ALTER PASSWORD command changes a user password from its current value
to a new value. A user can change their current password or the SYSADM may change

the current password of any user.

When a user wants to change their current password, they should use the ALTER
PASSWORD old_password TO new_password command. When the SYSADM

changes the current password, they use the ALTER PASSWORD OF user_name TO
new_password command. Only SYSADM may use the second command.

When changing a user password, the old password must match the password that is

stored in the database for that user. If a user has no password, assign a password using
the NULL keyword as the old password. To delete a user password use the NULL
keyword as the new password.

Passwords have a maximum length of eight characters and may contain letters,
numbers, the underscore character, and the $ and # symbols. The first character may
not be a number.

user_nameName of the user whose password is being changed

old_passwordCurrent password for user user_name

new_password...........New password for user user_name

ALTER PASSWORD
OF user_name

NULL
old_password

new_password

NULL
TO

Figure 3-4 ALTER PASSWORD syntax

 Example 1

The following assigns the password abcdef for a user with no password.
ALTER PASSWORD NULL TO abcdef

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-9

 Example 2

The following changes a password from abcdef to a23456.
ALTER PASSWORD abcdef TO a23456

 Example 3

The following removes a password named a23456.
ALTER PASSWORD a23456 TO NULL

 Example 4

The following shows how the SYSADM can change the password of user John to
abcedf, regardless of the current value of the password.
ALTER PASSWORD OF John TO abcdef

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-10

3.5 ALTER REPLICATION ADD
REPLICATE
The ALTER REPLICATION ADD REPLICATE command adds an additional
remote table to an existing table replication. Add as many additional remote tables to

a replication as you wish. The table owner, a DBA, or SYSADM can execute the
ALTER REPLICATION ADD REPLICATE command.

A table replication creates a full or partial copy of a table to a remote location. This

allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the database in another location. This way each database
can service data requests immediately and efficiently, without having to go to another

machine over a slower network connection. This is not the same as backing up the
database to a remote location. The synchronization is done on a transaction-by-
transaction basis by the DBMS without any intervention from users.

There are two primary types of table replication synchronous and asynchronous.
Synchronous table replication modifies the remote table at the same time it modifies
the local table. Asynchronous table replication stores changes to the local table and

modifies the remote table based on a predefined schedule. The ALTER
REPLICATION ADD REPLICATE command modifies both synchronous and
asynchronous table replications.

Synchronous table replication in DBMaker uses a global transaction model, in which
the replication of data to the remote table is treated as an integral part of the local
transaction. This means that if the replication of data to the remote database fails, the

transaction on the local table will also fail.

 A transaction is traditionally defined as a logical unit of work, or one or more
operations on a database that must be completed together to leave the database in a

consistent state. Transactions are self-contained and must either complete and change
the data, or fail and leave the data unchanged.

Asynchronous table replication in DBMaker uses transaction logs to replicate data to

the remote table. Modifications to the local table are stored in the transaction log, and
replicated to the remote table according to a predefined schedule. Using the

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-11

transaction log enables DBMaker to treat the local transaction and the remote
transaction independently, allowing updates to the local tables even if the remote

connection is not available. This allows asynchronous table replications to tolerate
network and remote database failures; the replication will keep trying until any failures
are corrected.

When modifying a table replication specify the replication name, local table name,
and names of the additional remote tables to replicate to. The local table and the
remote tables must already exist in their respective databases. DBMaker automatically

drops any replications created for a table when dropping a table.

DBMaker will replicate an entire table unless a column list specifies the local table
columns. Only specify a column list for the local table when creating the replication.

To replicate an entire table without providing a column list, the columns in the local
and remote tables must have the same names and data types.

If the column names in the local and remote tables are different, provide a column list

for the remote table. Columns in the local table; from left to right, will replicate to the
corresponding columns in the column list for the remote table. Alternately, explicitly
specify which columns in the local table correspond to columns in the remote table by

providing a column list for both the local and remote tables. The number and data
type of the primary key columns in both tables must match.

DBMaker does not identify replications using fully qualified names; a combination of

owner and object names, but associates them with tables instead. For this reason all
replication names on the same table must be unique.

Synchronous table replication operates with the same security and object privileges as

the owner of the local table. If the remote table is specified using links then the
replication operates with the same security and object privileges as the link.

Asynchronous table replication operates with the security privileges of the remote

account specified by the IDENTIFIED BY keywords in the CREATE SCHEDULE
command. Create a schedule for an asynchronous table replication before creating the
replication.

The CLEAR DATA/FLUSH DATA/CLEAR AND FLUSH DATA keywords are
optional. These keywords specify the operations that take place when creating a

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-12

replication. The CLEAR DATA keywords delete all data from the remote table when
a replication is created. The FLUSH DATA keywords copy all data that matches a

search condition into the remote table. The CLEAR AND FLUSH DATA keywords
clear all data from the remote table, and then copy all data that matches a search
condition into the remote table. If you do not specify an action, no action takes place.

The NO CASCADE keywords are optional. The keyword specifies a cascade
replication. For example, commands flow in most organizations from the highest level
to the basic level. This is similar to replicating data from point A to point B, and then

to point C. This is a typical kind of Cascade replication. In the No-Cascade model A
replicates data to B and B replicates data to A. If your data model works like this, you
can turn on the NO CASCADE option. If no specification exists, the default setting

CASCADE will be used.

replication_nameName of the table replication to add a remote table to.

local_table_nameName of the local table the replication was created on.

remote_table_name ...Name of the table in the remote database.

column_name...........Name of a column in the remote table to replicate to.

ALTER REPLICATION replication_name

ADD REPLICATE TO

,

remote_table_nam
e

column_nam
e

,
)(

CLEAR DATA

FLUSH DATA

CLEAR AND FLUSH DATA

ON local_table_name

Figure 3-5 ALTER REPLICATION ADD REPLICATE syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-13

 Example 1

The following modifies a replication named EmpRep created on the local Employees
table. Data replicates to the Div1Emp table in the remote database, which is

identified by a database configuration section named Div1Office in the local
dmconfig.ini file. All column names and data types in both tables are identical.
ALTER REPLICATION EmpRep ON Employees ADD REPLICATE TO
 Div1Office:Div1Emp

 Example 2

The CLEAR DATA keyword causes DBMaker to delete all data in the remote table
before the replication begins:
ALTER REPLICATION EmpRep ON Employees ADD REPLICATE TO
 Div1Office:Div1Emp CLEAR DATA

 Example 3:

The FLUSH DATA keyword causes DBMaker to send data in the local table to the

remote table before replication begins.
ALTER REPLICATION EmpRep ON Employees ADD REPLICATE TO
 Div1Office:Div1Emp FLUSH DATA

 Example 4

The CLEAR AND FLUSH DATA keyword causes DBMaker to delete all data in the
remote table and then send data in the local table to the remote table.
ALTER REPLICATION EmpRep ON Employees ADD REPLICATE TO
 Div1Office:Div1Emp CLEAR AND FLUSH DATA

 Example 5

The following adds the replication to the Div2Emp table in the remote Div2Office
database, and the Div3Emp table in the remote Div3Office database. Both remote

databases have a database configuration section with the same name as the database in
the local dmconfig.ini file.
ALTER REPLICATION EmpRep ON Employees ADD REPLICATE TO
 Div2Office:Div2Emp CLEAR DATA,
 Div3Office:Div3Emp FLUSH DATA

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-14

3.6 ALTER/DROP REPLICATION
The ALTER REPLICATION DROP REPLICATE command drops a remote table
from an existing table replication. Drop a remote table from a table replication when

you no longer want to replicate data to that table. Only the table owner, a DBA or a
SYSADM can execute the ALTER REPLICATION DROP REPLICATE command.

A table replication creates a full or partial copy of a table in a remote location. This

allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the databases in other locations. This way each database
can service data requests immediately and efficiently, without having to go to another

machine over a slower network connection. This is not the same as backing up the
database to a remote location. The synchronization is done on a transaction-by-
transaction basis by the DBMS, without any intervention from users.

There are two primary types of table replication, synchronous and asynchronous.
Synchronous table replication modifies the remote table at the same time it modifies
the local table. Synchronous table replication stores changes to the local table and

modifies the remote table based on a predefined schedule. The ALTER
REPLICATION DROP REPLICATE command modifies synchronous and
asynchronous table replications.

Synchronous table replication in DBMaker uses a global transaction model, in which
the replication of data to the remote table is treated as an integral part of the local
transaction. A transaction is traditionally defined as a logical unit of work, or one or

more operations on a database that must be completed together to leave the database
in a consistent state. Transactions are self-contained and must either complete and
change the data, or fail and leave the data unchanged. This means that if the

replication of data to the remote database fails, the transaction on the local table will
also fail.

Asynchronous table replication in DBMaker uses transaction logs to replicate data to

the remote table. Modifications to the local table are stored in the transaction log, and
are replicated to the remote table according to a predefined schedule. Using the
transaction log enables DBMaker to treat the local transaction and the remote

transaction independently, updating local tables normally even if the remote

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-15

connection is not available. This allows asynchronous table replications to tolerate
network and remote database failures. The replication will keep trying until all failures

are corrected.

To drop a remote table from a table replication, specify the replication name, the local
table name, and the name of the remote table. Drop more than one remote table from

a replication by listing all tables to drop. Any replications created for a table are
dropped automatically when dropping the table.

replication_name......Name of the table replication to drop a remote table from.

local_table_nameName of the local table the existing replication was created on.

remote_table_name ..Name of the table in the remote database to stop replicating to.

ALTER REPLICATION replication_name ON local_table_name

remote_table_name

,
DROP REPLICATE TO

Figure 3-6 ALTER/DROP REPLICATION syntax

 Example 1

The following drops a remote table named Div1Emp from the replication named
EmpRep created on the local Employees table.
ALTER REPLICATION EmpRep ON Employees DROP REPLICATE TO Div1Emp

 Example 2

The following drops the remote tables named Div2Emp, Div3Emp, and Div4Emp
from the replication named EmpRep created on the local Employees table.
ALTER REPLICATION EmpRep ON Employees
 DROP REPLICATE TO Div2Emp, Div3Emp, Div4Emp

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-16

3.7 ALTER SCHEDULE
The ALTER SCHEDULE command changes the replication schedule for an
asynchronous table replication. Synchronous table replications do not use schedules,

so the ALTER SCHEDULE command has no effect on a synchronous table
replication. Only users with DBA or SYSADM security privileges can execute the
ALTER SCHEDULE command.

A table replication creates a full or partial copy of a table in a remote location. This
allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the databases in other locations. This way each database

can service data requests immediately and efficiently, without having to go to another
machine over a slower network connection. This is not the same as backing up the
database to a remote location. The synchronization is done on a transaction-by-

transaction basis by the DBMS without any intervention from users.

There are two primary types of table replication, synchronous and asynchronous.
Synchronous table replication modifies the remote table at the same time it modifies

the local table. Asynchronous table replication stores changes to the local table and
modifies the remote table based on a predefined schedule. The ALTER SCHEDULE
command affects only asynchronous table replications.

BEGIN AT specifies the date and time of the first replication for an asynchronous
table replication. The date must be in yyyy/mm/dd format, where yyyy is the year in the
range 1970 to 2038, mm is the month in the range 01 to 12, and dd is the date in the

range 01 to 31. The time must be in hh:mm:ss format, where hh is the hour in the
range 00 to 23, mm is the number of minutes in the range 00 to 59, and ss is the
number of seconds in the range 00 to 59. The value for the year must be in the range

1970 to 2038. Include both the date and time when using the BEGIN AT keyword.
If you change the date or time of the first replication to a date in the future after a
replication is already running, table data that has not yet been replicated to the remote

database will wait until the new time for replication.

EVERY, defines the interval between successive replications for an asynchronous table
replication. The interval may be provided as hours/minutes/seconds, days, or a

combination of both. To specify the number of hours/minutes/seconds, use EVERY
hh:mm:ss, where hh is the number of hours in the range 00 to 23, mm is the number

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-17

of minutes from 00 to 59, and ss is the number of seconds from 00 to 59. To specify
the number of days, use EVERY d DAYS, where d is the number of days in the range

1 to 365. To specify a combination of both, use EVERY d DAYS AND hh:mm:ss.

RETRY, indicates how many times DBMaker tries replicating table data if there is an
error while trying to process a single SQL statement, such as a lock time-out error, or

rollback to savepoint due to a full Journal. To specify the number of times to try, use
RETRY n TIMES, where n is the number of times to try in the range of 0 to
2147483647. The default value is 0.

If DBMaker encounters a network error or remote database error that prevents it from
connecting to the remote server, DBMaker waits until the next scheduled replication
to send any table data that was not successfully replicated. It will retry once if it

encounters a transaction, which requires a rollback, but waits until the next scheduled
replication if this fails.

The AFTER keyword is optional. This keyword is used together with the RETRY

keyword to specify the interval between successive retries in the event of an error. Use
AFTER s SECONDS to specify the interval, where s is the number of seconds in the
range 0 to 2147483647. The default value is 5.

The ON ERROR keyword specifies the action DBMaker takes when data in the
remote database has been updated in such a way that the replication cannot take
place. This includes situations where DBMaker tries to delete a record from the

remote table, which has already been deleted, or tries to insert a record into a remote
table that already exists. DBMaker provides two options when encountering this type
of error, STOP ON ERROR and IGNORE ON ERROR. STOP ON ERROR

indicates DBMaker stops replicating data when an error of this type occurs. IGNORE
ON ERROR indicates that DBMaker ignores the data that caused the error and
continues replicating the remaining data. The default behavior is IGNORE.

The IDENTIFIED BY keywords specify the user name and password to use when
connecting to the remote database. The user name provided must be an existing user
in the remote database with sufficient privileges on the remote tables to perform

INSERT, DELETE, and UPDATE operations. Security and object privileges granted
to that user determine the operations that can be performed

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-18

Specify the remote database name to alter the schedule. The remote database name
cannot be a database link. All asynchronous table replications on this database will use

the new schedule.

Schedule_nameThe Schedule_name.

yyyy/mm/ddDate to begin the replication on.

hh:mm:ss1. Time to begin the replication.

................................2. Time interval to replicate at.

d..............................Day interval to replicate to the remote table.

n..............................Number of times to retry in the event of a failure.

s...............................Number of seconds to wait before retrying in the event of a
failure.

user_nameUser name of the account in the remote database.

password...................Password of the account in the remote database.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-19

ALTER SCHEDULE FOR REPLICATION TO remote_database_name

user_nameIDENTIFIED BY
password

IGNORE

STOP
ON ERROR

BEGIN AT yyyy/mm/dd hh:mm:ss EVERY hh:mm:ss

EVERY d DAYS AND hh:mm:ss

EVERY d DAYS

RETRY n TIMES
AFTER s SECONDS

Figure 3-7 ALTER SCHEDULE syntax

 Example 1

The following alters the replication schedule for the asynchronous replication named

EmpRep. The number of times to retry after an error lock time-out, or a rollback to
save point due to a full Journal, is set to 3, with an interval of 5 seconds between
successive retries.
ALTER SCHEDULE FOR REPLICATION TO EmpRep
 RETRY 3 TIMES AFTER 5 SECONDS

 Example 2

The following alters the replication schedule for the asynchronous replication named

EmpRep. The action DBMaker should take when data in the remote database has
been updated in such a way that the replication couldn’t take place is set to STOP:
ALTER SCHEDULE FOR REPLICATION TO EmpRep
 STOP ON ERROR

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-20

 Example 3

The following alters the replication schedule for the asynchronous replication named
EmpRep. The username and password to use when connecting to the remote

database is set to a new value.
ALTER SCHEDULE FOR REPLICATION TO EmpRep
 IDENTIFIED BY RepUser rdejpe88

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-21

3.8 ALTER TABLE ADD COLUMN
The ALTER TABLE ADD COLUMN command modifies the definition of an
existing table and adds new columns. Only the table owner, a DBA, or a user with the

ALTER privilege for that table may execute the command on a.

To specify a column definition, provide a column name and a data type or domain.
Optionally add multiple columns in a single command, provided the total number of

columns in the table after executing the command does not exceed the maximum
number of columns permitted in a table, 252.

table_nameName of the table to add the column to

column_definitionNew definition for the column to alter

ALTER TABLE table_name ADD
column_definition

,
()

Figure 3-8 ALTER TABLE ADD COLUMN syntax

Column Definition

Specify a data type for each column. DBMaker supports the following data types:
BINARY, CHAR, DATE, DECIMAL, DOUBLE, FILE, FLOAT, INTEGER,

BLOB, CLOB, OID, SERIAL, SMALLINT, TIME, TIMESTAMP, and
VARCHAR.

Optionally, specify a user-defined domain for the column instead of a data type.

Domains are a combination of data type, default value, and constraints that are
applied to a column when it is defined using the domain data type. See the
DEFAULT and CHECK keywords below for a description of default values and

constraints. Default values and constraints provided in the column definition will

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-22

override those of the domain. Column definitions can also provide constraints in
addition to those of the domain.

The NULL/NOT NULL keywords are optional. These keywords specify whether a
column can contain a NULL value; can be left empty, when inserting a new row. The
NULL keyword specifies that a column may contain an undefined value when a new

row is inserted. The NOT NULL keyword specifies that a value must be provided
when a new row is inserted. The NOT NULL keyword cannot be used unless a table
is empty, since the NOT NULL rule will be violated causing existing rows not to

contain a value for the column. As a result, the column will not be created.

The DEFAULT keyword is optional. This keyword is used to specify a default value
that will be inserted into a column if no value is provided when inserting a new row.

Constants, results from built-in functions, or the NULL keyword may be used as the
default value. Use built-in functions that have no argument, such as PI(), NOW(),
or USER(), when defining a column. When using the NULL keyword as the

DEFAULT value, the column cannot be defined with the NOT NULL keyword. The
DEFAULT keyword is not normally required when using user-defined domains
instead of the standard DBMaker data types, since domains normally include their

own DEFAULT clause.

The CHECK keyword is optional. This keyword is used to specify a range of
acceptable values; constraints, that may be entered in a column. The expression that

specifies the range of acceptable values may be any expression that evaluates a true or
false statement. The VALUE keyword may be used in the expression in conjunction
with the CHECK keyword to represent the value of the column. If an SQL statement

does not satisfy the CHECK condition, it is not processed. The CHECK keyword is
not normally required when using user-defined domains in place of the standard
DBMaker data types, since domains normally include their own CHECK clause.

The GIVE keyword is optional. This keyword is used to specify the value inserted into
the new column for any rows that already exist in the table. If you do not provide a
value using the GIVE keyword, DBMaker inserts a NULL value into the new column

for any existing rows; columns using the SERIAL data type cannot contain NULL
values, use the GIVE keyword when adding a SERIAL column. Constants, results
from built-in functions, or the NULL keyword may be used as the GIVE value. Use

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-23

the NULL keyword as the GIVE value; the column cannot be defined with the NOT
NULL keyword. Also, use the SEQUENTIAL/SEQ keywords with the GIVE

keyword when you insert a SERIAL column. These keywords specify that DBMaker
will insert serial values into existing rows, starting with the value specified by the
definition of the SERIAL data type in the column definition. The serial values

continue to increment as new rows are inserted.

The BEFORE/AFTER keywords are optional. These keywords specify the location to
insert the new column in relation to an existing column. The BEFORE keyword

specifies DBMaker should insert the new column before, to the immediate left of, the
specified column. The AFTER keyword specifies DBMaker should insert the new
column after, to the immediate right of, the specified column. If you do not specify a

relative location using the BEFORE/AFTER keywords, DBMaker simply appends the
column to the right side of the table.

Adding a new column to a table has no effect on any views or synonyms based on that

table. Column names have a maximum length of thirty two characters and may
contain letters, numbers, the underscore character, and the $ and # symbols. The first
character may not be a number.

column_nameName of the new column

data_typeData type to use for the new column

domain_nameName of the domain to use for the new column

literal.......................Literal value to be used if no value is inserted.

constantConstant value to be used if no value is inserted

function_nameBuilt-in function to be used if no value is inserted

constraint_name.......Name of constraint to be put on column

boolean_expression....Expression that evaluates to true or false

column_name_a.......Name of the existing column the new column will be positioned

after

column_name_b.......Name of the existing column the new column will be positioned
before

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-24

data_type

domain_nam
e

NULL
NOT NULL

column_name

DEFAULT
constant

NULL
function_name

literal

CONSTRAINT constraint_name

CONSTRAINT constraint_name CHECK boolean_expression

GIVE

constant

NULL

function_name

literal

SEQUENTIAL

SEQ

BEFORE column_name_b

AFTER column_name_a

Figure 3-9 COLUMN DEFINITION syntax

 Example 1

The following example adds the HireDate column with the DATE data type to the
Employee table.
ALTER TABLE Employee ADD (HireDate DATE)

 Example 2

The following adds the same HireDate column from the previous example, but adds

the NOT NULL keyword to require a value is entered for this column when inserting
a new row.
ALTER TABLE Employee ADD (HireDate DATE NOT NULL)

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-25

 Example 3

The following adds the same HireDate column from the previous example, but adds
the DEFAULT keyword to insert a default value if no value is entered. This is the

only case when you may omit a value for a column defined with the NOT NULL
keyword. In this example, the built-in function NOW() is used to insert the current
date if no value is specified for this column.
ALTER TABLE Employee ADD (HireDate DATE NOT NULL DEFAULT NOW())

 Example 4

The following adds the same HireDate column from the previous example, but adds

the CHECK keyword to specify a range of acceptable values that may be entered in
the HireDate column. The VALUE keyword represents the value to enter in the
column.
ALTER TABLE Employee ADD (HireDate DATE NOT NULL DEFAULT NOW() CHECK VALUE >
‘01/01/1995’)

 Example 5

The following adds the same HireDate column from the previous example, but uses

the user-defined D_ValidDates domain instead of the DATE data type. The
DEFAULT and CHECK keywords are usually not required when using domains,
since domains normally include their own DEFAULT and CHECK clauses.
ALTER TABLE Employee ADD (HireDate D_ValidDates NOT NULL)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-26

3.9 ALTER TABLE DROP COLUMN
The ALTER TABLE DROP COLUMN command modifies the definition of an
existing table and drops a column that was previously defined. To execute the ALTER

TABLE DROP COLUMN command on a table, only the table owner, a DBA,
SYSADM, or user with ALTER privilege for that table.

Use this command to drop a column from a table when it is no longer necessary. You

cannot drop a column if a primary or foreign key has been defined on that column,
unless you drop the primary or foreign key first. If you drop a column with a defined
view, the view will become invalid and DBMaker returns an error if you try to use it.

This command should be used with caution since the data in a column cannot be
recovered once dropped.

table_name...............Name of the table dropping the column

column_nameName of the column to be dropped

ALTER TABLE table_name DROP ()
column_name

,

Figure 3-10 ALTER TABLE DROP COLUMN syntax

Â Example 1

The following command drops the BirthDate column from the Employees table.
ALTER TABLE Employees DROP (BirthDate)

Â Example 2

The following command drops the BirthDate and HireDate columns from the
Employees table.
ALTER TABLE Employees DROP (BirthDate, HireDate)

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-27

3.10 ALTER TABLE DROP FOREIGN
KEY
The ALTER TABLE DROP FOREIGN KEY command modifies the definition of an
existing table and drops a foreign key that was previously defined. Only the table

owner, a DBA, or a user with the ALTER privilege for the table may execute the
command.

A key is a column or combination of columns that help identify specific rows in a

table. The columns that make up a key are known as key columns. A unique key is a key
in which no two records have the same value for the key field.

A primary key is a key that uniquely identifies each row in a table. Without a primary

key, it is impossible to distinguish between specific rows in a table because rows may
contain duplicate values. The DBMS does not allow defining of a primary key on
columns that contain duplicate values or entering a duplicate value in a primary key

that already exists.

A foreign key is a key that corresponds to the primary key or a unique index of another
table. This establishes a parent-child relationship between two tables that are

represented by common data values. The parent table contains the primary key or
unique index, and the child table contains the foreign key.

Referential integrity ensures that every value in a child key; the foreign key of the child

table, has a corresponding value in the parent key; the primary key or unique index of
the parent table. Referential integrity is enforced between tables using the parent-child
relationship established with foreign keys. DBMaker has automatic support for

referential integrity constraints between tables through the definition of foreign keys.
When adding a record to a child table, the value in the child key must also exist in the
parent key. Similarly, when deleting a record from the parent table, all records in the

child key with the same value must be deleted first.

Referential actions provide a means to update or delete a parent key when referential
integrity would not normally allow it, when a child key references a parent key. The

referential actions define the operation DBMaker should perform on all matching
child keys when you update or delete a parent key. DBMaker supports four referential

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-28

actions for both updates and deletes: CASCADE, SET NULL, SET DEFAULT, and
NO ACTION. CASCADE performs the update or delete on matching child keys as

well as the parent key. SET NULL sets the value of matching child keys to NULL.
SET DEFAULT sets the value of matching child keys to the default value of the
column. NO ACTION enforces normal referential integrity rules. When no

referential action is defined when a foreign key is created then, DBMaker uses NO
ACTION by default.

Use the ALTER TABLE DROP FOREIGN KEY command to drop a foreign key on

a table when it is no longer necessary. After dropping a foreign key, DBMaker no
longer enforces referential integrity or performs referential actions on the child table.
Without the foreign key it is possible to enter values in the child table that do not

exist in the parent table and to update or delete values in the parent table. This
command should be used with caution.

table_name...............Name of the table dropping the foreign key

key_nameName of the foreign key to be dropped

ALTER TABLE table_name DROP FOREIGN KEY key_name

Figure 3-11 ALTER TABLE DROP FOREIGN KEY syntax

 Example

The following drops foreign key fkey1 from the Salary table.
ALTER TABLE Salary DROP FOREIGN KEY fkeyl

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-29

3.11 ALTER TABLE DROP PRIMARY
KEY
The ALTER TABLE DROP PRIMARY KEY command modifies the definition of an
existing table and drops the primary key that was previously defined. Only the table

owner, a DBA, or a user with both the ALTER and INDEX privileges for that table
may execute the command.

A key is a column or combination of columns that help identify specific rows in a

table. The columns that make up keys are key columns. A unique key is a key in which
no two records have the same value for the key field.

A primary key is a key that uniquely identifies each row in a table. Without a primary

key, it is impossible to distinguish between specific rows in a table because rows may
contain duplicate values. The DBMS does not allow defining of a primary key on
columns that contain duplicate values, and does not allow a duplicate value in a

primary key.

A foreign key is a key that corresponds to the primary key or a unique index of another
table. This establishes a parent-child relationship between two tables that are

represented by common data values. The parent table contains the primary key or
unique index, and the child table contains the foreign key columns corresponding to
columns in the parent table.

Referential integrity ensures that every value in a child key; the foreign key of the child
table, has a corresponding value in the parent key; the primary key or unique index of
the parent table. Referential integrity is enforced between tables using the parent-child

relationship established with foreign keys. DBMaker has automatic support for
referential integrity constraints between tables through the definition of foreign keys.
When adding a record to a child table, the value in the child key must also exist in the

parent key. Similarly, when deleting a record from the parent table, all records in the
child key with the same value must be deleted first.

Use the ALTER TABLE DROP PRIMARY KEY command to drop the primary key

on a table when it is no longer necessary. DBMaker enforces referential integrity when
a foreign key is defined. Drop all foreign keys that refer to a primary key before you

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-30

drop the primary key. After dropping a primary key, DBMaker no longer requires a
unique key value for each record; it will be possible to enter values that may make two

records indistinguishable from each other and possibly causing inconsistency in a
database. This command should be used with caution.

table_name...............Name of the table you are dropping the primary key from

ALTER TABLE table_name DROP PRIMARY KEY

Figure 3-12 ALTER TABLE DROP PRIMARY KEY syntax

 Example 1

The following command drops the Primary Key from the Employees table.
ALTER TABLE Employees DROP PRIMARY KEY

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-31

3.12 ALTER TABLE FOREIGN KEY
The ALTER TABLE FOREIGN KEY command modifies the definition of an
existing table and adds a new foreign key. To execute the ALTER TABLE FOREIGN

KEY command on a table, you must have the DBA security privilege, ALTER
privilege on the table, and be the owner of the table, or have the REFERENCE
privilege on the columns or table containing the primary key.

A key is a column or combination of columns that help identify specific rows in a
table. The columns that make up a key are known as key columns. A unique key is a key
in which no two records have the same value for the key field.

A primary key is a key that uniquely identifies each row in a table. Without a primary
key, it is impossible to distinguish between specific rows in a table because rows may
contain duplicate values. The DBMS does not allow you to define a primary key on

columns that contain duplicate values, and does not allow entering a duplicate value
in a primary key that already exists.

A foreign key is a key that corresponds to the primary key or a unique index of another

table. This establishes a parent-child relationship between two tables that is
represented by common data values stored in the tables. The parent table contains the
primary key or unique index, and the child table contains the foreign key columns

corresponding to columns in the parent table.

Referential actions provide a means to update or delete a parent key when referential
integrity would not normally allow it such as when a parent key is referenced by a

child key. The referential actions define the operation DBMaker should perform on
all matching rows in the child key when updating or deleting a parent key. DBMaker
supports four referential actions for both updates and deletes: CASCADE, SET

NULL, SET DEFAULT, and NO ACTION.

The ON UPDATE/ON DELETE keywords are optional. These keywords specify the
referential action DBMaker should perform when updating or deleting a value in a

parent key. The referential actions for these keywords are CASCADE, SET NULL,
SET DEFAULT, and NO ACTION.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-32

CASCADE performs an update or delete on all matching values in the child key when
updating or deleting the parent key. This will set the value of the child key to the

same value as the parent key when a row in the parent key updates, or will delete all
matching values in the child key with the same value as the parent key when deleting a
row in the parent key.

SET NULL sets all matching values in the child key to NULL when you update or
delete a row in the parent key. You cannot use the SET NULL action when the child
key was defined with the NOT NULL constraint.

SET DEFAULT sets all matching values in the child key to the default value of the
column when you update or delete a row in the parent key. You cannot use the SET
DEFAULT action when the default value is NULL and the child key was defined

with the NOT NULL constraint.

NO ACTION enforces normal referential integrity rules. DBMaker will use NO
ACTION by default.

No limit exists for the number of foreign keys on a table. The parent key may be the
primary key or any other unique index of a table, but create the parent key before
adding the child key. The number of columns and column type or length must be the

same in the parent key and the child key. The column order of corresponding keys
may be different in each table, provided they are listed in corresponding order in the
ALTER TABLE FOREIGN KEY command. The primary key of the parent table is

used by default.

Columns in a foreign key may contain null values. If a foreign key contains a null
value, it satisfies referential integrity automatically. You may not create a foreign key

on a view, but may create one on a synonym. Foreign key names have a maximum
length of thirty two characters, and may contain numbers, letters, the underscore
character, and the $ and # symbols. The first character may not be a number.

table_name...............Name of the table adding the foreign key to

key_nameName of the new foreign key

column_name1. Name of the column the foreign key is created on

................................2. Name of the column referenced by the foreign key

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-33

parent_table_name...Name of the table the foreign key references

REFERENCES parent_table_name

column_name

,
)(

ALTER TABLE table_name FOREIGN KEY

ON UPDATE

CASCADE

SET DEFAULT
SET NULL

NO ACTION

ON DELETE

CASCADE

SET DEFAULT
SET NULL

NO ACTION

column_name

,
)(

key_name

Figure 3-13 ALTER TABLE FOREIGN KEY syntax

 Example 1

The following creates a foreign key named fkey1 on column CustNo of table

Accounts that references the Customers table. In the example, no column name is
specified for the parent key, DBMaker will use the primary key of the Customers table
as the parent key. The primary key of the Customers table must be defined before

executing the command.
ALTER TABLE Accounts FOREIGN KEY fkey1 (CustNo)
 REFERENCES Customers

 Example 2

The following creates the same foreign key fkey1 from the previous example, but
specifies the CustNo column as the parent key. The CustNo column can be the
primary key of the Accounts table or any other unique index. The primary key or

other unique index of the Customers table must be defined before executing this
command.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-34

ALTER TABLE Accounts FOREIGN KEY fkey1 (CustNo)
 REFERENCES Customers (CustNo)

 Example 3

The following creates a foreign key named fkey2 on columns PartNo and StockNo of
table Invoice that references the Stock table. Column order in the Invoice table
(PartNo, SuppNo) is different from the corresponding columns in the Stock table

(SuppNo, PartNo). This is acceptable provided corresponding columns from each
table are listed in the same order in the command.
ALTER TABLE Invoice FOREIGN KEY fkey2 (SuppNo, PartNo)
 REFERENCES Stock (SuppNo, PartNo)

 Example 4

The following creates the same foreign key fkey2 from the previous example, but
defines the referential actions DBMaker should perform. The ON UPDATE SET
DEFAULT keywords specify DBMaker to set all matching values in the child key to
the default column value when updating a row in the parent key. The ON DELETE
SET NULL keywords specify DBMaker to set all matching values in the child key to

NULL when deleting a row in the parent key.
ALTER TABLE Invoice FOREIGN KEY fkey2 (SuppNo, PartNo)
 REFERENCES Stock (SuppNo, PartNo)
 ON UPDATE SET DEFAULT
 ON DELETE SET NULL

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-35

3.13 ALTER TABLE MODIFY
COLUMN
The ALTER TABLE MODIFY COLUMN command modifies the definition of
existing columns in a table. Only the table owner, a DBA, a SYSADM, or a user with

the ALTER privilege for that table may execute the command.

table_nameName of the table you are modifying the column on

column_nameName of the column you are modifying

column_definitionNew definition for the column

ALTER TABLE table_name

MODIFY ()
column_name

,

TO column_definition

Figure 3-14 ALTER TABLE MODIFY COLUMN syntax

Column Definitions

To specify a column definition, provide a column name and a data type or domain.
Modify multiple columns in a single command, up to the maximum number of
columns permitted in a table, 252.

Specify a data type for each column modified. DBMaker supports the following data
types: BINARY, CHAR, DATE, DECIMAL, DOUBLE, FILE, FLOAT, INTEGER,
BLOB, CLOB, OID, SERIAL, SMALLINT, TIME, TIMESTAMP and VARCHAR.

Optionally, specify a user-defined domain for the column instead of a data type.
Domains are a combination of data type, default value, and constraint that are applied

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-36

to a column when it is defined using a domain data type. (See the DEFAULT and
CHECK keywords below for a description of default values and constraints.) Default

values and constraints provided in the column definition will override those of the
domain. Column definitions can also provide constraints in addition to those of the
domain.

The NULL/NOT NULL keywords are optional. These keywords specify whether a
column can contain a NULL value, left empty, when inserting a new row. The NULL
keyword specifies that a column may contain an undefined value when inserting a

new row. The NOT NULL keyword specifies that a value must be provided when a
new row is inserted. The NOT NULL keyword cannot be used when modifying a
column that was previously defined with NULL, unless the table is empty, or by using

the GIVE keyword.

The DEFAULT keyword is optional. This keyword is used to specify a default value
that will be inserted into a column if no value is provided. Constants, results from

built-in functions, or the NULL keyword may be used as the default value. Only use
built-in functions that have no argument PI(), NOW(), or USER(), when defining a
column. Use the NULL keyword as the DEFAULT value; the column cannot be

defined with the NOT NULL keyword. The DEFAULT keyword is not normally
required when using user-defined domains instead of the standard DBMaker data
types, since domains normally include their own DEFAULT clause.

The CHECK keyword is optional. This keyword is used to specify a range of
acceptable values that may be entered in a column. The expression that specifies the
range of acceptable values may be any expression that evaluates a true or false

statement. The VALUE keyword may be used in the expression in conjunction with
the CHECK keyword to represent the value of the column. If an SQL statement does
not satisfy the CHECK conditions, it is not processed. The CHECK keyword is not

normally required when using user-defined domains instead of the standard DBMaker
data types.

The GIVE keyword is optional. This keyword is used to specify the value inserted into

the modified column for any existing rows that contain NULL values. If you modify a
column from NULL to NOT NULL and do not provide a value using the GIVE
keyword, DBMaker will not modify the column. Constants, results from built-in

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-37

functions, or the NULL keyword may be used as the GIVE value. Use the NULL
keyword as the GIVE value; the column cannot be defined with the NOT NULL

keyword. Alternately, use the SEQUENTIAL/SEQ keywords with the GIVE keyword
when modifying a column to a SERIAL column. These keywords specify that
DBMaker will insert serial values into existing rows, starting with the value specified

by the definition of the SERIAL data type in the column definition. The serial values
will continue to increment as you insert new rows.

The BEFORE/AFTER keywords are optional. These keywords specify the location to

position the modified column in relation to another column. The BEFORE keyword
specifies DBMaker to position the modified column before; to the immediate left of,
the specified column. The AFTER keyword specifies DBMaker to position the

modified column after; to the immediate right of, the specified column. If you do not
specify a relative location using the BEFORE/AFTER keywords, DBMaker leaves the
column in the original position.

Modifying a column in a table makes all views and stored commands defined on the
table invalid, but has no effect on any synonyms based on that table. Column names
have a maximum length of thirty two characters, and may contain letters, numbers,

the underscore character, and the $ and # symbols .The first character may not be a
number.

column_nameName of the modified column.

data_typeData type to use for the modified column.

domain_nameName of the domain to use for the modified column.

literal.......................Literal value to be used if no value is inserted.

constantConstant value to be used if no value is inserted

function_nameBuilt-in function to be used if no value is inserted.

constraint_name.......Constraint to be applied to the column

boolean_expression....Expression that evaluates to true or false

column_name_a.......Name of the column the modified column will be positioned
after

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-38

column_name_bName of the column the modified column will be positioned

 before

data_type

domain_name

NULL

NOT NULL
column_name

DEFAULT
constant

NULL
function_name

literal
CONSTRAINT constraint_name

CONSTRAINT constraint_name CHECK boolean_expression

Figure 3-15 The Column Definitions syntax

 Example 1

The following modifies the length of the Phone column in the Employees table by
changing the data type from CHAR(15) to CHAR(20).
ALTER TABLE Employee MODIFY (Phone TO Phone CHAR(20))

 Example 2

The following modifies the length of the Phone column in the Employees table by

changing the data type from CHAR(15) to CHAR(20). Adds the NOT NULL
keyword and requires a value to be entered for this column, when inserting a new row.
Any rows that previously contained NULL values are assigned a new value using the

GIVE keyword.
ALTER TABLE Employees MODIFY (Phone TO Phone CHAR(20)
 NOT NULL
 GIVE ‘000-0000’)

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-39

 Example 3

The following modifies the data type of the Quantity and Amount columns in the
LineItems table by changing the data type of both columns from SMALLINT to

INT.
ALTER TABLE LineItems MODIFY (Quantity TO Quantity INT,
 Amount TO Amount INT)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-40

3.14 ALTER TABLE PRIMARY KEY
The ALTER TABLE PRIMARY KEY command modifies the definition of an
existing table and adds a primary key. Only the table owner, a DBA, or a user with

both the ALTER and INDEX privileges for the table may execute the command.

A key is a column or combination of columns that help identify specific rows in a
table. A unique key is a key in which no two records have the same value or the key

field.

A primary key is a key that uniquely identifies each row in a table. Without a primary
key, it is impossible to distinguish between specific rows in a table because rows may

contain duplicate values. The DBMS will not define a primary key on columns that
contain duplicate values, or enter a duplicate value in a primary key that already exists.

A foreign key is a key that corresponds to the primary key or a unique index of another

table. This establishes a parent-child relationship between two tables that is
represented by common data values stored in the tables. The parent table contains the
primary key or unique index, and the child table contains the foreign key columns

corresponding to columns in the parent table.

Referential integrity ensures that every value in a child key; the foreign key of the child
table, has a corresponding value in the parent key; the primary key or unique index of

the parent table. Referential integrity is enforced between tables using the parent-child
relationship established with foreign keys. DBMaker has automatic support for
referential integrity constraints between tables through the definition of foreign keys.

When adding a record to a child table, the value in the child key must also exist in the
parent key. Similarly, when deleting a record from the parent table, all records in the
child key with the same value must be deleted first.

Primary keys ensure data integrity in a table by requiring unique key values in each
record of the primary key. Since this means columns in a primary key may not
contain duplicate or null values, define the key columns with the NOT NULL

constraint.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-41

Each table may only have one primary key. You cannot name a primary key for this
reason. Instead, DBMaker will automatically create and maintain a unique, internally

managed index named PrimaryKey for the primary key in each table. Since DBMaker
builds an index on the primary key, it is not necessary to build another index on the
columns in the primary key to increase the performance of query operations.

Primary keys may be built on up to 16 columns, providing the size of the columns
does not exceed 1024 bytes. You cannot create a primary key on a view, but may
create one on a synonym. When creating a primary key on a synonym, the primary

key is created on the base table.

table_nameName of the table adding the primary key to

column_nameName of the column the primary key is created on

ALTER TABLE table_name PRIMARY KEY
column_name

,
()

Figure 3-16 ALTER TABLE PRIMARY KEY syntax

 Example

The following example creates a primary key on column CustNo in the Customers
table. The CustNo column must be defined with the NOT NULL constraint, and all
values in the CustNo column must be unique, or the table must be empty.
ALTER TABLE Customers PRIMARY KEY (CustNo)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-42

3.15 ALTER TABLE RENAME
The ALTER TABLE RENAME command changes the name of an existing table.
Only the table owner, a DBA, or a user with the ALTER privilege for that table can

execute the ALTER TABLE RENAME command on a table.

A table name can be renamed when it only contains an index and/or text index.
Dependent objects like stored command, stored procedure, trigger, and foreign key

are not supported with the RENAME command.

ALTER TABLE table_name DROP FOREIGN KEY key_name

Figure 3-17 ALTER TABLE RENAME Syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-43

3.16 ALTER TABLE SET OPTIONS
The ALTER TABLE SET OPTIONS command modifies the definition of an
existing table and changes its options. Only the table owner, a DBA, or a user with

the ALTER privilege for that table can execute the ALTER TABLE SET OPTIONS
command on a table.

LOCK MODE specifies the lock mode (lock level) DBMaker uses when accessing

data in a table. DBMaker has three lock modes; table, page, and row. Page lock mode
is set by default. To determine the lock mode of a table, examine the LOCKMODE
column of the SYSTABLE.

LOCK MODE TABLE locks an entire table. This mode decreases concurrency by
preventing simultaneous user access to the locked table. It also uses fewer lock
resources and requires less memory in the System Control Area (SCA).

LOCK MODE PAGE locks a single data page. This mode is a trade-off between
concurrency and lock resources. It provides moderate concurrency since other users
may access data in other pages, but not in the locked page.

LOCK MODE ROW locks a single row. This mode increases concurrency by
allowing additional users to access any data except the locked row. It also uses more
lock resources and requires more memory in the SCA.

FILLFACTOR specifies the maximum percentage of a data page that can be filled.
This allows the database to optimize the use of data pages by reserving space for future
updates to existing records. The number parameter can have a value from 50 to 100,

which represent a fillfactor of 50% to 100%. To determine the fillfactor of a table,
examine the FILLFACTOR column of the SYSTABLE system table.

NOCACHE limits the number of page buffers used to cache data during a table scan.

DBMaker stores page buffers in a buffer chain with the most recently used page at the
beginning. When the NOCACHE option is turned on, data pages read during a table
scan are placed at end of the buffer chain. The end of the buffer chain will be flushed

before the beginning and subsequent data pages read during the table scan will
overwrite the previous pages. This effectively limits the page buffers used during a

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-44

table scan to one page buffer. To determine the cache mode of a table, examine the
CACHEMODE column of the SYSTABLE system table.

The SERIAL option resets the counter for a serial column. This allows starting a new
sequence in a serial column without having to modify the table.

Using the ALTER TABLE SET OPTIONS command has no effect on any views or

synonyms based on that table.

table_name...............Name of the table to change options on

numberValue to use for the fillfactor

n..............................Time interval in days to wait between statistics updates

new_serialValue to use for the new starting serial number

ALTER TABLE table_name SET

ON

OFF

NOCACHE

FILLFACTOR number

TABLE

PAGE

ROW

 LOCK MODE

UPDATE STATISTICS EVERY n DAYS

Figure 3-18 ALTER TABLE SET OPTIONS syntax

 Example 1

The following sets the LOCK MODE to TABLE on the Customers table.
ALTER TABLE Customers SET LOCK MODE TABLE

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-45

 Example 2

The following sets the LOCK MODE to PAGE on the Customers table.
ALTER TABLE Customers SET LOCK MODE PAGE

 Example 3

The following sets the LOCK MODE to ROW on the Customers table.
ALTER TABLE Customers SET LOCK MODE ROW

 Example 4

The following sets the FILLFACTOR to 90% on the Customers table.
ALTER TABLE Customers SET FILLFACTOR 90

 Example 5

The following turns on the NOCACHE option on the Customers table.
ALTER TABLE Customers SET NOCACHE ON

 Example 6

The following turns off the NOCACHE option on the Customers table.
ALTER TABLE Customers SET NOCACHE OFF

 Example 7

The following alters the SERIAL counter value of table t1 from its current value to
100.
ALTER TABLE t1 SET SERIAL 100

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-46

3.17 ALTER TABLESPACE
The ALTER TABLESPACE command adds a file to an existing tablespace or changes
the tablespace type from autoextend to regular or from regular to autoextend. Only a

DBA or SYSADM may execute the ALTER TABLESPACE command.

The way data is physically stored on computers has little or no significance to most
users. DBMaker uses the relational data model to hide the details of the physical

storage model and present data using a logical storage model instead.

In the DBMaker physical storage model, files are physical storage structures that
contain the data in the database. Files are managed by the operating system, with the

exception of raw Unix devices, while data in the files are managed by the DBMS.
DBMaker uses three types of files during normal operation Data, BLOB, and Journal.

Journal files are special files that provide a real-time, historical record of all changes

made to a database and the status of each change. This allows the database to undo
changes made by a transaction that fails or to redo changes made successfully but not
written to disk after a database crash. Journal files are used only by the database

management system not to store user data.

Data files and BLOB files are used to store user and system data. Although they have
similar characteristics, DBMaker manages these two file types in different ways to

improve performance. Data files store table and index data, while BLOB files store
only Binary Large OBjects (BLOBs).

In the DBMaker logical storage model, tablespaces are the logical storage structures

used to partition information in a database into manageable areas. Each tablespace
may contain several tables and indexes. Data in the tablespace is managed by the
DBMS, but is physically stored in files. There are three types of tablespaces: regular,

autoextend, and system.

Regular tablespaces have a fixed size and contain one or more data or BLOB files. They
may be extended manually by enlarging existing files or adding new files in the

tablespace. When adding a new file, first make an entry in the dmconfig.ini,
specifying the logical file name, the physical file name, and the initial file size in the

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-47

appropriate database section. A regular tablespace may contain a maximum of 32767
files, with a maximum cumulative file size of 8TB. On Unix platforms, regular

tablespaces may be placed on raw devices.

NOTE For more information on raw devices, see your Unix system documentation.

Autoextend tablespaces automatically increase in size to hold additional data as

required. They must contain at least one or more data files, and may contain BLOB
files. The difference between regular and autoextend tablespaces is, an autoextend
tablespace automatically extends. A DBA can arrange tables for each type of

tablespace. When adding a file to a regular tablespace, first make an entry in the
dmconfig.ini, specifying the logical file name, physical file name, and initial file size in
the appropriate database section. Autoextend tablespaces do not support raw devices.

DBMaker generates system tablespaces while creating a database. Each database has
one system tablespace, which contains the system catalog tables used to store schema,
security, and status information. The system tablespace is created as an autoextend

tablespace, unless creating a database on a Unix raw device. System tablespaces
automatically contain one DATA and one BLOB file. System tablespaces may be
converted to regular tablespaces. System tablespaces are created with an initial data file

size of 600KB, and an initial BLOB file size of 20KB.

Use the SET AUTOEXTEND OFF keywords to change any autoextend tablespace to
a regular tablespace. To restrict the amount of disk space a tablespace will occupy,

change a tablespace from autoextend to regular.

NOTE A file in an autoextend tablespace will grow to fill all available space on a disk to a
maximum of 8TB.

Use the SET AUTOEXTEND ON keywords to change any regular tablespace to an
autoextend. Change a tablespace from regular to autoextend when the tablespace is

exhausted.

Use the ADD DATAFILE keywords to add a new Data or Blob file to a tablespace.
Files added to a tablespace do not have to be located on the same physical disk. In

Unix, file can be stored on raw devices. DBMaker writes to raw device files directly
instead of relying on operating system calls, allowing faster access, and performance
improvements over normal files.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-48

As mentioned earlier, files that make up a tablespace are referenced within the
database using logical file names to maintain physical data independence. The logical

file names are mapped to the physical file names in the; dmconfig.ini configuration
file, as shown in the examples. DBMaker will create a new file in the default database
directory specified by the DB_DBDIR keyword in the dmconfig.ini unless a different

directory or path is specified.

Logical file names have a maximum length of thirty two characters, and may contain
numbers, letters, the underscore character, and the $ and # symbols .The first

character may not be a number. Physical file names have a maximum length,
including drive and path names, of 79 characters. Include any characters and symbols
permitted by the operating system, except spaces.

When adding a new file, specify the file type with the TYPE=DATA and
TYPE=BLOB keywords. The default file type is data.

Also, indicate the file size; in data pages, for a Data file or BLOB frames for a BLOB

file. Data pages are; 4KB, while BLOB pages are variable in size and can range from
8KB to 256KB. DBMaker will increase the initial size of autoextend tablespaces as
required. To determine the size of a BLOB frame, check the DB_BFRSZ keyword for

a database in the dmconfig.ini file.

tablespace_nameName of the tablespace to modify

file_nameName of the file to add to the tablespace

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-49

ALTER TABLESPACE tablespace_name

SET AUTOEXTEND OFF

ADD DATAFILE file_name

TYPE=DATA

TYPE=BLOB

Figure 3-19 ALTER TABLESPACE syntax

 Mapping 1

Before executing example 1, add a line to the dmconfig.ini file to map the logical file
name to the physical file name and indicate the initial file size as 4KB pages. In this
example, the file size will be 400KB.
file1=c:\dbmaker\databases\f1.db 100

 Example 1

The following adds the file f1.db to the ts1 tablespace file f1.db has the logical file

name of file1.
ALTER TABLESPACE ts1 ADD DATAFILE file1 TYPE=DATA

 Mapping 2

Before executing the commands in example 2, add a line to the dmconfig.ini file to
map the logical file name to the physical file name and indicate the initial file size in
frames. In this example, the file size will be 4000KB if the default BLOB frame size of

8KB is used.
file2=c:\dbmaker\databases\f2.bb 500

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-50

 Example 2

The following example changes the tablespace mode from autoextend to regular and
adds file f2.bb to the ts2 tablespace; file f2.db has the logical file name of file2.
ALTER TABLESPACE ts2 SET AUTOEXTEND OFF
ALTER TABLESPACE ts2 ADD DATAFILE file2 TYPE=BLOB

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-51

3.18 ALTER TABLESPACE DROP
DATAFILE
The ALTER TABLESPACE DROP DATAFILE command drops an empty datafile
from a tablespace. Only a DBA or a SYSADM may execute the command.

When dropping a datafile from a tablespace it is imperative that the datafile is empty.
If the datafile contains data then the command will abort and an error message will be
returned to the user. Users are not able to drop a datafile if the datafile is the only one

in the tablespace. It is also important to note that users cannot remove the system
datafile from the system tablespace or the default datafile from the default tablespace.

tablespace_name: Name of the tablespace the datafile belongs to

file_name: Name of the datafile to be dropped

ALTER TABLESPACE tablespace_name

file_nameDROP DATAFILE

Figure 3-20 ALTER TABLESPACE DROP DATAFILE syntax

 Example

A user wants to drop datafile tsfile1 from tablespace ts1.

ALTER TABLESPACE ts1 DROP DATAFILE tsfile1

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-52

3.19 ALTER TRIGGER ENABLE
The ALTER TRIGGER ENABLE command enables or disables an existing trigger on
a table. Only the table owner, a DBA, or SYSADM may execute the ALTER

TRIGGER ENABLE command.

A trigger is a database server mechanism that automatically executes predefined
commands in response to specific events. This allows a database to perform complex

or unconventional operations that might not be possible using standard SQL
commands. Since triggers are under the control of the database server, they can ensure
data consistency, regardless of the source. DBMaker will transparently fire the trigger

every time a user or application program generates a trigger event.

A trigger automatically enables when created. To suspend a trigger when testing
database operations that may cause the trigger to fire, use the DISABLE keyword.

Disabling a trigger does not remove it from the database and you can enable it again
with the ENABLE keyword.

trigger_nameName of the trigger to enable or disable

table_name...............Name of the table the trigger is associated with

ALTER TRIGGER trigger_name

DISABLE

ENABLE
table_nameON

Figure 3-21 ALTER TRIGGER ENABLE syntax

 Example 1

The following disables the trigger Trig1 on the Employees table.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-53

ALTER TRIGGER Trig1 ON Employees DISABLE

 Example 2

The following enables the trigger Trig1 on the Employees table.
ALTER TRIGGER Trig1 ON Employees ENABLE

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-54

3.20 ALTER TRIGGER REPLACE
The ALTER TRIGGER REPLACE command replaces a trigger. Only the table
owner, a DBA or SYSADM, may execute the ALTER TRIGGER REPLACE

command.

A trigger is a database server mechanism that automatically executes predefined
commands in response to specific events. This allows a database to perform complex

or unconventional operations that might not be possible using standard SQL
commands. Since triggers are under the control of the database server, they can ensure
data consistency, regardless of the source. DBMaker will transparently fire the trigger

every time a user or application program generates a trigger event.

Specify the name of the trigger when altering or replacing it. Also specify the new
trigger action, action time, event, table, and type.

NOTE The ALTER TRIGGER REPLACE command, only functions on the original
trigger table.

Unlike most database objects, DBMaker does not identify triggers using fully qualified
names, but associates them with tables instead. For this reason all trigger names on the

same table must be unique. The trigger action operates with the same security and
object privileges as the owner of the trigger table, not with the privileges of the user
executing the trigger event.

The BEFORE/AFTER keywords specify when the database server should perform the
trigger action relative to the trigger event and the trigger action time. The BEFORE
keyword instructs the database server to perform the trigger action before the trigger

event. The AFTER keyword instructs the database server to perform the trigger action
after the trigger event.

The INSERT/DELETE/UPDATE keywords specify the event that fires a trigger.

There are some differences in the use of the INSERT/DELETE keywords, and the
UPDATE keyword. The INSERT keyword instructs a trigger to fire whenever a row
is inserted into a table. The DELETE keyword instructs a trigger to fire whenever

deleting a row from a table. The UPDATE keyword specifies a trigger to fire after

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-55

updating any column in a table. Also, use UPDATE OF to specify a column list to
fire a trigger after updating specific columns.

NOTE A unique column name can only be used in one UPDATE trigger in a table.

The ON keyword specifies the name of the table to replace the trigger with on the
trigger table. The trigger table must be a permanent table in the database. A trigger

cannot be created on a temporary table, view, or synonym.

trigger_nameName of the trigger to replace.

column_nameName of the column to create the new trigger on.

table_nameName of the table to create the new trigger on.

sql_statement............Statement to execute when the trigger fires.

ALTER TRIGGER trigger_name REPLACE WITH
AFTER

BEFORE

UPDATE

OF
column_name

,

DELETE

INSERT

table_nameON

sql_statement()
for_each_statement_clause

for_each_row_clause

Figure 3-22 ALTER TRIGGER REPLACE syntax

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-56

For Each Row Clause

The REFERENCING keyword specifies an alias for the OLD and NEW keywords.
When replacing a row trigger, indicate in the trigger action whether referencing a
value of a column, before or after the trigger fires. Use the REFERENCING keyword

in place of the OLD and NEW keywords when tables named OLD and NEW already
exist.

The FOR EACH ROW keywords instructs a trigger to fire once for each row the

trigger event modifies. Triggers defined using the FOR EACH ROW keyword do not
fire if the statement firing the trigger does not process rows.

The WHEN keyword specifies rows, which satisfy the search condition, to fire a

trigger. The WHEN clause is evaluated for each row the trigger event modifies. If the
search condition is true, the trigger fires for that row. If the search condition is false,
the trigger does not fire. The result of the WHEN condition only affects the execution

of the triggered action, it has no effect on the statement that fires the trigger.

old_nameAlias for referencing the values as they existed in the trigger table

 before the trigger action fires

new_name................Alias for referencing the values as they exist in the trigger table

 after the trigger action fires

search_conditionConditions a row must meet for a trigger to fire

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-57

REFERENCING

NEW AS new_name

OLD AS old_name

NEW AS new_name

OLD AS old_name

FOR EACH ROW
WHEN (search_condition)

Figure 3-23 For Each Row Clause syntax

For Each Statement Clause

The FOR EACH STATEMENT keywords specify a to trigger fire only once for each
statement that fires the trigger. Triggers defined using the FOR EACH

STATEMENT keywords fire even if the statement that fires the trigger does not
process any rows.

The statement that the trigger executes when it fires is known as the trigger action. The

trigger action may be an INSERT, UPDATE, DELETE, or EXECUTE
PROCEDURE statement. Only built-in functions that have no argument PI(),
NOW(), or USER() can be used when specifying the trigger action. Stored

procedures executed by a trigger cannot contain any COMMIT, ROLLBACK, or
SAVEPOINT transaction control statements.

Create multiple triggers for each trigger event on the trigger table by using the trigger

action time; BEFORE and AFTER keywords, in combination with the trigger type;
FOR EACH ROW and FOR EACH STATEMENT keywords. For example, you can

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-58

combine the trigger action time and the trigger type to create four triggers for the
INSERT trigger event: BEFORE/FOR EACH STATEMENT, BEFORE/FOR

EACH ROW, AFTER/FOR EACH ROW, and AFTER/FOR EACH
STATEMENT.

NOTE Also supported by the UPDATE and DELETE trigger events.

When using UPDATE OF instead of UPDATE, one trigger for each column in the
table for each trigger action time/trigger type combination can be created. A table with
four columns can have four UPDATE OF triggers for each: BEFORE/FOR EACH

STATEMENT, BEFORE/FOR EACH ROW, AFTER/FOR EACH ROW, and
AFTER/FOR EACH STATEMENT combination. When using UPDATE OF to
specify a trigger, UPDATE cannot be used to create a trigger on that table. When you

replace a trigger with a new one, no column already used in another UPDATE OF
trigger may be specified.

FOR EACH STATEMENT

Figure 3-24 For Each Statement Clause syntax

 Example 1

Originally defined as a FOR EACH ROW trigger, this command will replace it with

a FOR EACH STATEMENT trigger by altering the Trig1 trigger on the Employees
table.
ALTER TRIGGER Trig1 REPLACE WITH
 BEFORE UPDATE ON Employees
 FOR EACH ROW
 (INSERT INTO NameChange VALUES (OLD.FirstName, OLD.LastName,
 NEW.FirstName, NEW.LastName)

 Example 2

This command will replace the UPDATE trigger event with an INSERT trigger event
by altering the Trig1 trigger on the Employees table from example 1.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-59

ALTER TRIGGER Trig1 REPLACE WITH
 AFTER INSERT ON Employees
 FOR EACH ROW
 (INSERT INTO NameChange VALUES (OLD.FirstName, OLD.LastName,
 NEW.FirstName, NEW.LastName)

 Example 3

This command will replace the INSERT statement with an EXECUTE
PROCEDURE statement by altering the Trig1 trigger on the Employees table from
example 2.
ALTER TRIGGER Trig1 REPLACE WITH
 AFTER INSERT ON Employees
 FOR EACH ROW
 (EXECUTE PROCEDURE LogTime)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-60

3.21 BEGIN BACKUP
The BEGIN BACKUP command places a database in a special state that allows
backing up of all files without requiring other users to disconnect or shutting down

the database. Only a DBA or SYSADM can execute the BEGIN BACKUP command.

Media failure is the failure of the online secondary or auxiliary storage of a computer
system. The most common secondary and auxiliary storage devices are hard disks.

Media failures are usually caused by physical trauma to the disk itself: head crash, fire,
earthquake, exposure to high vibration, or g-forces outside its physical operating
limits.

When a media failure occurs, one or more files can be physically damaged. Provide
archiving or backup to successfully restore a database. Create backups of database files
periodically, to restore the database in the event of a media failure. There are several

different types of backups.

An online backup is can be performed while a database is running. The Database
Administrator does not have to shut down the database, and users do not need to

disconnect. Online backups are more convenient for users, since no action is required
on their part. A DBMS must provide the capability to back up a database online.

An offline backup is performed after a database has been shut down. The Database

Administrator must schedule a time to shut down the database, and notify all users so
they can disconnect before the shut down. Offline backups can be inconvenient for
users, since they must remember to complete all active transactions and disconnect

from the database. A DBMS does not need to provide the capability to back up a
database offline.

A full backup creates a copy of all data and Journal files, providing a copy of the entire

database system at one point in time. Full backups archive the entire database and
require a large amount of storage space, but can restore the database quickly.

An incremental backup creates a copy of only the Journal files that have changed since

the last full backup. These files provide a copy of the changes made to the database

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-61

since the last full backup. Incremental backups archive only Journal files and require
only a small amount of storage space, but need more time to restore the database.

DBMaker supports four types of backups: offline full backups, online full backups,
online incremental backups, and online incremental to current backups. Before
performing an incremental backup, perform either an offline full backup or an online

full backup. If full backup is not performed first, you may be unable to restore the
database in the event of a media failure.

To perform an offline full backup, make sure all users are disconnected and shut

down the database. If an error occurs while the database is shutting down, completing
the backup operation or restoring the database may be impossible. Backup all Data,
BLOB, and Journal files. Using an offline full backup can restore a database up to the

point in time of shutting down.

To perform an online full backup, start the database in NON-BACKUP, BACKUP-
DATA, or BACKUP-DATA-AND-BLOB mode. To begin the backup, issue the

BEGIN BACKUP command. Back up all Data and BLOB files. After these files have
been backed up, issue the END BACKUP DATAFILE command. Then back up all
Journal files. Next, issue the END BACKUP JOURNAL command to complete the

backup and return the database to normal operation. Using an online full backup can
restore a database from, the point in time the END BACKUP DATAFILE command
was executed to and the point in time the currently active Journal file was copied.

To perform an online incremental backup, start the database in either BACKUP-
DATA or BACKUP-DATA-AND-BLOB mode. To begin the backup, issue the
BEGIN INCREMENTAL BACKUP command. DBMaker will list all Journal files to

copy and a backup ID for each file. In an online incremental backup, DBMaker will
only back up Journal files used since the last full online backup, excluding the
currently active Journal file. Record the filename and backup ID of each file in a safe

location; these will be used if you restore the database. Use operating system
commands or backup utilities to back up the Journal files in the list to the backup
device. After these Journal files have been backed up, issue the END BACKUP

JOURNAL command to complete the backup and return the database to normal
operation. Using an online incremental backup, can restore a database from the point
in time the END BACKUP DATAFILE command was executed in the previous full

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-62

backup, to the point in time the last committed transaction was written to the last full
Journal file.

To perform an online incremental backup to current, the database must have been
started in BACKUP-DATA or BACKUP-DATA-AND-BLOB mode. To begin the
backup, issue the BEGIN INCREMENTAL BACKUP TO CURRENT command.

DBMaker will list all Journal files to copy and a backup ID for each file. In an online
incremental backup to current, DBMaker backs up all Journal files that have been
used since the last full online backup; including the currently active Journal file.

Record the filename and backup ID of each file in a safe location; these are used if you
restore the database. Use operating system commands or backup utilities to back up
the Journal files in the list. After these Journal files have been backed up, issue the

END BACKUP JOURNAL command to complete the backup and return the
database to normal operation. Using an online incremental backup to current can
restore a database from the point in time the END BACKUP DATAFILE command

was executed in the previous full backup, to the point in time the currently active
Journal file was copied.

Only users that have read permissions on the database files from the operating system

can perform an offline full backup, and only users with DBA or SYSADM security
privileges can perform online backups. In addition, only one user at a time can
perform an online backup.

Abort an online backup at any time by issuing the ABORT BACKUP command.
After this command executes, you will not be able to use the files from this backup to
restore the database.

Perform a full online backup at any time with the database in any backup mode,
including NON-BACKUP mode. Incremental online backups may only be
performed when the database is running in BACKUP-DATA or BACKUP-DATA-

AND-BLOB mode.

The backup mode indicates the type of information DBMaker backs up during an
online incremental backup. Change the backup mode online or offline, using one of

three different methods: offline with the DB_BMODE keyword in the dmconfig.ini
configuration file, online with the SQL SET command at the dmSQL command
prompt, or online with the Server Manager utility provided with DBMaker.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-63

NON-BACKUP mode provides no protection for data inserted or updated since the
last full backup. In this mode, a database cannot perform online incremental backups.

A database can use the Journal to fully recover from an instance failure, but a media
failure may result in loss of data. Journal blocks not in use by an active transaction can
be reused immediately after a checkpoint, but once they are overwritten, the database

can only be restored to the point in time of the last full backup.

To set the backup mode to NON-BACKUP using the DB_BMODE keyword, open
the dmconfig.ini file using any text editor and change the value of DB_BMODE to 0.

You may use the SET BACKUP OFF command during an online full backup to set
the backup mode to NON-BACKUP. This command must be executed after the
BEGIN BACKUP command, but before the END BACKUP JOURNAL command,

and only during an online full backup.

BACKUP-DATA mode provides protection for data, excluding BLOB data that was
added or changed since the last full backup. In this mode, DBMaker can perform an

online incremental backup, but since changes to BLOB data are not recorded in the
Journal, they are not stored in the backup Journal files. Any records containing BLOB
data added or changed since the last full backup will have the BLOB data replaced

with a NULL value. After restoring the database, manually update all records with the
new BLOB data. A database can use the Journal to fully recover from an instance
failure and partially recover from media failure.

To set the backup mode to BACKUP-DATA using the DB_BMODE keyword, open
the dmconfig.ini file using any text editor and change the value of DB_BMODE to 1.
Use the SET DATA BACKUP ON command during an online full backup to set the

backup mode to BACKUP-DATA. This command must be executed after the
BEGIN BACKUP command, before the END BACKUP JOURNAL command, and
during an online full backup.

BACKUP-DATA-AND-BLOB mode provides protection for all data, including
BLOB data that was inserted or updated since the last full backup. In this mode,
DBMaker can perform an online incremental backup, and all data will be stored in

the backup Journal files. A database can use the Journal to fully recover from an
instance failure, and can fully recover from a disk failure. Use the last backup to
completely restore the database to the point in time of the media failure, including all

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-64

BLOB data. Journal blocks not in use by an active transaction can only be reused after
a checkpoint has taken place and the Journal file has been backed up.

To set the backup mode to BACKUP-DATA-AND-BLOB using the DB_BMODE
keyword, open the dmconfig.ini file using a text editor and change the value of
DB_BMODE to 2. Use the SET BLOB BACKUP ON command during an online

full backup to set the backup mode to BACKUP-DATA-AND-BLOB. This
command must be executed after the BEGIN BACKUP command, before the END
BACKUP JOURNAL command, and only during an online full backup.

BEGIN

TO CURRENT
INCREMENTAL BACKUP

BACKUP

Figure 3-25 BEGIN BACKUP syntax

 Example 1

The following shows the steps involved in a full online backup. To begin, issue the

BEGIN BACKUP command to notify DBMaker that a full backup is in progress.
Then, copy all data and BLOB files to the backup location using operating system
commands. Next, issue the END BACKUP DATAFILE command. Then, use

operating commands to copy all Journal files to the backup location. Finally, issue the
END BACKUP JOURNAL command. On completion, this command returns the
database to normal operation.
BEGIN BACKUP
 Copy data and BLOB files to backup location using OS commands
 Change backup mode if desired
 Abort the backup if desired
END BACKUP DATAFILE
 Copy Journal files to backup location using OS commands
 Change the backup mode if desired

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-65

 Abort the backup if desired
END BACKUP JOURNAL

 Example 2

The following shows the steps involved in an incremental online backup. Issue the
BEGIN INCREMENTAL BACKUP command to notify DBMaker that an
incremental backup is in progress. DBMaker will list all Journal files to copy and a

backup ID for each file. Use operating system commands to backup the Journal files,
and record the backup IDs for use during restoration. Next, issue the END BACKUP
JOURNAL command. On completion, this command returns the database to normal

operation.
BEGIN INCREMENTAL BACKUP
 Copy Journal files to backup location using OS commands
 Abort the backup if desired
END BACKUP JOURNAL

 Example 3

The following shows the steps involved in an incremental online backup that will
backup everything to the point in time of the currently active Journal file is copied.
Issue the BEGIN INCREMENTAL BACKUP TO CURRENT command to notify

DBMaker that an incremental backup to current is in progress. DBMaker will list all
Journal files needed to copy and a backup ID for each file. Use operating system
commands to backup the Journal files, and record the backup ID for use during

restoration. Next, issue the END BACKUP JOURNAL command. On completion,
this command returns the database to normal operation.
BEGIN INCREMENTAL BACKUP TO CURRENT
 Copy Journal files to backup location using OS commands
 Abort the backup if desired
END BACKUP JOURNAL

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-66

3.22 BEGIN WORK
The BEGIN WORK command is an optional command used in a script file to
document the beginning of a transaction; DBMaker ignores this command.

BEGIN WORK

Figure 3-26 BEGIN WORK syntax

 Example

The following illustrates how the BEGIN WORK command can be used in a script
file to document the beginning of a transaction; the text may be located anywhere
within the script file.
BEGIN WORK
 ...
 SQL Command
 SQL Command
 ...
COMMIT WORK

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-67

3.23 CHECK
The CHECK command checks the database objects specified for data consistency. You may want to check database consistency if queries are returning inconsistent or erroneous results, or receiving frequent or unusual error messages. Only the owner of the object, a DBA or SYSADM may execute the CHECK command.

DBMaker checks the consistency of a database, indexes, tables, files, tablespaces, and
the system catalog. Checking the consistency of database objects can be time and
resource consuming. Use the CHECK command only when necessary, and try to

schedule its use for off-peak times when inconveniences to users are minimized.

When checking a database object, DBMaker first checks the system catalog tables to
ensure all catalog information is valid and correct. If any errors are found in the

system catalogs, checking stops immediately. If the system catalog has errors, the
database may have serious consistency errors. Then DBMaker checks the physical
structure and data integrity of the object and any related objects. When checking an

object, DBMaker also checks, all objects contained in or related to the original object.
Also checks the indexes, data pages, files, and tables.

Some types of errors can be repaired. Dropping the index and rebuilding it can usually

correct most problems. It is also possible to correct a corrupted table by unloading all
records in the table, dropping the table, then recreating the table, and reloading all
data.

If a database does have consistency errors, immediately back up the database,
including all data and Journal files. DBMaker can fix some types of consistency errors
after recovering from a crash. To engage DBMaker crash recovery routines, shut down

and restart the database. After the database restarts, execute the CHECK command
again to see if the error has been corrected.

If any inconsistency still exists, contact the CASEMaker customer service.

CASEMaker customer support representatives will assist you with repairing the
database.

NOTE For information on how to contact a CASEMaker customer service representative
in your area, see your license agreement.

tablespace_nameName of the tablespace to check

file_name.................Name of the file to check

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-68

table_name...............Name of the table to check

index_name..............Name of the index to check

CHECK

DB
CATALOG

TABLE table_name
FILE file_name

TABLESPACE tablespace_name

INDEX index_name

Figure 3-27 CHECK syntax

 Example 1

The following command checks the consistency of data in the Customers table.
CHECK TABLE Customers

 Example 2

The following command checks the consistency of data in index idxCustNum of the

Customers table; when specifying an index name, specify the table name.
CHECK INDEX Customers.idxCustNum

 Example 3

The following command checks the consistency of Data pages or frames in a BLOB
file in the customer_data file.
CHECK FILE customer_data

 Example 4

The following command checks the consistency of database objects in the specified
tablespace and may include files, tables, data pages, and data in all tables in the ts1

tablespace.
CHECK TABLESPACE ts1

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-69

 Example 5

The following command checks the consistency of the database system catalogs.
CHECK CATALOG

 Example 6

The following command checks the consistency of all database objects.
CHECK DB

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-70

3.24 CHECKPOINT
The CHECKPOINT command forces DBMaker to take a checkpoint. Take a
checkpoint if a database activity is very high and you infrequently back up or restart

the database. Only a DBA or SYSADM may execute the CHECKPOINT command.

A checkpoint event brings the database to a clean state. DBMaker writes all Journal
records and all dirty data pages in memory buffers to disk, and reclaims Journal blocks
that are no longer required for backup or recovery purposes. DBMaker can reclaim
Journal blocks that contain non-active transactions completed before the start of the
oldest active transaction.

Startup time after an instance failure is reduced after taking a checkpoint. DBMaker
writes the time of the last checkpoint and a list of all transactions active at the time of
the checkpoint to the Journal file header. During database recovery, DBMaker uses

this information to determine which transactions should be undone, redone, and
ignored.

DBMaker automatically takes a checkpoint when a database starts or terminates when

performing an online backup, or when the Journal is full. This may require a
significant amount of time to complete, depending on the size and number of
transactions since the last checkpoint. Any transactions that are active when an

automatic checkpoint occurs must wait until the checkpoint operation completes.
DBMaker will also abort the current transaction if the Journal is full and issuing a
checkpoint cannot reclaim enough Journal space to complete the transaction. In this

situation, redo all commands in the aborted transaction.

To avoid any unnecessary delays in transaction processing, periodically take manual
checkpoints using the CHECKPOINT command. Periodic manual checkpoints

reduce the amount of time required to start, terminate, and back up a database, time
transactions wait for checkpoint operations to complete, and the possibility of a full
Journal. The optimal time interval between manual checkpoints depends on the

activity frequency in the database.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-71

CHECKPOINT

Figure 3-28 CHECKPOINT syntax

 Example

The following example forces the system to take a checkpoint.
CHECKPOINT

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-72

3.25 CLOSE DATABASE LINK
The CLOSE DATABASE LINK command closes links to a remote database. Use this
command to close a single link, or multiple links at the same time. Any user with an

active link to a remote database can execute the CLOSE DATABASE LINK
command.

A database link creates a connection to a remote database, providing access to remote

data from the local database. Links provide additional security information. Links
enable a user to connect to a remote database with a different user name Alternately,
use the public link to connect to a remote database without an account.

When executing the CLOSE DATABASE LINK command and specifying a link
name, DBMaker closes the link to the remote database if it no active transactions
exist. When executing the CLOSE DATABASE LINK command and specifying a

remote database, DBMaker closes all links that connect to the remote database. If a
link has an active transaction, it remains open and DBMaker returns an error. Wait
until the transaction has finished and retry closing the link.

The NONACTIVE keyword closes all links to a remote database that are not being
used by an active transaction. If a transaction is using a link when you execute the
CLOSE DATABASE LINK command using the NONACTIVE keyword, the link

remains open. To close this link, wait until the transaction is finished and try closing
it again.

The ALL keyword closes all links to a remote database. If a transaction is using a link

when you execute the CLOSE DATABASE LINK command using the ALL keyword,
the link remains open and DBMaker returns an error. To close this link, wait until
the transaction is finished.

link_name................Name of the link to a remote database to close

remote_database_name…Name of the remote database to close all links to

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-73

CLOSE DATABASE LINK
remote_database_name

NONACTIVE

link_name

ALL

Figure 3-29 CLOSE DATABASE LINK syntax

 Example 1

The following closes the FieldLink.
CLOSE DATABASE LINK FieldLink

 Example 2

The following closes all links to the remote database identified in the local
dmconfig.ini file as FieldOffice.
CLOSE DATABASE LINK FieldOffice

 Example 3

The following closes all links to not being used by an active transaction.
CLOSE DATABASE LINK NONACTIVE

 Example 4

The following closes all links unless a link is being used by an active transaction,
DBMaker will return an error and the link will remain open.
CLOSE DATABASE LINK ALL

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-74

3.26 COMMIT WORK
The COMMIT WORK command commits the current transaction. DBMaker
automatically starts a new transaction after execution of the COMMIT WORK

command. Any user with CONNECT or higher security privileges can execute the
COMMIT WORK command.

A transaction, traditionally defined as a logical unit of work, or one or more

operations on a database that need to complete together in order to leave the database
in a consistent state. Transactions are self-contained and must either complete
successfully, change the data or fail, and leave the data unchanged.

For example, suppose you store two different kinds of information in the database
records of shipments sent to customers and records of items currently in stock,
including quantity of items. When an item ships to a customer, the item and the

quantity shipped are added to the shipment list. The quantity shipped must also be
subtracted from the items currently in stock. If both of these operations are not
completed together as a logical unit of work, the database will be in an inconsistent

state. The quantity of items in stock will be too high; items shipped and not
subtracted from items in stock, or too low; items subtracted from items in stock and
not shipped. Both of these operations together make up a single transaction, and must

complete successfully or both will fail.

If a transaction completes successfully and changes the data, it has been committed. If
a transaction fails and leaves the data unchanged, it has been rolled back.

When executing the COMMIT WORK command, DBMaker will write all changes
made by commands in the current transaction to the database. The COMMIT
WORK command only writes changes for the current transaction. The COMMIT

WORK command is not required if the connection to a database is running in
AUTOCOMMIT mode.

AUTOCOMMIT mode controls when DBMaker will commit a transaction. When

AUTOCOMMIT mode is on, each command is treated as a separate transaction.
Pressing the Enter key to execute a command automatically commits the command if
it completes successfully, or rolls it back if an error occurs during execution. When

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-75

AUTOCOMMIT mode is OFF, all commands between successive COMMIT
WORK commands form a single transaction. Executing the COMMIT WORK

command commits any changes made in the transaction, and executing the
ROLLBACK WORK command rolls back all changes.

In the event of a database crash, DBMaker will automatically roll back any

transactions that have not been committed. If the changes made in the rolled back
transactions reflected in the database, redo all commands in these transactions when
the database restarts.

COMMIT

WORK

Figure 3-30 COMMIT WORK syntax

 Example

The following example commits the changes made by all commands executed between
the first and second COMMIT WORK commands with AUTOCOMMIT mode
turned off.
COMMIT WORK
 ...
 SQL Command
 SQL Command
 ...
COMMIT WORK

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-76

3.27 CREATE COMMAND
The CREATE COMMAND creates a new stored command. Use stored commands
to quickly and conveniently execute frequently used SQL data-manipulation

statements. To execute the CREATE COMMAND, only users with the RESOURCE
or higher security privileges, and all security and object privileges necessary to execute
the SQL statement may use this command.

A stored command is a compiled SQL data-manipulation statement permanently
stored in the database in executable format. Repeatedly execute the stored command
without waiting for DBMaker to compile and optimize the command. Stored

commands are similar to stored procedures except; they can only contain a single
command and cannot contain program logic.

When creating a stored command, specify the command name and a valid SQL data-

manipulation statement of SELECT, INSERT, UPDATE, or DELETE. Use host
variables as placeholders for column values in the SQL statement. This permits
assigning actual values to the column when executing he command. To use host

variables in a stored command, replace any data or column value with a question mark
(?).

When executing a stored command that has host variables, use result constants from

built-in functions, the NULL keyword, the DEFAULT keyword, or another host
variable. Only use built-in functions that have no argument, such as RAND(), PI(),
CURDATE(), and NOW(), when providing a value for a host variable. To use

NULL value for the host variable, the value represented by the host variable must be
capable of accepting the NULL values. The number of parameters provided when
executing a stored command must equal the number of host variables in the

command definition.

When dropping a table or a column that is referenced by a stored command or
altering a table and modify the column definition using the BEFORE and AFTER

keywords, the stored command becomes invalid and cannot be used again. Altering a
table and adding a column without using the BEFORE and AFTER keywords will

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-77

have no impact on a stored command. Drop an invalid stored command to remove it
from the database.

Stored command names must be unique in the database. Stored command names
have a maximum length of thirty two characters, and may contain numbers, letters,
the underscore character, and the $ and # symbols. The first character may not be a

number.

command_nameName of the new stored command to create

select_statementA valid SELECT statement

insert_statementA valid INSERT statement

update_statement......A valid UPDATE statement

delete_statementA valid DELETE statement

CREATE COMMAND command_name AS

select_statement

update_statement
insert_statement

delete_statement

Figure 3-31 CREATE COMMAND syntax

 Example 1

The following creates a stored command named sc1 and selects all employees in the

Employees table whose last name begins with the letter ‘A’.
CREATE COMMAND sc1 AS SELECT * FROM Employees WHERE LastName LIKE ‘A%’

 Example 2

The following creates a stored command named sc2 that uses host variables to update
the Manager column in the Employees table.
CREATE COMMAND sc2 AS UPDATE Employees SET Manager = ? WHERE Manager = ?

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-78

3.28 CREATE DATABASE LINK
The CREATE DATABASE LINK command creates a new public or private link to a
remote database. Database links permits a user to access objects in remote databases

the same way as objects a local database. Only a DBA or SYSADM may execute the
CREATE DATABASE LINK command to create a public link to a database. Only
users with CONNECT or higher security privileges may execute the CREATE

DATABASE LINK command to create a private link to a database.

A database link creates a connection to a remote database, providing access to remote
data a local database. Although you can directly identify remote databases, links

provide additional benefits since they also contain security information. This permits
connecting to a remote database with a different user name or an account using a
public link.

Provide the link name and the remote database name when creating a database link.
The dmconfig.ini file for both the local and remote database must contain a database
configuration section for the opposite database. This database configuration section

must contain the IP address and the port number of the opposite database server.
Enter the IP address using the DB_SVADR keyword and the port number using the
DB_PTNUM keyword.

The PUBLIC/PRIVATE keywords are optional. These keywords specify the type of
database link to create, public or private. Public links are available to all users in a
database. Private links are available only to the user that creates them. Only a DBA or

SYSADM can create a public database link, while any user can create a private
database link. If both a public and private link exists with the same name, DBMaker
uses the private link instead of the public link. DBMaker creates a private link by

default.

The IDENTIFIED BY keywords are optional. This keyword specifies the user name
and password to use when connecting to the remote database. The user name

provided must be an existing user in the remote database with the CONNECT or
higher security privileges. When the link is used to connect to the remote database,
the operations a user can perform depend on the security and object privileges granted

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-79

to. If a user name is not specified when connecting to the remote database, DBMaker
uses the current user name in the local database.

Link names have a maximum length of thirty two characters, and may contain
numbers, letters, the underscore character, and the symbols $ and #. The first
character may not be a number.

link_nameName of the link to create to a remote database

remote_db_name......Name of the remote database to connect to

user_nameName of a user in the remote database with CONNECT or

higher security privileges

passwordPassword of the user in the remote database

CREATE link_nameDATABASE LINK

user_nameIDENTIFIED BY
password

CONNECT TO remote_db_name

PRIVATE

PUBLIC

Figure 3-32 CREATE DATABASE LINK syntax

 Example 1

The following example creates a public database link named FieldLink to the remote
FieldOffice database. The user creating the link must have DBA or SYSADM security

privileges in the local database and must have the same user name in both the local
and remote databases. Using this link automatically connects the user to the remote

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-80

database with the same user name as the link creator. It provides the security and
object privileges granted to this user in the remote database.
CREATE PUBLIC LINK FieldLink CONNECT TO FieldOffice

 Example 2

The following example creates a public database link named FieldLink to the remote

FieldOffice database. The user creating the link must have DBA or SYSADM security
privileges in the local database. Using this link automatically connects the user to the
remote database with the user name LinkUser and password dil3ryx9. It provides the

security and object privileges granted to this user.
CREATE PUBLIC LINK FieldLink CONNECT TO FieldOffice
 IDENTIFIED BY LinkUser dil3ryx9

 Example 3

The following creates a private database link named FieldLink to the remote
FieldOffice database. The user creating the link must the same user name in both the
local and remote databases. Using this link automatically connects the user to the

remote database with the same user name as the local database. It uses the security and
object privileges granted to the user account in the remote database. If there is a public
link with the same name, the private link is used instead.
CREATE PRIVATE LINK FieldLink CONNECT TO FieldOffice

 Example 4

T he following creates a private database link named FieldLink to the remote

FieldOffice database. Using this link automatically connects a user to the remote
database with the user name Vivian and password a23456. It provides the security
and object privileges granted to this user. This is useful if you have a different user

name in the local and remote databases. If there is a public link with the same name,
the private link is used instead.
CREATE PRIVATE LINK FieldLink CONNECT TO FieldOffice
 IDENTIFIED BY Vivian a23456

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-81

3.29 CREATE DOMAIN
The CREATE DOMAIN command creates a new domain with an optional default
value and optional integrity constraints. Any user with RESOURCE or higher

security privileges can execute the CREATE DOMAIN command.

A domain is a user-defined data type that brings together a data type, a default value,
and a value constraint. Use a domain in the column definition of CREATE TABLE

or ALTER TABLE ADD COLUMN statements in place of a data type to define the
set of valid values entered in the column.

For example, create a domain based on the DATE data type with a default value of

NOW() that only accepts dates between January 1st, 1900 and today. Any column
created using this domain will inherit these characteristics, allowing consistent
definitions for columns that contain the same data type without specifying default

values and value constraints each time.

When creating a domain, specify the data type and optionally specify a default value
and a value constraint. Any data type may be used that DBMaker supports when

creating a domain, except the SERIAL data type. Specifies default values and value
constraints using the DEFAULT and CHECK keywords.

The DEFAULT keyword is optional. This keyword specifies a default value inserted

into a column if no value is provided when inserting a new row. Constants, results
from built-in functions, or the NULL keyword may be used as the default value. Only
use built-in functions that have no argument like PI(), NOW(), or USER(), when

creating a domain. If using the NULL keyword as the DEFAULT value, the column
cannot be defined with the NOT NULL keyword.

The CHECK keyword is optional. This keyword is used to specify a range of

acceptable values (constraints) that may be entered in a column. The expression that
specifies the range of acceptable values may be any expression that evaluates to true or
false. The VALUE keyword may be used in the expression in conjunction with the

CHECK keyword to represent the value of the column. If an SQL statement does not
satisfy the CHECK conditions, it will not be processed.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-82

Specifying the default values and value constraints by using domains, gives the same
results as specifying them in a standard column definition. However, default values

provided in the column definition will override the default value of the domain and
the column definition can add value constraints in addition to those of the domain.

Ensure the value constraints specified in a column definition do not conflict with the

value constraints provided by the domain. DBMaker does not check for conflicting
constraints when creating a column based on a domain. The conflicting constraints
may prevent inserting or updating some or all of the data.

Domain names have a maximum length of thirty two characters, and may contain
numbers, letters, the underscore character, and the symbols $ and #. The first
character may not be a number.

NOTE Only functions that do not take an argument may be used when creating domains.

domain_nameName of the domain that to create

data_typeData type to use for the domain

literalLiteral value to be used if no value is inserted

constant....................Constant value to be used if no value is inserted

function_nameBuilt-in function to be used if no value if inserted

constraint_nameName of constraint to be applied to domain

boolean_expressionAny expression that evaluates to true or false

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-83

CREATE DOMAIN domain_name
AS

data_type

DEFAULT
constant

NULL
function_name

literal
CONSTRAINT constraint_name

CONSTRAINT constraint_name CHECK boolean_expression

Figure 3-33 CREATE DOMAIN syntax

 Example 1

The following creates a domain named AllNum based on the INTEGER data type.
CREATE DOMAIN AllNum AS INTEGER

 Example 2

The following creates a domain named AllNum based on the INTEGER data type
that has a default value of 0.
CREATE DOMAIN AllNum AS INTEGER DEFAULT 0

 Example 3

The following creates a domain named AllNum based on the INTEGER data type,
which does not allow NULL values.
CREATE DOMAIN AllNum AS INTEGER CHECK VALUE IS NOT NULL

 Example 4

The following creates a domain named PosNum based on the INTEGER data type,
which only allows values between 0 and 100, and has a default value of 0.
CREATE DOMAIN PosNum AS INTEGER DEFAULT 0 CHECK VALUE >= 0

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-84

 Example 5

The following creates a domain named ValidDate based on the DATE data type,
which uses the NOW() function as both the default value and one of the value

constraints.
CREATE DOMAIN ValidDate AS DATE
 DEFAULT NOW()
 CHECK VALUE > '01/01/1900' AND VALUE <= NOW()

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-85

3.30 CREATE GROUP
The CREATE GROUP command creates a new user group. Users in this group gain
all object privileges granted to the group. Only a SYSADM or DBA can execute the

CREATE GROUP command.

Groups simplify the management of object privileges in a database with a large
number of users. Use a group to collect all users that require the same object

privileges. Any object privileges granted for the group are automatically granted to all
members in the group. After creating a new group, add users to the group using the
ADD TO GROUP command.

DBMaker also provides support for nested groups. Add a group as a member in
another group, provided there are no circular references from the group being added.
For example, you cannot add group1 as a member of group2 if group2 is already a

member of group1, and cannot add group 1 as a member of itself. Add a group, as a
member in another group is the same as adding a user.

The group name cannot be SYSTEM, PUBLIC, or GROUP, or the same as any

existing user or group names. Group names have a maximum length of thirty-two
characters, and may contain letters, numbers, the underscore character, and the
symbols $ and #. The first character may not be a number.

group_nameName of the new group to create

CREATE GROUP group_name

Figure 3-34 CREATE GROUP syntax

 Example

The following creates a new group named Employees.
CREATE GROUP Employees

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-86

3.31 CREATE HASH INDEX
Hash indexes can only be created on memory tables. The benefit of a hash index is
that users have very quick access to data stored in the hash index. Hash indexes also

improve equal expression and equal join performance. To create a hash index on a
table users can use the CREATE HASH INDEX index_name ON table_name
(column_name, …) [bucket n]; where index name is the name of the hash index being

created, table name is the name of the memory table, column name is the name of the
column in the memory table being effected (This value cannot specify asc/desc
columns.) and bucket n sets the array size for the hash table being created.

index_name..............Name of the new hash index to create

table_name...............Name of the memory table you are creating the index on

column_nameName of the column(s) created on the hash index

bucket nsets the array size

ON table_name

,

column_name

()

CREATE index_nameINDEXHASH

[bucket n]

Figure 3-35 CREATE HASH INDEX syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-87

 Example

With the memory table created, a hash index inx1, can be made on memory table t1,
using columns c1 and c2 with an array size of 31.

create hash index idx1 on t1 (c1, c2) bucket 31;

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-88

3.32 CREATE INDEX
The CREATE INDEX command creates a new index on an existing table. Use
indexes to increase the performance of queries by quickly locating specific rows in a

table without examining the entire table. Only the table owner, a DBA, or a user with
the INDEX privilege may execute the CREATE INDEX command on a table.

An index is a mechanism that provides fast access to specific rows in a table based on

the values of one or more columns from the table (known as the key). Indexes contain
the same data as the key columns, but the data is structured and sorted to make
retrieval much faster. Once an index is created on a table, its operation is transparent

to users of the database. The DBMS uses the index to improve query performance
whenever possible.

When creating an index specify the index name, the name of the table creating the

index on, and the name of the key columns in the table. Create an index on one or
more columns, up to a maximum of 16 columns. Although a table may have up to
252 columns, indexes are limited to the first 127 columns. DBMaker also limits

indexes to a maximum record size of 1024 bytes.

The UNIQUE keyword is optional. This keyword specifies whether an index is
unique. In a unique index, no more than one row can have the same key value and

cannot contain duplicate values. Each NULL value in an index is treated, as a unique
value making it possible to have multiple rows with NULL values in a unique index.
When creating an index on a non-empty table, DBMaker checks whether all existing

keys are distinct. If duplicate keys exist, DBMaker returns an error message and does
not create the index. Whenever you insert or update a record in a table that has a
unique index, DBMaker checks to ensure there is no existing record that already has

the same key values as the new or updated record. DBMaker does not create unique
indexes by default. When creating a unique index, specify using the UNIQUE
keyword.

The ASC/DESC keywords are optional. These keywords specify whether the sort
order of the index is ascending or descending. You can specify the sort order on a
column-by-column basis, so it is possible to have some index columns in ascending

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-89

order while others are in descending order. The sort order of an index may affect the
order of query output in some cases. If an index is in descending order, it is possible

the output will appear in descending order even though you did not specify this in the
query. If have a specific sort order for a query, specify it using the ORDER BY clause.
The default sort order for columns in an index is ASC.

The FILLFACTOR keyword is optional. This keyword specifies the percentage of an
index page that can be filled. This allows the database to optimize the use of index
pages by reserving space for updates for existing records. The number parameter can

have a value from 1 to 100, which represents a fillfactor of 1% to 100%. If updating a
table often, after creating an index on it, set a low fillfactor value (such as 50) to leave
free space for inserting new key values. If you plan to update the table infrequently,

leave the fillfactor at the default value of 100.

When you load data into a table, DBMaker will update all indexes on that table each
time a new record is inserted. For this reason, try to load all data before creating an

index on a table. It is much more efficient to create an index after loading a large
amount of data than to create an index before loading the data.

Index names must be unique for each table. Index names have a maximum length of

thirty two characters, and may contain numbers, letters, the underscore character, and
the symbols $ and #. The first character may not be a number.

Indexes can also be created in different tablespaces from where their master tables

reside.

index_nameName of the new index to create

table_nameName of the table you are creating the index on

column_nameName of the column(s) created on the index

number....................Value to use for the fillfactor

tablespace_name.......Name of the tablespace where the index is created

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-90

ON table_name

column_name
DESC
ASC

,

()

CREATE index_nameINDEX
UNIQUE

FILLFACTOR numberIN tablespace_name

Figure 3-36 CREATE INDEX syntax

 Example 1

The following creates an index named NameIndex on the FirstName and LastName
columns of the Employees table; the index is not unique and may contain duplicate
values.
CREATE INDEX NameIndex ON Employees (FirstName, LastName)

 Example 2

The following creates an index named NameIndex on the FirstName and LastName

columns of the Employees table, both sorted in descending order.
CREATE INDEX NameIndex ON Employees (FirstName DESC, LastName DESC)

 Example 3

The following example creates a unique index named ClassIndex on the Course and
Section columns of the Classes table; the index may not contain duplicate values.
CREATE UNIQUE INDEX ClassIndex ON Classes (Course, Section)

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-91

 Example 4

The following creates a unique index named ClassIndex on the Course and Section
columns of the Classes table; the index may not contain duplicate values and has a

fillfactor of 80.
CREATE UNIQUE INDEX ClassIndex ON Classes (Course, Section) FILLFACTOR 80

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-92

3.33 CREATE REPLICATION
The CREATE REPLICATION command generates a new table replication for a
table. Replications, synonyms, or views may not be created on a temporary table.

Only the table owner, a DBA or SYSADM may execute the CREATE
REPLICATION command

A table replication creates a full or partial copy of a table in a remote location. This

allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the databases in other locations. This way each database
can service data requests immediately and efficiently, without having to go to another

machine over a slower network connection. This is not the same as backing up the
database to a remote location, since the synchronization is done on a transaction-by-
transaction basis by the DBMS itself, without any intervention from users.

There are two primary types of table replication, synchronous and asynchronous.
Synchronous table replication modifies the remote table at the same time it modifies
the local table, while asynchronous table replication stores changes to the local table

and modifies the remote table based on a schedule. Use the CREATE
REPLICATION command to create synchronous and asynchronous table
replications.

Synchronous table replication in DBMaker uses a global transaction model, in which
the replication of data to the remote table is treated as an integral part of the local
transaction. This means that if the replication of data to the remote database fails, the

transaction on the local table will also fail.

Asynchronous table replication in DBMaker uses transaction logs to replicate data to
the remote table. Modifications to the local table are stored in the transaction log, and

are replicated to the remote table according to a predefined schedule. Using the
transaction log enables DBMaker to treat the local transaction and the remote
transaction independently, permitting updates to local tables normally even if the

remote connection is not available. This allows asynchronous table replications to
tolerate network and remote database failures, since the replication will keep trying
until any failures are corrected.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-93

When creating a table replication specify the replication name, the local table name,
and the names of the remote destination tables. Both the local table and the remote

tables must already exist in their respective databases. DBMaker will automatically
drop any replications when dropping a table.

DBMaker will replicate the entire table unless using a column list. When replicating

an entire table without a column list, the columns in the local table and corresponding
columns in the remote table must have the same names and data types. Columns in
the local table (from left to right) will replicate to the corresponding columns named

in the column list for the remote table. Specify which columns in the local table
correspond to columns in the remote table by providing a column list for both the
local and remote tables. In all cases, include the primary key columns in the

replication and the number and data types of primary key columns in both tables
must match.

DBMaker does not identify replications using fully qualified names, but associates

them with tables instead. All replication names on the same table must be unique.
Synchronous table replications operate with the same security and object privileges as
the creator, unless the remote table is specified using links. In this case, the replication

operates with the same security and object privileges as the link. Asynchronous
replications operate with the same security and object privileges as the user specified in
the IDENTIFIED BY clause of the CREATE SCHEDULE command that is

associated with the database containing the remote table.

The ASYNC keyword is optional. This keyword specifies that the replication being
created is an asynchronous table replication. Before creating an asynchronous table

replication, create a replication schedule for the remote database that contains the
remote table. If this keyword is not used, DBMaker creates a synchronous table
replication by default.

The “WHERE” keyword is an optional clause which specifies the search condition to
be used when replicating data to a remote table. DBMaker only replicates rows that
satisfy the search condition. See the WHERE clause in the description of the

SELECT command for more information.

The CLEAR DATA/FLUSH DATA/CLEAR AND FLUSH DATA keywords are
optional. These keywords specify the operations that take place when creating a

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-94

replication. The CLEAR DATA keywords delete all data from the remote table when
generating the replication. The FLUSH DATA keywords copy all data that matches a

search condition into the remote table. The CLEAR AND FLUSH DATA keywords
clear all data from the remote table, and then copy all data that matches a search
condition into the remote table.

The NO CASCADE keywords are optional. It takes action only when the
replication’s type is asynchronous. The keyword specifies if it is a cascade replication.
Let us use an example to describe cascade replications. Commands flow in most

organizations, from the highest level to the basic level. This is similar to replicating
data from A to B, and then to C. This is a typical kind of cascade replication. The no-
cascade model replicates data to B and B replicates data to A. If your data model

works like this, you can turn on the NO CASCADE option. The default specification
is CASCADE.

If you drop a table or a column that is referenced by an asynchronous table

replication, alter a table and modify the column definition, or alter a table and add a
column using the BEFORE and AFTER keywords, the synchronous replication
becomes invalid and cannot be used again. Altering a table and adding a column

without using the BEFORE and AFTER keywords has no impact on a synchronous
replication. Asynchronous table replications are not affected when you alter a table.
Drop an invalid replication to remove it from the database. Any replications created

on a table are dropped automatically when dropping a table.

Replication names have a maximum length of thirty two characters, and may contain
numbers, letters, the underscore character, and the symbols $ and #. The first

character may not be a number.

replication_nameName of the table replication to create

local_table_nameName of the local table to replicate

column_name1. Name of a column in the local table

................................2. Name of a column in the remote table

search_conditionConditions a row must meet to be replicated

remote_table_name ...Name of the table in the remote database

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-95

local_table_name

REPLICATE TO

CREATE

WITH PRIMARY AS

column_name

,
)(

WHERE search_condition

,

remote_table_name

column_name

,
)(

CLEAR DATA

FLUSH DATA

CLEAR AND FLUSH DATA

ASYNC
REPLICATION replication_name

Figure 3-37 CREATE REPLICATION syntax

 Example 1

The following creates a replication named EmpRep for the local table named
Employees. The remote database is identified in the database configuration section

named FieldOffice in the local dmconfig.ini file. The remote table is also named
Employees and all column names and data types in both tables are the same.
CREATE REPLICATION EmpRep WITH PRIMARY AS Employees
 REPLICATE TO FieldOffice:Employees

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-96

 Example 2

The following is similar to the above example, but all data in the remote table is
deleted and any data in the local table is replicated to the remote table.
CREATE REPLICATION EmpRep WITH PRIMARY AS Employees
 REPLICATE TO FieldOffice:Employees
 CLEAR AND FLUSH DATA

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-97

3.34 CREATE SCHEDULE
The CREATE SCHEDULE command creates a replication schedule for
asynchronous table replications. Synchronous table replications do not use schedules,

so the CREATE SCHEDULE command has no effect on a synchronous table
replication. Only, a DBA or SYSADM may execute the CREATE SCHEDULE
command.

A table replication creates a full or partial copy of a table in a remote location. This
allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the databases in other locations. This way each database

can service data requests immediately and efficiently, without having to go to another
machine over a slower network connection. This is not the same as backing up the
database to a remote location, since the synchronization is done on a transaction-by-

transaction basis by the DBMS itself, without any intervention from users.

The NO CASCADE keywords are optional. It takes action only when the replication
type is asynchronous. The keyword specifies cascade replication. Let us use an example

to describe cascade replications. Commands flow in most organizations from the
highest level to the basic level. This is similar to replicating data from A to B, and then
to C. This is typical cascade replication. The no-cascade model replicates data to B

and B replicates data to A. If your data model works like this, you can turn on the
NO CASCADE option. The default specification is CASCADE.

DBMaker not only allows asynchronous table replication to other DBMaker

databases, but also to Oracle, SYBASE, INFORMIX, and Microsoft SQL Server
databases. This type of replication is known as heterogeneous table replication.
Heterogeneous table replication allows DBMaker to coexist with other databases in a

heterogeneous environment. Since DBMaker needs to preprocess the replicated data
before sending it to a third-party remote database, specify the type of DBMS
replicating to when creating a schedule in a heterogeneous environment. Do this with

the ORACLE, SYBASE, INFORMIX, and MICROSOFT keywords, where
ORACLE indicates a remote Oracle database, SYBASE indicated a remote SYBASE
database, INFORMIX indicated a remote INFORMIX database, and MICROSOFT

represents a remote Microsoft SQL Server database.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-98

When creating a heterogeneous table replication, the CLEAR DATA, FLUSH
DATA, or CLEAR AND FLUSH DATA keywords cannot be used. Manually delete

or insert data in the third-party remote database to put the table in its initial state
before the replication begins. In addition, performing schema checking on the third-
party remote database cannot be done. Check schema to ensure that columns and data

types in the remote table are compatible with the columns and data types in the local
table. When creating a schedule for a heterogeneous table replication, use the WITH
NO CHECK keywords to prevent DBMaker from performing schema checking. (See

the description for the WITH NO CHECK keyword later in this section.) DBMaker
makes use of the ODBC Driver Manager to perform heterogeneous table replication;
the DBMaker server must be located on Windows NT. The third-party remote

databases may be located on either Windows or UNIX platforms.

BEGIN AT specifies the date and time of the first replication for an asynchronous
table replication. The date must be in yyyy/mm/dd format, where yyyy is the year in

the range 1970 to 2038, mm is the month in the range 01 to 12, and dd is the date in
the range 01 to 31. The time must be in hh:mm:ss format, where hh is the hour in the
range 00 to 23, mm is the number of minutes in the range 00 to 59, and ss is the

number of seconds in the range 00 to 59. The value for the year must be in the range
1970 to 2038. Include the date and time when using the BEGIN AT keyword. If you
change the date or time of the first replication to a date in the future after a replication

is already running, any table data that has not been replicated to the remote database
will wait until the new time for replication.

The EVERY command defines the interval between successive replications for an

asynchronous table replication. The interval may be provided as
hours/minutes/seconds, days, or a combination of both. To specify the number of
hours/minutes/seconds, use EVERY hh:mm:ss. To specify the number of days, use

EVERY d DAYS, where d is the number of days in the range 1 to 365. To specify a
combination of both, use EVERY d DAYS AND hh:mm:ss.

RETRY indicates how many times DBMaker should try replicating table data if there

is an error while trying to process a single SQL statement, such as a lock time-out
error, or rollback to save point due to a full Journal. To specify the number of times
to try, use RETRY n TIMES, where n is the number of times to try in the range 0 to

2147483647. The default value is 0. DBMaker waits until the next scheduled

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-99

replication to send any table data that was not replicated successfully when not using
the RETRY keyword and an error occurs while processing a statement, encounters a

network error, remote database error, or any error, which requires a transaction
rollback.

The AFTER keyword is optional. This keyword is used together with the RETRY

keyword to specify the interval between successive retries in the event of an error. To
specify the interval use the AFTER s SECONDS, where s is the number of seconds in
the range 0 to 2147483647. The default value is 5.

The STOP ON ERROR keywords are optional. These keywords specify the action
DBMaker should take when data in the remote database has been updated in such a
way that the replication could not take place. This could include situations where

DBMaker tries to delete a previously deleted record from the remote table or tries to
insert a record into the remote table that already exists. DBMaker provides two
options when encountering this type of error, STOP ON ERROR and IGNORE ON

ERROR. STOP ON ERROR indicates DBMaker will stop replicating data when an
error of this type occurs, and IGNORE ON ERROR indicates that DBMaker will
ignore the data that caused the error and continue replicating the remaining data. The

default behavior is IGNORE.

The WITH NO CHECK keywords are optional. Since DBMaker cannot currently
perform schema checking on a third-party database, use this keyword when creating a

heterogeneous table replication. When using the WITH NO CHECK keywords,
users must take responsibility for schema checking, and ensure that columns and data
types in the remote table are compatible with the columns and data types in the local

table. The WITH NO CHECK keywords are not necessary if performing a
homogeneous table replication (from one DBMaker database to another DBMaker
database).

The IDENTIFIED BY keywords specify the user name and password to use when
connecting to the remote database. The user name provided must be an existing user
in the remote database with sufficient privileges on the remote table to perform

INSERT, DELETE, and UPDATE operations. When replicating table data to the
remote database, the operations you can perform on the remote table depend on the
security and object privileges granted to that user.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-100

remote_database_name…Name of the table in the remote database to create the
replication schedule for; cannot be a database link.

yyyy/mm/ddDate to begin the replication on

hh:mm:ss1. Time to begin the replication

................................2. Time interval to replicate at

d..............................Day interval to replicate to the remote table at

n..............................Number of times to retry in the event of a failure

s...............................Number of seconds to wait before retrying in the event of a

 failure

user_nameUser name of the account in the remote database

password...................Password of the account in the remote database

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-101

CREATE SCHEDULE FOR REPLICATION TO remote_database_name

BEGIN AT yyyy/mm/dd hh:mm:ss

EVERY d DAYS AND hh:mm:ss

EVERY d DAYS

EVERY hh:mm:ss

STOP ON ERROR

RETRY n TIMES
AFTER s SECONDS

,

user_nameIDENTIFIED BY
password

WITH NO CHECK

()
ORACLE

MICROSOFT

Figure 3-38 CREATE SCHEDULE syntax

 Example 1

The following creates a replication schedule for the asynchronous replication named
EmpRep. The date and time of the first replication is set to a new date in the future,

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-102

with a replication interval of 7 days and 12 hours, the date is in the future; any table
data that has not been replicated will wait until the new date before it is replicated.
CREATE SCHEDULE FOR REPLICATION TO EmpRep
 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00

 Example 2

The following creates the same schedule as the example above and also sets the

number of times to retry after an error, a lock time-out, or a rollback to save point due
to a full Journal to 3 times with an interval of 5 seconds between successive tries.
CREATE SCHEDULE FOR REPLICATION TO EmpRep
 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00
 RETRY 3 TIMES AFTER 5 SECONDS

 Example 3

The following creates the same schedule as the example above and sets the action
DBMaker should take when data in the remote database has been updated in such a

way that the replication cannot take place to STOP:
CREATE SCHEDULE FOR REPLICATION TO EmpRep
 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00
 RETRY 3 TIMES AFTER 5 SECONDS
 STOP ON ERROR

 Example 4

The following creates the same schedule as the example above and sets the user name
and password to use when connecting to the remote database to RepUser and
rdejpe88.
CREATE SCHEDULE FOR REPLICATION TO EmpRep
 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00
 RETRY 3 TIMES AFTER 5 SECONDS
 STOP ON ERROR
 IDENTIFIED BY RepUser rdejpe88

 Example 5

This is a heterogeneous table replication; specify the WITH NO CHECK keywords

to prevent DBMaker from performing schema checking on the remote database.
Ensure that columns and data types in the remote table are compatible with the

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-103

columns and data types in the local table the following creates the same schedule as
the example above and uses the ORACLE keyword to indicate that the remote table is

in an Oracle 8.0 database.
CREATE SCHEDULE FOR REPLICATION TO EmpRep (ORACLE)
 BEGIN AT 2001/10/10 00:00:00 EVERY 7 DAYS AND 12:00:00
 RETRY 3 TIMES AFTER 5 SECONDS
 STOP ON ERROR
 WITH NO CHECK
 IDENTIFIED BY RepUser rdejpe88

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-104

3.35 CREATE SCHEMA
The CREATE SCHEMA command creates and enters a new schema into the current
database system. A schema is essentially a namespace: it contains named objects, also

known as schema objects, (tables, view, index, synonym, trigger, domain, command,
procedure) whose names may duplicate those of other objects existing in other
schemas. Schema objects are accessed by qualifying their names with the schema name

as a prefix.

Only users with RESOUCE privileges or above can create a schema. If the user_name
is omitted when creating a schema, the schema creator becomes the default user. Only

users with DBA authority may create schemas owned by users other than themselves.

When a user is granted connect privileges to DBMaker, DBMaker will create a default
schema for the user. The schema name will be the user’s name. The schema name

must be unique. If a schema in the database, with the same name, already exists an
error will be returned.

The owner of the schema is determined as follows:

• If an AUTHORIZATION clause is specified, the specified user-name is the
schema owner. If the schema-name is omitted, the specified user-name is used
as the schema name.

• If an AUTHORIZATION clause is not specified, the user that issued the
CREATE SCHEMA statement is the schema owner.

CREATE SCHEMA schema_name

AUTHORIZATION schema_name

Figure 3-39 CREATE SCHEMA syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-105

 Example 1

A user YUBIN, with RESOURCE authority, creates schema ss1. YUBIN is the
default owner of the schema.
CREATE SCHEMA ss1

 Example 2

A user, with DBA authority, creates a schema with the user YUBIN as the owner.

YUBIN becomes the default schema name because no schema name was specified
when the schema was created.
CREATE SCHEMA AUTHORIZATION YUBIN

NOTE It is import to remember that when a user is granted connection status DBMaker
automatically creates a schema for the user with the schema name being the user’s
name. If a schema already exists in the database with the same name an error
message will be returned.

 Example 3

A user, with DBA authority, creates schema ss2 with the user YUBIN as the owner.
CREATE SCHEMA ss2 AUTHORIZATION YUBIN

 Example 4

A user, with DBA authority, creates schema inventory. The user then creates the

schema objects inventory.part and partind for the schema. The user then grants full
user authority to the user YUBIN on the table created. The user YUBIN does not
have any privileges on the schema inventory.
CREATE SCHEMA inventory;
CREATE TABLE inventory.part (partNo smallint not null, quantity int);
CREATE INDEX partind ON inventory.part (partNo);
GRANT ALL ON inventory.part TO YUBIN;

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-106

3.36 CREATE SYNONYM
The CREATE SYNONYM command creates a new synonym on an existing table or
view. You cannot create a synonym on a temporary table or on another synonym.

Only the table or view owner, a DBA or a SYSADM have the privileges to execute the
CREATE SYNONYM command on a table or view.

DBMaker normally identifies tables and views with fully qualified names that are a

composite of the owner name and object name. To help simplify statements that use
fully qualified table and view names, DBMaker provides synonyms.

A synonym is an alias that can be used for a table or view. It requires no storage space

other than its definition in the system catalog. Using synonyms, users can access a
table or view through the corresponding synonym without having to use the fully
qualified name.

Create more than one synonym for a table or view using unique synonym names. This
allows users to refer to synonym names without prefixing an owner name. If a user
owns a table with the same name as a synonym, DBMaker always uses the table and

ignores the synonym with the same name. To use the table referenced by the
synonym, provide the fully qualified name for that table. All synonyms on a table or
view are dropped automatically when dropping the referenced table or view.

Synonym names have a maximum length of thirty two characters, and may contain
numbers, letters, the underscore character, and the symbols $ and #. The first
character may not be a number.

synonym_nameName of the new synonym to create

table_name...............Name of the table to create the synonym on

view_nameName of the view to create the synonym on

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-107

CREATE SYNONYM synonym_name FOR
view_name

table_name

Figure 3-40 CREATE SYNONYM syntax

 Example 1

The following creates a synonym named AllEmp for the AllEmployees table owned
by User1; use the synonym AllEmp in place of the fully qualified table name
User1.AllEmployees in subsequent SQL statements.
CREATE SYNONYM AllEmp FOR User1.AllEmployees

 Example 2

The following creates a synonym named SalesEmp for the SalesEmployees view

owned by User2.;use the synonym SalesEmp in place of the fully qualified view name
User2.SalesEmployees in subsequent SQL statements.
CREATE SYNONYM SalesEmp FOR User2.SalesEmployees

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-108

3.37 CREATE TABLE
The CREATE TABLE command creates a new table. You should specify a tablespace
when creating the table. DBMaker will create a table in the system tablespace by

default. Any user with RESOURCE or higher security privileges can execute the
CREATE TABLE command.

Tables are the primary unit of data storage in a relational database, and any

information you enter in a database is stored in tables. Each table represents a single
type of real-world object and contains information on individual objects of that type.
These can be real objects, customers or products, and abstract objects, orders or

transactions. Each table in a database is given a unique name and this name normally
identifies the type of object stored in the table. Tables store the information about the
objects they represent in rows and columns.

Rows, also called records or tuples, contain information that defines a single type of
entity having common characteristics. Each row represents an individual occurrence of
that type of entity. In addition, are identified using one or more of the characteristics

of the entity. They do not have any particular order and there is no guarantee that the
rows will be listed in the same order twice.

Columns, also called fields or attributes, contain information that defines the

characteristics of an entity. Each column represents one characteristic or item of data
that is stored for each individual occurrence of an entity. They are identified using a
descriptive name and a data type. Each column is referenced using a unique column

name. Columns in a table can be rearranged without affecting SQL queries.

Ensure data integrity by applying constraints or rules. When creating a table, apply
domain and column integrity constraints on individual columns, and table integrity

constraints.

Domain constraints are defined as part of the domain definition and are applied to all
columns based on the domain. When inserting a new row or updating an existing

row, each domain constraint is evaluated. Domain constraints can include NULL/
NOT NULL constraints, default values, and CHECK constraints.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-109

Column constraints are defined on a specific column and do not affect other columns
in the same table. Whenever inserting a new row or updating an existing row, each

column constraint is evaluated. Column constraints can include NULL/ NOT NULL
constraints, default values, and CHECK constraints.

Table constraints are defined on a set of columns. Whenever inserting a new row or

updating an existing row, each table constraint is evaluated after, all domain and
column constraints are evaluated as true. Only after the table constraint is also
evaluated as true will the statement be processed. Table constraints can include

UNIQUE and CHECK constraints, primary keys, and foreign keys.

To create a table, provide at least the table name and column definitions. Tables must
have at least one column and can have as many as 252 columns, provided the total

size of the column does not exceed 3992 bytes.

DBMaker identifies each table by a unique combination of schema name and table
name, known as the fully qualified name. Table names have a maximum length of 32

characters, and may contain numbers, letters, the underscore character, and the
symbols $ and #. The first character may not be a number. Table names must be
unique among all tables in a database. Only users with DBA privileges can create a

table with another user's table schema name. The specified table schema name must
exist in the database. The default schema name is the creator of the table. Table names
are case-insensitive.

To specify a column definition, provide at least a column name and a data type or
domain. The syntax and usage of keywords used in column definitions are shown on
the following pages.

table_name……Name of the new table to create

column_definition……Definition for a column

primary_key_defintion…...Definition for a primary key

foreign_key_definition…...Definition for a foreign key

constraint_name.......……Name of the constraint to be applied to the table

tablespace_name……Name of the tablespace to create the table in

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-110

boolean_expressionExpression that evaluates true or false conditions

number1. Value to use for the fillfactor

LOCK MODE

TABLE

PAGE

ROW

table_nameTABLETEMPORARY
TEMPORARY LOCAL

FILLFACTOR number NO CACHE

(

IN tablespace_name

column_definition

,

,

foreign_key_definitionprimary_key_definition

CREATE

CONSTRAINT constraint_name

CONSTRAINT constraint_name CHECK boolean_expression
)

,

MEMORY

Figure 3-41 CREATE TABLE syntax

Column Definitions

DBMaker identifies columns in a table by a unique combination of owner name, table
name, and column name, known as the fully qualified name. Column names have a
maximum length of thirty-two characters, and may contain numbers, letters, the

underscore character, and the symbols $ and #. The first character may not be a

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-111

number. Column names must be unique among all columns in the same table.
Column names are case insensitive.

DBMaker supports the following data types: BINARY, CHAR, DATE, DECIMAL,
DOUBLE, FLOAT, FILE, INTEGER, BLOB, CLOB, OID, SERIAL,
SMALLLINT, TIME, TIMESTAMP, and VARCHAR.

Optionally, use a domain for a column instead of a data type. Domains are a
combination of data type, default value, and constraints that are applied to a column
when it is defined using a domain as the data type. See the column definition

DEFAULT and CHECK keywords below for a description of default values and
constraints. Default values and constraints provided in the column definition will
override those of the domain. Column definitions can also provide constraints in

addition to those of the domain.

The NULL/NOT NULL keywords are optional. These keywords specify whether a
column can contain a NULL value when inserting a new row. The NULL keyword

specifies that a column may contain an undefined value when a new row is inserted,
while the NOT NULL keyword specifies that a value must be provided when a new
row is inserted. The NULL/NOT NULL keyword, NULL is used by default.

The DEFAULT keyword is optional. This keyword is used to specify a default value
that will be inserted into a column if no value is provided when inserting a new row.
Constants, results from built-in functions, or the NULL keyword may be used as the

default value. You can only use built-in functions that have no argument like PI(),
NOW(), or USER(), when defining a column. If using the NULL keyword as the
DEFAULT value, the column cannot be defined with the NOT NULL keyword.

The CHECK keyword, in the column definition, is optional. This keyword is used to
specify a range of acceptable values that may be entered in a column. The expression
that specifies the range of acceptable values may be any expression that evaluates to

true or false. The VALUE keyword may be used in the expression in conjunction with
the CHECK keyword to represent the value of the column. If an SQL statement does
not satisfy the CHECK conditions, it will not be processed.

column_nameName of the column to create

data_typeName of the data type to use for the column

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-112

domain_nameName of the domain to use in place of a data type

literalA literal value to use if no value is inserted

constant....................Constant value to use if no value is inserted

function_nameBuilt-in function to use if no value is inserted

constraint_nameName of the constraint to be created

boolean_expressionExpression that evaluates true or false conditions

data_type

domain_name

NULL

NOT NULL
column_name

DEFAULT
constant

NULL
function_name

literal
CONSTRAINT constraint_name

CONSTRAINT constraint_name CHECK boolean_expression

Figure 3-42 Column Definitions syntax

Primary Key and Unique Definitions

A key is a column or combination of columns that help identify specific rows in a
table. The columns that make up a key are known as key columns. A unique key is a

key in which no two records have the same value or the key field.

A primary key is a key that uniquely identifies each row in a table. Without a primary
key, it is impossible to distinguish between specific rows in a table because rows may

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-113

contain duplicate values. The DBMS does not permit defining a primary key on
columns that contain duplicate values or to enter a duplicate value in a primary key

that already exists.

Primary keys ensure data integrity in a table by requiring unique key values in each
record of the primary key. This means columns in a primary key may not contain

duplicate or null values, define the key columns with the NOT NULL constraint.
Primary keys may be built on up to 16 columns, providing the size of the columns
does not exceed 1024 bytes.

Each table may only have one primary or unique key. A primary key cannot be
renamed. Instead, DBMaker automatically creates and maintains a unique, internally
managed index named PrimaryKey for the primary key in each table. Since DBMaker

builds an index on the primary key, it is not necessary to build another index on the
columns in the primary key to increase the performance of query operations.

constraint_name.......Name of the constraint to be created

column_nameName of the column to create the primary key on

column_name

,
()

CONSTRAINT constraint_name PRIMARY KEY

CONSTRAINT constraint_name UNIQUE

Figure 3-43 Primary Key and Unique Definitions syntax

Foreign Key Definitions

A foreign key is a key that corresponds to the primary key or a unique index of
another table. This establishes a parent-child relationship between two tables that is
represented by common data values stored in the tables. The parent table contains the

primary key or unique index, and the child table contains the foreign key whose
columns correspond to columns in the parent table.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-114

Referential integrity ensures that every value in a child key has a corresponding value
in the parent key. Referential integrity is enforced between tables using the parent-

child relationship established with foreign keys. DBMaker has automatic support for
referential integrity constraints between tables through the definition of foreign keys.
When adding a record to a child table, the value in the child key must also exist in the

parent key. Similarly, when deleting a record from the parent table, all records in the
child key with the same value must be deleted first.

Referential actions provide a means to update or delete a parent key when referential

integrity would not normally allow it. The referential actions define the operation
DBMaker should perform on all matching rows in the child key when you update or
delete a parent key. DBMaker supports four referential actions for both updates and

deletes: CASCADE, SET NULL, SET DEFAULT, and NO ACTION.

The ON UPDATE/ON DELETE keywords are optional. These keywords specify the
referential action DBMaker should perform when you update or delete a value in a

parent key that is referenced by a child key. The referential actions for these keywords
are: CASCADE, SET NULL, SET DEFAULT, and NO ACTION.

CASCADE performs an update or delete on all matching values in the child key when

updating or deleting the parent key. This will set the value of the child key to the
same value as the parent key when update or delete a row in the parent key.

SET NULL sets all matching values in the child key to NULL when updating or

deleting a row in the parent key. The SET NULL action cannot be used when the
child key was defined with the NOT NULL constraint.

SET DEFAULT sets all matching values in the child key to the default value of the

column when updating or deleting a row in the parent key. You cannot use the SET
DEFAULT action when the default value is NULL and the child key was defined
with the NOT NULL constraint.

NO ACTION enforces normal referential integrity rules. DBMaker uses NO
ACTION by default.

There is no practical limit to the number of foreign keys in a table. The parent key

may be the primary key or any other unique index of a table, but a parent key must be
created before adding the child key. The number of columns and column type or

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-115

length must be the same in the parent key and the child key. The column order of
corresponding keys may be different in each table, provided they are listed in

corresponding order in the foreign key definition. The primary key of the parent table
is used by default.

Columns in a foreign key may contain null values. If a foreign key contains a null

value, it satisfies referential integrity automatically. A foreign key may not be created
on a view, but may be created on a synonym. Foreign key names have a maximum
length of thirty two characters, and may contain numbers, letters, the underscore

character, and the symbols $ and #. The first character may not be a number.

constraint_name.......Name of the constraint to be created

key_name.................Name of the foreign key to be created

column_name1. Name of the column the foreign key is created on

...............................2. Name of the column referenced by the foreign key

parent_table_name...Name of the table the foreign key references

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-116

REFERENCES parent_table_name

foreign_key_name

CONSTRAINT constraint_name

ON UPDATE

CASCADE

SET DEFAULT
SET NULL

NO ACTION
column_name

,
)(

ON DELETE

CASCADE

SET DEFAULT
SET NULL

NO ACTION

column_name

,
()

FOREIGN KEY

Figure 3-44 Foreign Key Definitions syntax

Table Options

DBMaker provides a number of optional features that can be used when creating a
table. Specify the behavior of these options using the:

TEMPORARY/TEMP/MEMORY, IN, CHECK, LOCK MODE, NOCACHE, and
FILLFACTOR keywords.

The TEMPORARY/TEMP keywords are optional. These keywords specify that a

table should be created as a temporary table instead of a permanent table. Data access
is faster in temporary tables since no locks are used and no Journal records are written

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-117

for temporary tables. However, temporary tables can only be used by the table owner,
and are automatically deleted when you disconnect from the database. Also, drop a

temporary table at any time while still connected to the database using the DROP
TABLE command.

The MEMROY keywords are optional. Memory tables, for almost all intents and

purposes, function in the same manner as a regular table in DBMaker. The differences
lie in the fact that memory tables are temporary tables, their life cycle being
connection based. This means that when user create a memory table, it ill be dropped

when the user drop it or when user disconnected from the database. Unlike a regular
table, memory table are only stored in the memory of the connection that created
them. They cannot be used by other connection and they can only have data selected

or inserted, their data cannot be updated or deleted. Memory tables do support the
transaction controls: commit, rollback, define save point and rollback to save point.

 These keywords specify that a table should be created as a temporary table instead of

a permanent table. Data access is faster in temporary tables since no locks are used and
no Journal records are written for temporary tables. However, temporary tables can
only be used by the table owner, and are automatically deleted when you disconnect

from the database. Also, drop a temporary table at any time while still connected to
the database using the DROP TABLE command.

The IN keyword is optional. This keyword specifies the name of the tablespace the

table will be created in. Tablespaces are the logical areas of storage used to partition
information in a database into manageable areas. Permits separate tables according to
logical groupings, or to place frequently used tables in different storage locations .The

table is created in the system tablespace by default.

The CHECK keyword, in the table definition, is optional. This keyword behaves in a
manner similar to the CHECK keyword used in the column definition. It normally is

used to ensure data from multiple columns falls into an acceptable range of values.
The expression of acceptable values may be any expression that evaluates to true or
false. Column names may be used in the expression in conjunction with the CHECK

keyword to represent the value of a column. If an SQL statement does not satisfy the
CHECK conditions, it is not processed.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-118

The LOCK MODE keyword is optional. This keyword specifies the lock level
DBMaker uses when accessing data in a table. DBMaker includes the table, page, and

rowlock modes. Page lock mode is used by default. To determine the lock mode of a
table, examine the LOCKMODE column of the SYSTABLE system table.

LOCK MODE TABLE locks an entire table. This mode decreases concurrency by

preventing other users from accessing the locked table at the same time. It also uses
fewer lock resources and requires less memory in the System Control Area (SCA).

LOCK MODE PAGE locks a single data page. This mode is a trade-off between

concurrency and lock resources. It provides moderate concurrency since other users
may access data in other pages, but not access any data on the same page.

LOCK MODE ROW locks a single row. This mode increases concurrency by

allowing other users to access any data except the locked row at the same time. It also
uses more lock resources and requires more memory in the SCA.

FILLFACTOR specifies the percentage of a data page that can be filled. This allows

the database to optimize the use of data pages, reserving space for updates to records.
The number parameter can have a value from 50 to 100, which represents a fillfactor
of 50% to 100%. To determine the fillfactor of a table, examine the FILLFACTOR

column of the SYSTABLE system table.

NOCACHE limits the number of page buffers used to cache data during a table scan.
DBMaker stores page buffers in a buffer chain with the most recently used page at the

beginning and the least recently used page end. When the NOCACHE option is
turned on, data pages read during a table scan are placed at the end of the buffer
chain. Since the end of the buffer chain will be flushed before the beginning,

subsequent data pages read during the table scan, will replace the previous page. This
effectively limits the page buffers used during a table scan to one page buffer. To
determine the cache mode of a table, examine the CACHEMODE column of the

SYSTABLE system table.

When creating a table, you are the table owner. You have all object privileges on the
table, and may assign object privileges for that table to other users. As the table owner,

you retain all object privileges on the table even if your security privilege is reduced to
CONNECT.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-119

NOTE Both forms of the CHECK and CHECK VALUE syntaxes have been updated in
DBMaker to be SQL 99 compliant.

 Example 1

The following creates a table named Scores in the system tablespace with StudentNo,
Math, English, Science, and History columns, defined with the INTEGER data type.
CREATE TABLE Scores (StudentNo INTEGER,
 Math INTEGER,
 English INTEGER,
 Science INTEGER,
 History INTEGER)

 Example 2

The following creates the same table from the example above in the StudentRecords
tablespace, columns may not contain NULL values, and a default value of zero is
assigned to the Math, English, Science, and History columns with the table owner
name Madison.
CREATE TABLE Madison.Scores
(StudentNo INTEGER NOT NULL,
 Math INTEGER NOT NULL DEFAULT 0,
 English INTEGER NOT NULL DEFAULT 0,
 Science INTEGER NOT NULL DEFAULT 0,
 History INTEGER NOT NULL DEFAULT 0)
 IN StudentRecords

 Example 3

The following creates the same table from the example above and the Math, English,

Science, and History columns must contain values between 0 and 100.
CREATE TABLE Scores (StudentNo INTEGER NOT NULL,
 Math INTEGER NOT NULL DEFAULT 0
 CHECK <= 0 AND VALUE >= 100,
 English INTEGER NOT NULL DEFAULT 0
 CHECK <= 0 AND VALUE >= 100,
 Science INTEGER NOT NULL DEFAULT 0
 CHECK <= 0 AND VALUE >= 100,
 History INTEGER NOT NULL DEFAULT 0
 CHECK <= 0 AND VALUE >= 100)
 IN StudentRecords

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-120

 Example 4

The following creates the same table from the example above and defines a table
constraint to ensure: the sum of the Math, English, Science and History columns is

less than 400, the lock mode is set to PAGE, specifies a FILLFACTOR of 90, and
turns on the NOCACHE option.
CREATE TABLE Scores (StudentNo INTEGER NOT NULL,
 Math INTEGER NOT NULL DEFAULT = 0
 CHECK <= 0 AND VALUE >= 100,
 English INTEGER NOT NULL DEFAULT = 0
 CHECK <= 0 AND VALUE >= 100,
 Science INTEGER NOT NULL DEFAULT = 0
 CHECK <= 0 AND VALUE >= 100,
 History INTEGER NOT NULL DEFAULT = 0
 CHECK <= 0 AND VALUE >= 100)
 IN StudentRecords
 CHECK Math + English + Science + History <= 400

 Example 5

The following creates the same table from the example above, but sets the lock mode
to PAGE, specifies a FILLFACTOR of 90, and turns on the NOCACHE option.
CREATE TABLE Scores (StudentNo INTEGER NOT NULL,
 Math INTEGER NOT NULL DEFAULT = 0
 CHECK <= 0 AND VALUE >= 100,
 English INTEGER NOT NULL DEFAULT = 0
 CHECK <= 0 AND VALUE >= 100,
 Science INTEGER NOT NULL DEFAULT = 0
 CHECK <= 0 AND VALUE >= 100,
 History INTEGER NOT NULL DEFAULT = 0
 CHECK <= 0 AND VALUE >= 100)
 IN StudentRecords
 CHECK Math + English + Science + History <= 400
 LOCK MODE PAGE
 FILLFACTOR 90
 NOCACHE

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-121

3.38 CREATE TABLESPACE
The CREATE TABLESPACE command generates a new tablespace. A new
tablespace permits increasing the physical storage available to the database. Only a

DBA or SYSADM can execute the command.

DBMaker uses the relational data model to hide the details of the physical storage
model and present data using a logical storage model. In the DBMaker physical

storage model, files are physical storage structures that contain the data in the
database. Files are managed by the operating system, with the exception of raw Unix
devices, while data in the files is managed by the DBMS. DBMaker uses three types of

files during normal operation Data, BLOB, and Journal.

Data files and BLOB files store user and system data. Although they have similar
characteristics, DBMaker manages these two file types in different ways to improve

performance. Data files store table and index data, while BLOB files store only Binary
Large OBjects (BLOBs).

Journal files are special files that provide a real-time, historical record of all changes

made to a database and the status of each change. This allows the database to undo
changes made by a transaction that fails, or redo changes made successfully but not
written to disk after a database crashes. Journal files are used only by the database

management system, and are not used to store user data.

In the DBMaker logical storage model, tablespaces are the logical storage structures
used to partition information in a database into manageable areas. Each tablespace

may contain several tables and indexes. Data in the tablespace is managed by the
DBMS, but is physically stored in data and BLOB files. The three types of tablespaces
included are regular, autoextend, and system.

Regular tablespaces are tablespaces that have a fixed size and contain one or more data
or BLOB files. Manually extend a regular tablespace by enlarging existing files or
adding new files. A regular tablespace may contain a maximum of 32767 files, with a

maximum cumulative size of 8TB. On Unix platforms, regular tablespaces may be
placed on raw devices.

NOTE For more information on raw devices, see your Unix system documentation.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-122

Autoextend tablespaces are tablespaces that automatically increase in size to hold
additional data as required. Regular and autoextend tablespaces may contain one or

many data files, and BLOB files. It is possible for an autoextend tablespace to run out
of space. The maximum file size is 8TB and or the disk may be full. Add files to
autoextend tablespaces manually to extend an autoextend tablespace by enlarging

existing files. Do this to pre-allocate space for improved performance when inserting a
large amount of data into an autoextend tablespace. Autoextend tablespaces cannot be
used with raw devices.

System tablespaces are tablespaces generated by DBMaker when creating a database.
Each database has one system tablespace, which contains the system catalog tables
used to store schema, security, and status information about the entire database. The

system tablespace is a special type of autoextend tablespace. System tablespaces
contain one data and one BLOB file created automatically with the tablespace and not
used to store user data. System tablespaces may be converted to regular tablespaces

and may not be used with raw devices.

The AUTOEXTEND keyword is optional. This keyword specifies whether a
tablespace is created as an autoextend tablespace. An autoextend tablespace can extend

its size automatically as when requiring additional space. An autoextend tablespace
may be changed to a regular tablespace at any time. It may also be changed back to an
autoextend tablespace at any time.

The BACKUP BLOB keyword is optional. This keyword specifies whether DBMaker
will back up BLOB data in this tablespace when the database is in
BACKUP_DATA_AND_BLOB mode. When BACKUP BLOB is set to ON,

DBMaker backs up all BLOB data in the tablespace when the database is in
BACKUP_DATA_AND_BLOB mode. When BACKUP BLOB is set to OFF,
DBMaker does not back up any BLOB data in the tablespace, regardless of the

backup mode.

To ensure data independence within the database, operating system files cannot be
referenced directly within a database. To work around this, each database file has two

names, a physical file name and a logical file name. The physical file name is the name
used by the operating system, while the logical file name is the name used by the
database. These two names are related by an entry in the dmconfig.ini file. Before

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-123

executing the CREATE TABLESPACE command, make an entry in the dmconfig.ini
specifying the logical file name, the physical file name, and the initial size of each

physical file in the appropriate database configuration section (see example).

The DATAFILE keyword specifies the logical file name and the type of files to create
when creating the tablespace. Specify multiple files up to a maximum of 32767,

providing the type of tablespace permits it, and there is sufficient disk space. At least
one data file in each tablespace created must exist. Add more files to a tablespace using
the ALTER TABLESPACE command.

The TYPE keyword specifies whether DBMaker will create a new file as a data file or
a BLOB file. Use TYPE=DATA to create a new data file, and TYPE=BLOB to create
a new BLOB file. When not specifying the type of file using the TYPE keyword, the

default file will be created as a data file.

DBMaker creates all physical files in the default database directory specified by the
DB_DBDIR keyword in dmconfig.ini, unless a directory or path for the file is

specified. The initial file size is specified as a number of data pages for data files, or a
number of BLOB frames for BLOB files.

Specify an initial file size for data files by specifying a value between 2-2147483647

pages. To calculate the actual size of the file in kilobytes, multiply this value by 4KB.
Specify an initial file size for BLOB files by specifying a value between 2-524287
frames. To calculate the actual size of the file in kilobytes, multiply this value by the

value of DB_BFRSZ from the dmconfig.ini file.

The files in a tablespace do not have to be located on the same disk; you may specify a
different disk or different path on the same disk for each file in the tablespace. If using

Unix, also allocate files in a regular tablespace on raw devices. Using raw devices
allows faster access and performance improvements over regular operating system files.
DBMaker writes to raw device files directly instead of relying on operating system

calls.

Tablespace names and logical file names have a maximum length of thirty two
characters, and may contain numbers, letters, the underscore character, and the

symbols $ and #. The first character may not be a number. Tablespace names are case-
sensitive.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-124

Physical file names have a maximum length, including drive and path names, of 79
characters, and may contain any characters and symbols permitted by the operating

system, except spaces. The case-sensitivity of physical file names is dependent on the
operating system.

tablespace_nameName of the new tablespace to create

file_nameLogical name of the physical tablespace files

CREATE tablespace_nameTABLESPACE
AUTOEXTEND

DATAFILE

file_name

TYPE=DATA

TYPE=BLOB

,

BACKUP BLOB OFF

BACKUP BLOB ON

Figure 3-45 CREATE TABLESPACE syntax

 Mapping 1

Before executing example 1, add a line to the dmconfig.ini file to map the logical file

names to the physical file names, and indicate the initial physical file size in pages for
data files or frames for BLOB files. The size of the data file will be 400KB and the size
of the BLOB file will be 1600KB, using the default BLOB frame size of 16KB.
datafile = c:\dbmaker\database\ts1_df1.db 100
blobfile = c:\dbmaker\database\ts1_bf1.bb 100

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-125

 Example 1

The following creates a regular tablespace named ts1 with one logical data file named
datafile and one logical BLOB file named blobfile and permits adding additional data

or BLOB files to the tablespace, up to a maximum of 32767 files.
CREATE TABLESPACE ts1 DATAFILE datafile TYPE=DATA, blobfile TYPE=BLOB

 Mapping 2

Before executing example 2, add a line to the dmconfig.ini file to map the logical file
names to the physical file names, and indicate the initial physical file size in pages for
data files or frames for BLOB files. The size of the data file will be 400KB and the size

of the BLOB file will be 1600KB using the default BLOB frame size of 16KB.
datafile = c:\dbmaker\database\ts2_df1.db 100
blobfile = c:\dbmaker\database\ts2_bf1.bb 100

 Example 2

The following creates an autoextend tablespace named ts2 with one logical data file
named datafile, and one logical BLOB file named blobfile; additional data or BLOB
files may not be added to this tablespace.
CREATE AUTOEXTEND TABLESPACE ts2 DATAFILE datafile TYPE=DATA,
 blobfile TYPE=BLOB

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-126

3.39 CREATE TEXT INDEX
Two types of index may be created with DBMaker, a signature text index or an
inverted file (IVF) text index. Signature text indexes are built in the same tablespace as

the column for which the index is being built. IVF indexes are built in a separate file
and exhibit better performance for larger indexes.

The CREATE TEXT INDEX command creates a new text index on a column or

columns. Use text indexes to increase the performance of full-text queries by quickly
locating specific words in columns containing text without examining the entire table.
Only the table owner, a DBA, a SYSADM, or a user with the INDEX privilege on

that table may execute the command.

A text index is a mechanism that provides fast access to rows that contain one or more
words or phrases in columns containing text. Text indexes contain a representation of

all the text found in the text columns they are based on. The data is encoded and
structured to make retrieval much faster than directly from the table. An index’s
operation is transparent to users and the DBMS uses it to improve full-text query

performance.

When creating a text index, specify an index name, the name of the table, and the
name of the column or columns. Text indexes may be created on columns defined

with the CHAR, VARCHAR, CLOB, NCHAR, NVARCHAR, NCLOB, or FILE
data types. Text indexes may not be created on system tables, temporary tables, or
views.

The Order By clause supports a search for a word or words in a column and ranks the
results in another column. After creating a text index with Order By Column, the
result will be output ranked by the Order By Column automatically while DBMaker
processes a query on the text index, speeding up the query. For example, to search the
content column and order by post time column, add an Order By Post Time clause at
the end of select statement. DBMaker must have a sorting on the result for the order

by clause. The sorting will take a lot of time. If you have created the text index with
Order By Post Time column, you can get a sorted result without adding the Order By
Clause. Specify the ASC or DESC keyword to denote the ranking as ascending or

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-127

descending. The default order is ascending. The Order By Column attribute also can
take affect on the increment part of the rebuild index command. However, it cannot

re-order the records across old data or increment data.

When loading data into a table, DBMaker does not update any text indexes on that
table. Load all data before creating a text index on a table, when possible. Rows

containing matching text entered into a table after the text index was created will not
be returned with the full-text search results. To include these rows in the search
results, rebuild the text index using the REBUILD TEXT INDEX command.

Text index names must be unique for the each table. Text index names have a
maximum length of thirty two characters, and may contain numbers, letters, the
underscore character, and the symbols $ and #. The first character may not be a

number.

Signature Text Index

Signature text indexes can be built on all character type columns, including CHAR,
VARCHAR, LONG VARCHAR, NCHAR, NVARCHAR, NCLOB, and FILE

types. A table can have multiple text indexes, and text indexes can be built on multiple
columns.

TOTAL TEXT SIZE is the estimated total size of all documents in the columns on

which the text index will be built in MB. The range is 1-200, and the default value is
32. This value is used for estimation and performance optimization by DBMaker and
does not actually place a constraint on the number of documents allowed in a column.

If the estimated total size exceeds 200 MB, use 200 MB or create an inverted file
(IVF) index for significantly improved query performance.

SCALE is the expected ratio of index size to total column size. If you set the TOTAL

TEXT SIZE to 20 and expect the index to use approximately 10 MB of storage, then
you should set the scale to 50 (50%). The larger the scale, the better the search
performance. You can enter a range from 10-200. The default value is 40.

text_index_nameName of the text index to create

table_nameName of the table to create the text index on

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-128

column_nameName of the column to create the index on

order_column_name .Name of the column to start with

numbervalue to be used with the parameters SCALE and TOTAL TEXT
SIZE

ON table_name ()

TEXT INDEX text_index_name

TOTAL TEXT SIZE number MB

SIGNATURE
CREATE

ORDER BY

DESC
ASC

,

SCALE number

column_name

,

column_name

Figure 3-46 CREATE SIGNATURE TEXT INDEX syntax

 Example 1

The following creates a signature text index named TxtIdx on the Name column of
the Employees table, using the default values for all parameters, and order by
EmployeeId column.
CREATE SIGNATURE TEXT INDEX TxtIdx ON Employees(Name)

 Example 2

The following command creates a signature text index named TxtIdx on the Name
column of the Employees table, estimating the total size of the column at 20 MB, and
creating an index that scales to 50% of the size of the actual text index.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-129

CREATE SIGNATURE TEXT INDEX TxtIdx ON Employees(Name) TOTAL TEXT SIZE 20 MB scale
50

Inverted File Text Index

The CREATE IVF TEXT INDEX command creates a new inverted file (IVF) text
index on a specified column. An IVF text index can be used in place of a standard

index to increase the performance of queries, particularly on columns that contain
more than 200 MB of data.

A table owner or a user with DBA or SYSADM privilege may create an IVF text index

IVF indexes are sorted in the operating system’s file system, and are administered
through the database. The location where the IVF index should be stored is specified
when the index is created. DBMaker manages the creation of sub-directories within

the IVF index root directory.

text_index_nameName of the text index to create

table_nameName of the table to create the text index on

column_nameName of the column to create the index on

path.........................Full directory path for storing the index

order_column_name .Name of the column to start with

number.................... value to be used with the parameters SCALE and TOTAL TEXT
SIZE

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-130

ON table_name ()

text_index_name

ORDER BY

DESC
ASC

,

STORAGE PATH path

column_name

,

TOTAL TEXT SIZE number MB

CREATE IVF TEXT INDEX

column_name

Figure 3-47 CREATE IVF TEXT INDEX syntax

 Example 1

The following creates an IVF text index named TxtIdx on the Name column of the
Employees table, and using the default values for all parameters.
CREATE IVF TEXT INDEX TxtIdx ON Employees(Name)

 Example 2

The following command creates an IVF text index named TxtIdx on the Name
column of the Employees table, and stores the IVF text index in the logical file

DB_IVFDIR, while estimating the total size of the column at 100 MB.
CREATE IVF TEXT INDEX TxtIdx ON Employees(Name) STORAGE PATH DB_IVFDIR TOTAL TEXT
SIZE 100 MB ORDER BY c2 ASC

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-131

3.40 CREATE TRIGGER
The CREATE TRIGGER command creates a new trigger on a table. Use triggers to
customize a database in ways that would not be possible with standard SQL

commands. Only the table owner, a DBA, or a SYSADM with all security and object
privileges necessary to execute the SQL statement that defines the trigger action may
execute the command.

A trigger is a database server mechanism that automatically executes predefined
commands in response to specific events. This allows a database to perform complex
or unconventional operations. Triggers are under the control of the database server

and ensure that data is handled consistently, regardless of the source. A trigger on a
table is transparent to users.

When creating a trigger, specify a name, trigger action time (when a trigger should fire

relative to the trigger event), the trigger event (the event that causes the trigger to fire),
a trigger table (the table the trigger is being created for), trigger type (type of trigger to
be fired), and the trigger action (the action the database should perform when the

trigger fires). Any triggers created on a table are dropped automatically when dropping
the table.

DBMaker associates triggers using tables instead of fully qualified names. All trigger

names on the same table must be unique. The trigger action operates with the same
security and object privileges as the owner of the trigger table, and not with the
privileges of the user executing the trigger event.

The BEFORE/AFTER keywords specify when the database server should perform the
trigger action relative to the trigger event. This is known as the trigger action time.
The BEFORE keyword specifies the database server to perform the trigger action

before the trigger event. The AFTER keyword specifies that the database server should
perform the trigger action after the trigger event.

The INSERT/DELETE/UPDATE keywords specify the event that fires a trigger.

This is known as the trigger event. The INSERT keyword specifies that a trigger fires
whenever inserting a row into a table, and the DELETE keyword specify that a trigger
fire whenever deleting a row from a table. The UPDATE keyword specifies that a

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-132

trigger fire after updating any column in a table. Use UPDATE OF to instruct a
column list when to fire a trigger after updating specific columns. Using UPDATE

OF to specify a column list limits the use of each column name to on instance on all
UPDATE triggers for that table.

The ON keyword specifies the name of the table to create the trigger on, known as

the trigger table. The trigger table must be a permanent table in the database, not a
temporary table, a view, or a synonym. Only specify a single trigger table for each
trigger.

trigger_nameName of the trigger to create

column_nameName of the column to create the trigger on

table_name...............Name of the table to create the trigger on

sql_statementStatement to execute when the trigger fires

CREATE TRIGGER trigger_name
AFTER

BEFORE

table_nameON

for_each_statement_clause

for_each_row_clause

UPDATE

OF
column_name

,

DELETE

INSERT

sql_statement()

Figure 3-48 CREATE TRIGGER syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-133

For Each Row Clause

The REFERENCING keyword specifies an alias for the OLD and NEW keywords.

You usually need to indicate in the action, when creating a row trigger, to reference
the value of a column before or after the trigger fires. Use the OLD and NEW
keywords to refer to values from the trigger table, in cases where tables named OLD

and NEW already exist in a database, use the alias specified by the REFERENCING
keyword.

The FOR EACH ROW keyword specifies a trigger to fire once for each row the

trigger event modifies. Triggers defined using the FOR EACH ROW keyword do not
fire if the statement firing the trigger does not process rows.

The WHEN keyword specifies that only rows satisfying the search condition will

cause the trigger to fire. The WHEN clause is evaluated for each row the trigger event
modifies. If the search condition is true, the trigger fires for that row. If the search
condition is false, the trigger does not fire. The result of the WHEN condition only

affects the execution of the triggered action, it has no effect on the statement that fires
the trigger.

old_nameAlias for referencing the values, as they existed in the trigger table

 before the trigger action fires

 new_name Alias for referencing the values, as they exist in the trigger table

 after the trigger action fires

search_conditionConditions a row must meet for a trigger to fire

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-134

REFERENCING

NEW AS new_name

OLD AS old_name

NEW AS new_name

OLD AS old_name

FOR EACH ROW
WHEN (search_condition)

Figure 3-49 For Each Row Clause syntax

For Each Statement Clause

The FOR EACH STATEMENT keyword specifies that a trigger will fire once for
each statement firing it. Triggers defined using the FOR EACH STATEMENT

keyword will fire even if the statement firing it does not process rows.

The statement that the trigger executes when it fires is known as the trigger action.
The trigger action may be an INSERT, UPDATE, DELETE, or EXECUTE

PROCEDURE statement. If you want to use built-in functions when specifying the
trigger action, only use functions that have no argument, such as PI(), NOW(), or
USER(). Stored procedures executed by a trigger cannot contain any transaction

control statements COMMIT, ROLLBACK, or SAVEPOINT.

It is possible to create multiple triggers for each trigger event on the trigger table using
the trigger action time, BEFORE and AFTER keywords, in combination with the

trigger type, FOR EACH ROW and FOR EACH STATEMENT keywords. For
example, combine the trigger action time and the trigger type to create four triggers

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-135

for the INSERT trigger event BEFORE/FOR EACH STATEMENT,
BEFORE/FOR EACH ROW, AFTER/FOR EACH ROW, AFTER/FOR EACH

STATEMENT. The same combinations for the UPDATE and DELETE trigger
events may be performed.

Using the UPDATE OF instead of UPDATE will create at most, one trigger for each

column in the table for each time/trigger type combination. This means that a table
with four columns can have four UPDATE OF triggers for each combination
BEFORE/FOR EACH STATEMENT, BEFORE/FOR EACH ROW, AFTER/FOR

EACH ROW, and AFTER/FOR EACH STATEMENT. When using UPDATE OF
to specify a trigger, the use of UPDATE is not permitted.

Trigger names must be unique for each table, have a maximum length of 32

characters, and may contain numbers, letters, the underscore character, and the
symbols $ and #. The first character may not be a number.

FOR EACH STATEMENT

Figure 3-50 For Each Statement Clause syntax

 Example 1

The following creates an UPDATE trigger named Trig1 on the Employees table that

places the values before and after the update, into another table called NameChange.
The trigger fires before the trigger action for each row updated in the table and fires
regardless of the sequence of columns updated.
CREATE TRIGGER Trig1 BEFORE UPDATE ON Employees
 FOR EACH ROW
 (INSERT INTO NameChange
 VALUES (OLD.FirstName, OLD.LastName,
 NEW.FirstName, NEW.LastName)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-136

 Example 2

The following creates an INSERT trigger named Trig2 on the Employees table that
executes the stored procedure called SendMail when inserting a new row in the

Employees table and uses the REFERENCING keyword to provide an alias for the
OLD and NEW keywords. The trigger will fire after the trigger action for each row
inserted into the table.
CREATE TRIGGER Trig2 AFTER INSERT ON Employees
 REFERENCING OLD AS pre NEW AS post
 FOR EACH ROW
 (EXECUTE PROCEDURE SendMail(pre.FirstName,
 pre.LastName,
 WelcomeMessage)

 Example 3

The following creates an UPDATE trigger named Trig3 on the Orders table that

executes the stored procedure called LogTime when updating the Orders table, and
will fire before the trigger action only once, regardless of how many rows the trigger
action updates.
CREATE TRIGGER Trig3 BEFORE UPDATE ON Orders
 FOR EACH STATEMENT
 (EXECUTE PROCEDURE LogTime)

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-137

3.41 CREATE VIEW
The CREATE VIEW command creates a new view based on existing tables or views.
Only the owner of the base table with the RESOURCE privilege or users with, view,

or SELECT privilege for the table may execute the command.

A view is a virtual table based on existing tables or views. Views appear to users like a
real table with named columns and rows of data. Unlike a real table, the view is not

stored permanently in the database. The data visible through a view is not physically
stored in the database, but is instead stored in the original tables. Views are stored in
the database as a definition and a user-defined view name. The view definition is an

SQL query that DBMaker uses to access data from the original tables whenever using
a view.

Use a view to tailor the appearance of a database to provide each user with a

personalized view of a database. Provide security and restricted access to data by
allowing users to see only the data they are authorized to see. Views also isolate users
from changes to the underlying structure of the database. They present a consistent

image of the database even if the underlying tables have changed.

Views can simplify the organization of a database by joining or grouping related data
from several tables and presenting it as a single table. Use views to provide a subset of

rows stored in the base table by having a condition on the returned results.

There are two disadvantages to using views instead of a real table, the performance,
and the restrictions on updates. Performance is not as good for queries on a view as it

is for queries directly on the source tables. The database must first retrieve the view
definition, build it into the original query, perform the query, and then display the
results. There are also update restrictions imposed by using views, since the database

may not be able to manage updates on complicated views.

The SELECT statement that defines the view cannot contain ORDER BY or INTO
clauses. Currently DBMaker can update a view if that view is based on a single table.

Specify a list of column names for a view. The number of column names that are
specified must match the number of columns in the SELECT statement. If not

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-138

specifying a list of column names, the view inherits the column names from the
underlying tables.

View names and column names have a maximum length of thirty two characters, and
may contain numbers, letters, the underscore character, and the symbols $ and #. The
first character may not be a number.

view_nameName of the new view to create

column_nameName of a column in the view

select_statement.........Select statement that specifies view contents

CREATE VIEW view_name

column_name

,
)(

AS
select_statement

(select_statement)

Figure 3-51 CREATE VIEW syntax

 Example

The following creates a view named View1 on the Employees table.
CREATE VIEW View1 AS SELECT Name, Salary from Employee WHERE Salary > 50000

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-139

3.42 DELETE
The DELETE command deletes all rows matching the search condition from a table.
Only rows from a single table may be deleted. Rows from the system tables may not

be deleted. Only the table owner, a DBA, a SYSADM, or a user with the delete
privilege on the table may execute the command. DBMaker only deletes rows that
satisfy the search condition. Cursors are only available within ODBC programs.

See the WHERE clause in the SELECT command for more information on the
search condition.

table_nameName of the table you want to delete rows from

search_condition.......Conditions a row must meet to be deleted

cursor_name.............Name of the cursor to use for a positioned delete

WHERE
search_condition

CURRENT OF cursor_name

DELETE FROM table_name

Figure 3-52 DELETE syntax

 Example 1

The following deletes the employee number 1234 from the Employee table.
DELETE FROM Employee WHERE EmpNo = ‘1234’

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-140

 Example 2

The following deletes all employee names that begin with “John” from the Employee
table.
DELETE FROM Employee WHERE EmpName LIKE ‘John%’

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-141

3.43 DROP COMMAND
The DROP COMMAND removes an existing stored command from the database.
Only the stored command owner, a DBA or a SYSADM may execute the command.

A stored command is an SQL data-manipulation statement that is compiled and
permanently stored in the database in executable format. This permits repeat
execution of the stored command without waiting for DBMaker to compile and

optimize the command each time. Stored commands are similar to stored procedures,
except they can only contain a single command and cannot contain program logic.

The stored command becomes invalid and cannot be used again when dropping a

table or a column that is referenced by a stored command, alter a table and modify the
column definition, or alter a table and add a column using the BEFORE and AFTER
keywords. Altering a table and adding a column without using the BEFORE and

AFTER keywords has no impact on a stored command. Drop an invalid stored
command to remove it from the database.

command_nameName of the stored command to remove from the database

DROP COMMAND command_name

Figure 3-53 DROP COMMAND syntax

 Example

The following removes the stored command named sc1.
DROP COMMAND sc1

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-142

3.44 DROP DATABASE LINK
The DROP DATABASE LINK command removes an existing public or private
database link from the database. Only the owner of a private link may drop his or her

own private link and only a DBA or SYSADM may drop a Public link.

A database link creates a connection to a remote database to provide access to remote
data. Links provide the benefit of security information, allowing connections to a

remote database with a user name different from a local one, or connect to a remote
database using a public link with no account.

The PUBLIC/PRIVATE keywords are optional. These keywords specify the type of

database link to drop, public or private. Public links are available to all users in a
database. Private links are available only to the user that creates them. When no
specific type of link is specified, DBMaker will try to drop a private link by default.

link_name................Name of the link to remove from the database

DROP link_name

PRIVATE

PUBLIC

DATABASE LINK

Figure 3-54 DROP DATABASE LINK syntax

 Example 1

The following drops the private link named FieldLink.
DROP PRIVATE DATABASE LINK FieldLink

 Example 2

The following drops the public link named FieldLink.
DROP PUBLIC DATABASE LINK FieldLink

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-144

3.45 DROP DOMAIN
The DROP DOMAIN command removes an existing domain from the database.
Only the domain owner, a DBA or a SYSADM may execute the command.

A domain is a user-defined data type that brings together a data type, default value,
and value constraint. Use a domain in the column definition of CREATE TABLE or
ALTER TABLE ADD COLUMN statements in place of a data type to define the set

of valid values that can be entered into the column.

A domain cannot be dropped if there are existing columns in a table that were defined
using the domain. To drop a domain that is referenced by existing columns, first drop

all columns that reference the domain. Do this by dropping the entire table and then
recreating the table without the domain, or by dropping a single column using the
ALTER TABLE DROP COLUMN command.

domain_nameName of the domain to remove from the database

DROP DOMAIN domain_name

Figure 3-55 DROP DOMAIN syntax

 Example

The following example removes the domain named ValidDate
DROP DOMAIN ValidDate

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-145

3.46 DROP GROUP
The DROP GROUP command removes an existing group from the database. Only a
DBA or a SYSADM can execute the command.

Groups simplify the management of object privileges in a database with a large
number of users. Use a group to collect users that require the same object privileges.
Any object privileges granted to the group are automatically granted to all members in

the group. DBMaker also provides support for nested groups, a group as a member of
another group, provided there are no circular references from the member group to
the other group.

When a group is removed from a database, all members lose privileges granted to that
group. Members retain all other privileges granted to them directly or to other groups
they are members of. The PUBLIC group cannot be removed; DBMaker manages

this group internally.

group_name............Name of the group to remove from the database

DROP GROUP group_name

Figure 3-56 DROP GROUP syntax

 Example

The following removes the group named Employees from the database.
DROP GROUP Employees

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-146

3.47 DROP INDEX
The DROP INDEX command removes an existing index on a table from the
database. Only the table owner, a DBA, a SYSADM, or a user with the INDEX

privilege for that table may execute the command.

An index is a mechanism that provides fast access to specific rows in a table based on
the values of one or more columns from the table, known as the key. Indexes contain

the same data as the key columns from the table they are based on, but the data is
structured and sorted to make retrieval much faster than the table. Once creating an
index, its operation is transparent to users; the DBMS uses the index to improve query

performance whenever possible.

Drop an index from any table in the database except the system tables. If an index has
foreign keys that refer to it, drop those foreign keys before dropping the index. Drop

an index if it becomes fragmented, which reduces its efficiency. Rebuilding the index
creates a denser, unfragmented index.

index_name..............Name of the index to remove

table_name...............Name of the table to remove the index from

DROP INDEX index_name FROM table_name

Figure 3-57 DROP INDEX syntax

 Example

The following drops the index named NameIndex from the Employees table; if there
are any foreign keys, which refer to NameIndex, drop them before dropping

NameIndex.
DROP INDEX NameIndex FROM Employees

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-147

3.48 DROP REPLICATION
The DROP REPLICATION command removes an existing table replication from
the database. Only the table owner, a DBA, or a SYSADM may execute the

command.

A table replication creates a full or partial copy of a table in a remote location. This
allows users in remote locations to work with a local copy of data. The local copy

remains synchronized with the databases in other locations. This way each database
can service data requests immediately and efficiently, without having to go to another
machine over a slower network connection. This is not the same as backing up the

database to a remote location, since the synchronization is done on a transaction-by-
transaction basis by the DBMS itself, without any intervention from users.

There are two primary types of table replication, synchronous and asynchronous.

Synchronous table replication modifies the remote table at the same time it modifies
the local table, while asynchronous table replication stores changes to the local table
and modifies the remote table based on a schedule. Use the DROP REPLICATION

command to drop both synchronous and asynchronous table replications.

replication_name......Name of the table replication to remove

table_nameName of the table to remove the replication from

DROP REPLICATION replication_name FROM table_name

Figure 3-58 DROP REPLICATION syntax

 Example

The following example drops the replication named EmpRep from the Employees
table.
DROP REPLICATION EmpRep FROM Employees

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-148

3.49 DROP SCHEDULE
The DROP SCHEDULE command removes an existing replication schedule to a
remote database. Drop all associated asynchronous table replications before dropping

a replication schedule. Only the local table owner, a DBA, or a SYSADM may execute
the command.

Use the DROP SCHEDULE command to drop a replication schedule for

asynchronous table replications. Drop all associated asynchronous table replications
before dropping a replication schedule. This would include any asynchronous table
replication that replicates data to the remote database specified in the schedule.

remote_database_name….Name of the remote database to remove the replication
schedule from

DROP SCHEDULE FOR REPLICATION TO remote_database_name

Figure 3-59 DROP SCHEDULE syntax

 Example

The following drops the replication schedule for the remote database named

DivOneDb.
DROP SCHEDULE FOR REPLICATION TO DivOneDb

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-149

3.50 DROP SCHEMA
The DROP SCHEMA command removes a schema from the current database
system. A schema is essentially a namespace: it contains named objects, also known as

schema objects, (tables, view, index, synonym, trigger, domain, command, procedure)
whose names may duplicate those of other objects existing in other schemas. Schema
objects are accessed by qualifying their names with the schema name as a prefix.

Only users who created the schema or users with DBA authority can drop a schema
from the database.

The schema to be removed must be empty. A schema containing schema objects

cannot be dropped. Before attempting to drop a schema, drop all schema objects
contained in the schema.

schema_name : The name of the schema to be removed

DROP SCHEMA schema_name

Figure 3-60 DROP SCHEMA syntax

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-150

3.51 DROP SYNONYM
A synonym is an alias that can be used for a table or view. A synonym requires no
storage space, other than its definition in the system catalog. More than one synonym

can be created for a table or view, but all synonym names must be unique. The
DROP SYNONYM command removes a synonym from a table or view. Only the
synonym owner, a DBA, or a SYSADM may execute the command.

DBMaker normally identifies tables and views with fully qualified names that are a
composite of the owner name and object name. To help simplify statements that use
fully qualified table and view names, DBMaker provides the usage of synonyms.

This allows users to refer to synonym names without prefixing an owner name.
DBMaker will always use the table name and ignore a synonym with the same name.
To use the table referenced by a synonym, provide the fully qualified name. All

synonyms on a table or view are automatically dropped when a referenced table or
view are dropped.

A synonym from any table in the database may be dropped, except for system tables.

DBMaker internally manages all synonyms on the system tables, and does not permit
dropping them.

synonym_nameName of the synonym to remove from the database

DROP SYNONYM synonym_name

Figure 3-61 DROP SYNONYM syntax

 Example

The following drops the synonym named Staff created on the Employees table.
DROP SYNONYM Staff

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-151

3.52 DROP TABLE
The DROP TABLE command removes a table. Only the table owner, a DBA, or
SYSADM may execute the command.

When dropping a table, DBMaker also drops all indexes and primary keys on the
table. If the table has a primary key that is referenced by one or more foreign keys,
drop all foreign keys that reference the primary key before dropping the table.

table_nameName of the table to drop from the database

DROP TABLE table_name

Figure 3-62 DROP TABLE syntax

 Example

The following drops the Employees table.
DROP TABLE Employees

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-152

3.53 DROP TABLESPACE
The DROP TABLESPACE command removes a tablespace. Only a DBA or a
SYSADM may execute the command.

When dropping a tablespace, DBMaker automatically drops all logical files in the
tablespace. Use operating system commands to manually remove the physical files that
correspond to logical files and free the disk space. If a tablespace contains tables, drop

all tables in the tablespace before dropping the tablespace.

tablespace_nameName of the tablespace to drop from the database

DROP TABLESPACE tablespace_name

Figure 3-63 DROP TABLESPACE syntax

 Example

The following drops the emp_ts tablespace; drop all tables in the tablespace before

dropping the tablespace.
DROP TABLESPACE emp_ts

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-153

3.54 DROP TEXT INDEX
The DROP TEXT INDEX command removes an existing signature or IVF text index
on a column in a table from the database. Only the table owner, a DBA, a SYSADM,

or a user with the INDEX privilege for the table may execute the command.

A text index is a mechanism that provides fast access to rows in a table that contain
one or more words or phrases in columns containing text. Text indexes contain a

representation of all the text found in the text columns they are based on, but the data
is encoded and structured to make retrieval much faster than directly from the table.
Once a text index is created for a table, its operation is transparent to users of the

database; the DBMS uses the index to improve full-text query performance whenever
possible.

text_index_nameName of the text index to remove

table_nameName of the table to remove the text index from

DROP TEXT INDEX text_index_name FROM table_name

Figure 3-64 DROP TEXT INDEX syntax

 Example

The following drops the text index named TxtIdx from the Employees table.
DROP TEXT INDEX TxtIdx FROM Employees

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-154

3.55 DROP TRIGGER
The DROP TRIGGER command removes a trigger. Only the table owner, a DBA, or
a SYSADM may execute the command.

A trigger is a database server mechanism that automatically executes predefined
commands in response to specific events. This allows a database to perform complex
or unconventional operations that might not be possible using standard SQL

commands. Since triggers are under the control of the database server, they can ensure
data is handled consistently regardless of the source. A trigger operation is transparent
to users of the database DBMaker fires the trigger every time a user or application

program generates a trigger event.

When dropping a table or a column that is referenced by a trigger, altering a table and
modify the column definition, or altering a table and adding a column using the

BEFORE and AFTER keywords, the trigger becomes invalid and cannot be used
again. Altering a table and adding a column without using the BEFORE and AFTER
keywords has no impact on a trigger. Drop an invalid trigger to remove it from the

database. Any triggers created on a table are dropped automatically when a table is
dropped.

trigger_nameName of the trigger to remove

table_name...............Name of the table to remove the trigger from

DROP TRIGGER trigger_name FROM table_name

Figure 3-65 DROP TRIGGER syntax

 Example

The following drops the trigger named Trig1 from the Employees table.
DROP TRIGGER Trig1 FROM Employees

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-155

3.56 DROP VIEW
The DROP VIEW command removes a view. Only the view owner, a DBA or a
SYSADM may execute the command.

When a view is dropped, DBMaker also automatically drops all views based on that
view. System views may not be dropped.

view_nameName of the view to remove from the database

DROP VIEW view_name

Figure 3-66 DROP VIEW syntax

 Example

The following drops the view named SalesStaff.
DROP VIEW SalesStaff

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-156

3.57 END BACKUP
The END BACKUP command ends the backup state DBMaker places the database
in during an online backup. Only a DBA or a SYSADM may execute the command.

To perform an online full backup, start the database in NON-BACKUP, BACKUP-
DATA, or BACKUP-DATA-AND-BLOB mode. To begin the backup, issue the
BEGIN BACKUP command. Use operating system commands or backup utilities to

back up all data and BLOB files to the backup device. After these files have been
backed up, issue the END BACKUP DATAFILE command. Then use operating
system commands or backup utilities to back up all Journal files. After these files have

been backed up, issue the END BACKUP JOURNAL command to complete the
backup and return the database to normal operation. Using an online full backup, can
restore a database from the point in time the END BACKUP DATAFILE command

was executed to the point in time the currently active Journal file was copied.

To perform an online incremental backup, start the database in either BACKUP-
DATA or BACKUP-DATA-AND-BLOB mode. To begin the backup, issue the

BEGIN INCREMENTAL BACKUP command. DBMaker will list all Journal files
needed to copy and a backup ID for each file. In an online incremental backup,
DBMaker only backs up Journal files that have been used since the last full online

backup, excluding the currently active Journal file. Record the filename and backup ID
of each file in a safe location; these are used to restore the database. Backup the
Journal files in the list to a backup device. After these Journal files have been backed

up, issue the END BACKUP JOURNAL command to complete the backup and
return the database to normal operation. Using an online incremental backup, can
restore a database from the point in time the END BACKUP DATAFILE command

was executed in the previous full backup, to the point in time the last committed
transaction was written to the last full Journal file.

To perform an online incremental backup to current, the database must have been

started in BACKUP-DATA or BACKUP-DATA-AND-BLOB mode. To begin the
backup, issue the BEGIN INCREMENTAL BACKUP TO CURRENT command.
DBMaker will list all Journal files needed to copy and a backup ID for each file. In an

online incremental backup to current, DBMaker will backup all Journal files that have

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-157

been used since the last full online backup, including the currently active Journal file.
Record the filename and backup ID of each file in a safe location; these are used to

restore the database. Backup the Journal files in the list to a backup device. After these
Journal files have been backed up, issue the END BACKUP JOURNAL command to
complete the backup and return the database to normal operation. Using an online

incremental backup to current can restore a database from the point in time the END
BACKUP DATAFILE command was executed in the previous full backup, to the
point in time the currently active Journal file was copied.

Abort an online backup at any time by issuing the ABORT BACKUP command; for
more information, see the ABORT BACKUP command. After executing the ABORT
BACKUP command, the files from this backup may not be used to restore the

database. Delete these backup files so they will not be confused with files from valid
backups when you are restoring your database.

END BACKUP
DATAFILE

JOURNAL

Figure 3-67 END BACKUP syntax

 Example 1

The following shows the steps involved in a full online backup. To begin, issue the
BEGIN BACKUP command to notify DBMaker that a full backup is in progress,
and then copy all data and BLOB files to the backup location. Once the files are

copied, issue the END BACKUP DATAFILE command. Then copy all Journal files
to the backup location. Once the files are copied, issue the END BACKUP
JOURNAL command. Following this command the database will return to normal

operation.
BEGIN BACKUP
 Copy data and BLOB files to backup location using OS commands
 Change backup mode if desired
 Abort the backup if desired

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-158

END BACKUP DATAFILE
 Copy Journal files to backup location using OS commands
 Change the backup mode if desired
 Abort the backup if desired
END BACKUP JOURNAL

 Example 2

The following shows the steps involved in an incremental online backup. To begin,
issue the BEGIN INCREMENTAL BACKUP command. DBMaker will list all
Journal files that need to copy and a backup ID for each file. Copy these Journal files

to the backup location, and record the backup ID for use during restoration. Once the
files are copied, issue the END BACKUP JOURNAL command. Following this
command the database returns to normal operation.
BEGIN INCREMENTAL BACKUP
 Copy Journal files to backup location using OS commands
 Abort the backup if desired
END BACKUP JOURNAL

 Example 3

The following shows the steps involved in an incremental online backup that backs up

everything to the point in time the currently active Journal file is copied. To begin,
issue the BEGIN INCREMENTAL BACKUP TO CURRENT command.
DBMaker will list all Journal files that need to be copied and a backup ID for each

file. Copy these Journal files to the backup location, and record the backup ID for use
during restoration. Once the files are copied, issue the END BACKUP JOURNAL
command. Following this command the database returns to normal operation.
BEGIN INCREMENTAL BACKUP TO CURRENT
 Copy Journal files to backup location using OS commands
 Abort the backup if desired
END BACKUP JOURNAL

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-159

3.58 EXECUTE COMMAND
The EXECUTE COMMAND executes a stored command. Use stored commands to
quickly execute frequently used SQL data-manipulation statements without. Only a

DBA, a SYSADM, or a user with the EXECUTE privilege may execute the command.

A stored command is an SQL data-manipulation statement that is compiled and
permanently stored in the database in an executable format. This permits repeated

execution of the stored command without waiting for DBMaker to compile and
optimize it. Stored commands are similar to stored procedures, except they can only
contain a single command and cannot contain program logic.

Use host variables as placeholders for column values in the SQL statement of a stored
command. This permits assigning actual values to the column executing the
command, instead of when creating it. To use host variables in a stored command,

replace any data or column value with a question mark symbol (?).

To execute a stored command that has host variables use constants: results from built-
in functions, the NULL keyword, the DEFAULT keyword, or another host variable.

Only use built-in functions that have no argument, RAND(), PI(), CURDATE(),
or NOW(), when providing a value for a host variable. Use a NULL value for the
host variable. The value represented by the host variable must be capable of accepting

NULL values. The number of parameters provided when executing a stored command
must equal the number of host variables in the command definition.

command_nameName of the stored command to execute

value Input parameter that corresponds to a host variable in the stored
command

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-160

EXECUTE COMMAND command_name

value

,
)(

Figure 3-68 EXECUTE COMMAND syntax

 Example 1

The following executes the stored command named sc1. This stored command has no
input parameters.
EXECUTE COMMAND sc1

 Example 2

The following executes the stored command named sc2; the command has two input
parameters that provide a value.
EXECUTE COMMAND sc2(10002, 10006)

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-161

3.59 GRANT (Execute Privileges)
The GRANT command grants execute privileges on executable database objects to
individual users. Only the object owner, a DBA or a SYSADM may execute the

command.

EXECUTE privileges control which executable database objects a user can use.
DBMaker has three types of executable objects: stored commands, stored procedures,

and projects.

The COMMAND keyword specifies the object as a stored command. Only users with
all security and object privileges necessary to execute the SQL statement that makes

up the stored command and the EXECUTE privilege may use this command.

The PROCEDURE keyword specifies an object being granted the EXECUTE
privilege as a stored procedure. Only the EXECUTE privilege on the stored procedure

is required.

The PROJECT keyword specifies an object being granted the EXECUTE privilege as
a project containing one or more stored procedures. Granting EXECUTE privilege on

a project automatically grants EXECUTE privileges on all procedures in that project.

The user who creates an executable database object is the owner of that object. The
owner and any DBA or SYSADM automatically have EXECUTE privileges on that

object. To grant the EXECUTE privilege to all users grant the privilege to PUBLIC.
All current and future users will then have the EXECUTE privileges on the executable
database object.

executable_nameName of the executable object to grant execute privileges on

user_nameName of the user to grant execute privileges to

group_nameName of the group to grant execute privileges to

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-162

GRANT executable_name

TO

,

user_name

PUBLIC
group_name

COMMAND
PROCEDURE

PROJECT
EXECUTE ON

Figure 3-69 GRANT (Execute Privileges) syntax

 Example 1

The following grants the EXECUTE privilege on the stored command named

ListUserTables to the user named Vivian.
GRANT EXECUTE ON COMMAND ListUserTables TO Vivian

 Example 2

The following grants the EXECUTE privilege on the stored procedure named
ShowUsers to the users named Jenny and John, and the group Managers.
GRANT EXECUTE ON PROCEDURE ShowUsers TO Jenny, John, Managers

 Example 3

The following grants the EXECUTE privilege on all stored procedures in the
InternetFunc to all users using the PUBLIC keyword.
GRANT EXECUTE ON PROJECT InternetFunc TO PUBLIC

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-163

3.60 GRANT (Object Privileges)
The GRANT command grants access privileges on database objects to individual
users. Only the object owner, a DBA or a SYSADM may execute the command.

Object privileges control which database objects a user can access and the actions they
can perform. There are seven object privileges: SELECT, INSERT, DELETE,
UPDATE, INDEX, ALTER, and REFERENCE. The keywords ALL and ALL

PRIVILEGES can also be used to simultaneously grant privileges on an object.

• SELECT privilege is used to select data in a database object, applies to the entire
object, and cannot be granted to specific columns.

• INSERT privilege is used to insert new data into a database object. The privilege
can also be restricted to specific columns.

• DELETE privilege is used to delete data from a database object, applies to the

entire object and cannot be granted on specific columns.

• UPDATE privilege is used to update data in a database object. The privilege can
also be restricted to specific columns.

• INDEX privilege is used to create an index on a database object, applies to the
entire object, and cannot be granted on specific columns.

• ALTER privilege is used to alter the schema of a database object, applies to the

entire object and cannot be granted on specific columns.

• REFERENCE privilege is used to create referential constraints, such as foreign
keys, on a database object. The privilege can also be restricted to specific

columns.

The user who creates a schema object is the owner of that object. The owner and any
DBA or SYSADM automatically has all of the object privileges. System catalog tables

belong to a special virtual user called SYSTEM. All users including the SYSADM have
only SELECT privilege on system catalog tables. Additional object privileges on the
system catalog tables may not be added.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-164

Privileges on specific columns and on the entire database object cannot be granted at
the same time. Use the command twice, once to grant privileges on specific columns,

and once to grant privileges on the entire table. It is possible to grant object privileges
to all users simultaneously by granting the privileges to PUBLIC. All current and
future users will then have those privileges for the database object.

column_nameName of the column to grant object privileges on

table_name...............Name of the table to grant object privileges on

user_nameName of the user to grant object privileges to

group_nameName of the group to grant object privileges to

GRANT column_name

,
)(

,

UPDATE

REFERENCE
INSERT

,

DELETE

INDEX
UPDATE

SELECT

REFERENCE
ALTER

INSERT

ALL
PRIVILEGES

ON table_name TO

,

user_name

PUBLIC
group_name

Figure 3-70 GRANT (Object Privileges) syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-165

 Example 1

The following grants SELECT, INSERT, and UPDATE object privileges on the
Checks table to the user named Vivian.
GRANT SELECT, INSERT, UPDATE ON Checks TO Vivian

 Example 2

The following grants INSERT, UPDATE, and REFERENCE privilege on the

Amount, PayDate columns of the Checks table to the user named Jenny.
GRANT INSERT, UPDATE, REFERENCE (Amount, PayDate) ON Checks TO Jenny

 Example 3

The following grants all object privileges on the table Checks to the user named John.
GRANT ALL ON Checks TO John

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-166

3.61 GRANT (Security Privileges)
The GRANT command creates new users or changes the security privileges of existing
users. Only a SYSADM may execute the command. When creating a database

DBMaker will create the SYSADM default user with no password. Change the
SYSADM password immediately after creating the database to prevent unauthorized
access. The SYSADM user is the only authorized user in the database until security

privileges are granted to other users.

The SYSADM can grant CONNECT, RESOURCE, and DBA security privileges to
a user. Granting CONNECT security privilege effectively adds a new user name to

the database. Once a user name exists, the SYSADM may grant higher security to that
user. Granting higher security privileges does not include lower privileges. Only the
SYSADM may grant security privileges to other users.

CONNECT security privilege is necessary before a user can connect to a database.
Once a user is granted the CONNECT security privilege they have been added to the
database as a user. All users must be granted CONNECT security privilege before

they can be granted any other security privileges. A user with CONNECT security
privilege may create temporary tables in a database, or perform queries on any data
they have been granted permission.

RESOURCE security privilege allows a user to create, alter, and drop- tables,
domains, and indexes. As the owner of any objects they create, users with
RESOURCE privilege may grant and revoke object privileges to other users and create

synonyms and views for any objects they own.

The DBA privilege has the same capabilities as the RESOURCE privilege, but may
also create tablespaces and files. Users with the DBA privilege can also grant or revoke

object privileges for schema objects owned by other users, except system schema
objects.

User names and passwords have a maximum length of eight characters, and may

contain letters, numbers, the underscore character, and the symbols $ and #. The first
character may not be a number.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-167

user_nameName of the user to grant security privileges to

passwordName of the view to remove from the database

CONNECT TO

TO
RESOURCE

DBA user_name

,

,

password
user_name

GRANT

Figure 3-71 GRANT (Security Privileges) syntax

 Example 1

The following grants the CONNECT privileges to users named vivian and jenny with

no password.
GRANT CONNECT TO vivian, jenny;

 Example 2

The following grants the CONNECT privilege to a user named vivian with the
password shuka828 and a user named jenny with the password grala833.
GRANT CONNECT TO vivian shuka828, jenny grala833

 Example 3

The following grants the RESOURCE privilege to users vivian and jenny.
GRANT RESOURCE TO vivian, jenny

 Example 4

The following grants the DBA privilege to users vivian and jenny.
GRANT DBA TO vivian, jenny

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-168

3.62 INSERT
The INSERT command inserts new rows in a table. Rows may not be inserted into
the system catalog tables. Only the table owner, a DBA, a SYSADM, or a user with

the INSERT privilege for the entire table or for the specific column may execute the
command.

Use this command to insert a single row by providing values using the VALUES

keyword. The values provided may be constants, the results of built-in functions, or
bound variables in a program using the ODBC API. Also, use this command to insert
a set of rows using data selected from other tables using a SELECT statement. The

rows selected must have columns with data types compatible the table.

When specifying columns to provide values for, name the columns in any order when
executing the INSERT command. Omitting the column list specifies to use all

columns, in the order created. In this case, provide a value for each column in the
table, even if the value is empty. If the values provided do not match the data type of
the column, DBMaker converts the values to the proper data type. The default value

for a column is used when a value is not provided.

When inserting data into a child table that has a foreign key linking it to a parent
table, use the referential integrity rules. Do not try to insert a value into a child key

that does not exist in the parent key, unless it is a NULL value. Insert a new row in
the parent key first.

To insert a string that contains a single quote, replace the single quote in the string

with two consecutive single quotes. Have an even number of single quotes in a value,
or DBMaker will wait for another single quote to close the string value. To insert the
default value in a row, leave the value empty or specify the default value using the

DEFAULT keyword.

table_name...............Name of the table to insert a new row into

column_nameName of the column to insert a value for

literalLiteral value to be inserted

constant....................Constant value to insert

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-169

bind_variable...........Name of the bound variable to insert, with ODBC only

select_statementStatement to be selected

VALUES)

,

constant

NULL
bind_variable

literal(

select_statement

INSERT INTO table_name

column_name

,
)(

Figure 3-72 INSERT syntax

 Example 1

The following inserts a row into the Employees table.
INSERT INTO Employees VALUES (1234, ‘John’, ‘01/01/1998’, 2500)

 Example 2

The following inserts values into EmpNo, Name, and HireDate columns.
INSERT INTO Employees (EmpNo, Name, HireDate)
 VALUES (1234, ‘John’, ‘01/01/1998’)

 Example 3

The following inserts rows into the Employees table that were selected from the
TempStaff table where the EmpNo column has values greater than 10567.
INSERT INTO Employees (EmpNo, Name, HireDate)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-170

 SELECT EmpNo, Name, HireDate FROM TempStaff WHERE EmpNo > 10567

 Example 4

The following inserts a row into a CHAR column containing a single quote with the
values inserted into all other columns set to the default value using the DEFAULT
keyword.
INSERT INTO T1 VALUES (‘Joe’’s Diner’, DEFAULT, DEFAULT)

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-171

3.63 KILL CONNECTION
The KILL CONNECTION command terminates a user connection to a database.
Only a DBA or a SYSADM may execute the command.

Executing this command frees all lock resources held by this user. Use this command
when a user is holding resources needed by other users for high priority operations, or
when the database administrator must shut down the database and not all users have

logged off.

connection_IDConnection number to kill

KILL CONNECTION connection_ID

Figure 3-73 KILL CONNECTION syntax

 Example

The following kills the connection for the user connection ID 12345.
KILL CONNECTION 12345

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-172

3.64 LOAD STATISTICS
The LOAD STATISTICS command loads statistics from a text file containing
statistical data for a DBMaker database. Create a statistics file for a database using the

UNLOAD STATISTICS command. This file may be edited using any ASCII text
editor and can be modified to provide any statistical data for testing or other purposes.
Only a DBA or a SYSADM may execute the commands.

file_nameName of the file containing the statistical data to load

LOAD STATISTICS FROM file_name

Figure 3-74 LOAD STATISTICS syntax

 Example

The following example loads the statistics file stat.dat into the database.
LOAD STATISTICS FROM stat.dat

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-173

3.65 LOCK TABLE
The LOCK TABLE command controls access to a table by other users. Only the table
owner, a DBA, a SYSADM, or a user with the SELECT privileges (to lock the table in

SHARE mode) or the UPDATE or DELETE privileges (to lock the table in
EXCLUSIVE mode may execute this command.

This command locks a table in SHARE or EXCLUSIVE mode to control access to a

table. SHARE mode allows other users read access to the table but denies write access;
other users cannot insert, update, or delete rows if the table is locked in SHARE
mode. EXCLUSIVE mode denies other users both read and write access. Other users

cannot select, insert, update, or delete rows if the table is locked in EXCLUSIVE
mode.

Use this command to reduce the number of locks acquired in a database operation. If

the default lock level on a table is page or row, use this command to get a table level
lock in order to avoid getting many lower level locks. In general, there is no need to
do this since DBMaker automatically upgrades the lock level on a table if too many

locks are acquired.

The WAIT/NO WAIT keywords are optional. These keywords specify whether
DBMaker should wait to acquire a lock if the lock is not available immediately. If

specifying the NO WAIT option, DBMaker does not wait to acquire a lock and
returns an error message stating the lock could not be acquired. The amount of time
DBMaker wait is determined by the DB_LTIMO keyword in the dmconfig.ini file.

The default value is WAIT.

table_nameName of the table to change the lock settings for

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-174

MODE
SHARE

EXCLUSIVE

WAIT

NO WAIT

LOCK TABLE table_name IN

Figure 3-75 LOCK TABLE syntax

 Example 1

The following locks the Employees table in SHARE mode with the WAIT option.
LOCK TABLE Employees IN SHARE MODE WAIT

 Example 2

The following locks the Employees table in EXCLUSIVE mode with the NO WAIT
option.
LOCK TABLE Employees IN EXCLUSIVE MODE NO WAIT

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-175

3.66 REBUILD INDEX
The REBUILD INDEX command rebuilds an existing index on a table. Only the
table owner, a DBA, a SYSADM, or a user with the INDEX privilege for that table

may execute the command.

An index is a mechanism that provides fast access to specific rows in a table based on
the values of one or more columns, known as the key. Indexes contain the same data

as the key columns from the table they are based on, but the data is structured and
sorted to make retrieval much faster than the table. Its’ operation is transparent to
users of the database. The DBMS uses the index to improve query performance

whenever possible.

Rebuild an index for any table creating a denser unfragmented index and increasing
efficiency.

index_nameName of the index to rebuild

table_nameName of the table to rebuild the index for

REBUILD TEXT INDEX text_index_name FOR table_name

Figure 3-76 REBUILD INDEX syntax

 Example

The following rebuilds the index named NameIndex from the Employees table.
REBUILD INDEX NameIndex FOR Employees

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-176

3.67 REBUILD TEXT INDEX
The REBUILD TEXT INDEX command rebuilds an IVF or signature text index for
a table. This updates the text index to include new data. Only the table owner, a

DBA, a SYSADM, or a user with the INDEX privilege for that table may execute the
REBUILD TEXT INDEX command.

A text index is a mechanism that provides fast access to rows in a table that contain

one or more words or phrases in columns containing text. Text indexes contain a
representation of all the text found in the text columns they are based on, but the data
is encoded and structured to make retrieval much faster than directly from the table.

An index operation is transparent to users. The DBMS uses the index to improve full-
text query performance.

When loading data into a table, DBMaker does not update any text indexes on that

table, thus loading all data before creating a text index. Rows containing matching
text entered into a table after the text index was created will not be returned with the
full-text query results. To include these rows in the search results, rebuild the text

index using the REBUILD TEXT INDEX command.

The incremental option is the default setting for the REBUILD TEXT INDEX
syntax. Incremental appends text entered into a table after the text index was created,

thus making the text available to be returned with full-text query results. The full
option rebuilds an entire text index by dropping and rebuilding the index based on a
new full-text query.

text_index_nameName of the text index to rebuild

table_name...............Name of the table to rebuild the text index on

incrementalcreates a partial index and appends it to the current index

full...........................drops the current index and creates a new index

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-177

REBUILD TEXT INDEX text_index_name FOR table_name

Figure 3-77 REBUILD TEXT INDEX syntax

 Example

The following rebuilds the text index named TxtIdx on the Employees table.
REBUILD TEXT INDEX TxtIdx FOR Employees

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-178

3.68 REMOVE FROM GROUP
The REMOVE FROM GROUP command removes a user from an existing group.
The user will lose all object privileges that have been granted to the group, but retain

any privileges that have been granted to them directly. Only users with SYSADM or
DBA may execute the command.

Groups simplify the management of object privileges in a database with a large

number of users. Use a group to organize users and/or groups. Any object privileges
granted to the group are automatically granted to all members in the group.

Members added to a group after object privileges have been granted gain those object

privileges in addition to the object privileges that have been granted to them directly.

Specify a group name in place of the user name, as long as the group you are trying to
remove is not a part of the group that you are currently using. User and group names

have a maximum length of eight characters, and may contain letters, numbers, the
underscore character, and the symbols $ and #. The first character may not be a
number.

user_nameName of the user to remove from the group

group_nameName of the group to remove the user from

REMOVE FROM GROUP group_name
user_name

,

Figure 3-78 REMOVE FROM GROUP syntax

 Example 1

The following removes the user named Vivian from the group SalesStaff.
REMOVE Vivian FROM GROUP SalesStaff

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-179

 Example 2

The following removes the group named NYSalesStaff from the group named
SalesStaff.
REMOVE NYSalesStaff FROM GROUP SalesStaff

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-180

3.69 RESUME SCHEDULE
The RESUME SCHEDULE command resumes a suspended replication schedule for
an asynchronous table. Only the local table owner, a DBA or a SYSADM may execute

the command.

remote_database_name….Name of the remote database to resume the replication

 schedule for

RESUME SCHEDULE FOR REPLICATION TO remote_database_name

Figure 3-79 RESUME SCHEDULE syntax

 Example

The following resumes the replication schedule for the remote database named
DivOneDb.
RESUME SCHEDULE FOR REPLICATION TO DivOneDb

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-181

3.70 REVOKE (Execute Privileges)
The REVOKE command revokes execute privileges on executable database objects
from individual users or groups. Only the object owner, a DBA, or a SYSADM may

execute the command.

Execute privileges control which executable database objects a user can use. DBMaker
includes the stored command, stored procedure, and project executable objects.

The COMMAND keyword specifies revoking of the EXECUTE privilege on a stored
command. Only users with all security and object privileges necessary to execute the
SQL statement that makes up the stored command in addition to having EXECUTE

privilege on the command may execute a stored command.

The PROCEDURE keyword specifies revoking of the EXECUTE privilege on a
stored procedure. Only the EXECUTE privilege on the stored procedure is required

to execute this command.

The PROJECT keyword specifies revoking of the EXECUTE privilege on a project
containing one or more stored procedures. Revoking EXECUTE privilege on a

project automatically revokes EXECUTE privileges on all procedures in that project.

Only the owner, a DBA or a SYSADM automatically have the EXECUTE privilege.
It is possible to revoke EXECUTE privileges from all users simultaneously by

revoking the privilege from PUBLIC. All current users will lose EXECUTE privileges
on the executable database object.

executable_nameName of the executable object to revoke execute privileges on

user_nameName of the user to revoke execute privileges from

group_nameName of the group to revoke execute privileges from

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-182

REVOKE executable_name

FROM

,

user_name

PUBLIC
group_name

COMMAND
PROCEDURE

PROJECT
EXECUTE ON

Figure 3-80 REVOKE (Execute Privileges) syntax

 Example 1

The following revokes EXECUTE privilege on the stored command named

ListUserTables from the user named Vivian.
REVOKE EXECUTE ON COMMAND ListUserTables FROM Vivian

 Example 2

The following revokes the EXECUTE privilege on the stored procedure named
ShowUsers from the users named Jenny and John, and the group Managers.
REVOKE EXECUTE ON PROCEDURE ShowUsers FROM Jenny, John, Managers

 Example 3

The following revokes the EXECUTE privilege on all stored procedures in the
InternetFunc from all present and future users using the PUBLIC keyword.
REVOKE EXECUTE ON PROJECT InternetFunc FROM PUBLIC

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-183

3.71 REVOKE (Object Privileges)
The REVOKE command revokes access privileges on database objects from individual
users or groups. Only the object owner, a DBA or a SYSADM may execute the

command.

Object privileges control which database objects a user can access and the actions they
can perform. There are seven object privileges SELECT, INSERT, DELETE,

UPDATE, INDEX, ALTER, and REFERENCE. The keywords ALL and ALL
PRIVILEGES can also be used to simultaneously revoke all privileges on an object.

• SELECT privilege- permits selection of data in a database object, applies to the

entire object and cannot be granted on specific columns.

• INSERT privilege- permits insertion of new data into a database object. The
privilege can also be restricted to specific columns.

• DELETE privilege- permits the deletion of data from a database object, applies
to an entire database object, and cannot be granted on specific columns.

• UPDATE privilege- permits updates of data in a database object. The privilege

can also be restricted to specific columns.

• INDEX privilege- permits creation of an index for a database object, which
cannot be granted on specific columns.

• ALTER privilege- permits altering the schema of a database object, applies to the
entire object and cannot be granted on specific columns.

• REFERENCE privilege- permits creation of referential constraints, foreign keys,

on a database object. The privilege can also be restricted to specific columns.

System catalog tables belong to a special virtual user called SYSTEM. All users
including the SYSADM have only SELECT privilege on system catalog tables. Object

privileges on the system catalog tables may not be revoked.

To privileges on specific columns and on the entire database object, use the command
twice, once to revoke privileges on specific columns, and once to revoke privileges on

the entire table. It is possible to revoke object privileges to all users simultaneously by

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-184

revoking the privileges from PUBLIC. All current users will then lose those privileges
on the database object.

column_nameName of the column to revoke object privileges on

table_name...............Name of the table to revoke object privileges on

user_nameName of the user to revoke object privileges from

group_nameName of the group to revoke object privileges from

REVOKE column_name

,
)(

,

UPDATE

REFERENCE
INSERT

,

DELETE

INDEX
UPDATE

SELECT

REFERENCE
ALTER

INSERT

ALL
PRIVILEGES

ON table_name FROM

,

user_name

PUBLIC
group_name

Figure 3-81 REVOKE (Object Privileges) syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-185

 Example 1

The following revokes the SELECT, INSERT, and UPDATE object privileges on the
Checks table from the user named Vivian.
REVOKE SELECT, INSERT, UPDATE ON Checks FROM Vivian

 Example 2

The following revokes the INSERT, UPDATE, and REFERENCE object privileges

on the Amount and PayDate columns of the Checks table from the user named
Jenny.
REVOKE INSERT, UPDATE, REFERENCE (Amount, PayDate) ON Checks FROM Jenny

 Example 3

The following revokes all object privileges on the table Checks from the user named
John.
REVOKE ALL ON Checks FROM John

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-186

3.72 REVOKE (Security Privileges)
The REVOKE command removes a user from a database or changes the security
privileges of a user. Only a SYSADM may execute the command.

The SYSADM can revoke DBA, RESOURCE, and CONNECT privileges from a
user. Revoking the CONNECT privilege effectively removes a user ID from the
database. Once a user ID is removed, that user can no longer connect to the database.

Revoking lower security privileges does not revoke higher ones, with the exception of
the CONNECT security privilege. Revoking the CONNECT security privilege
revokes all higher security privileges.

The DBA privilege has all of the same capabilities as the RESOURCE privilege, but
may additionally create tablespaces and files. Users with DBA privileges can also grant
or revoke object privileges for schema objects owned by other users, except for system

schema objects.

The RESOURCE privilege allows a user to create, alter, and drop all tables, domains,
and indexes. As the owner of any objects they create, users with RESOURCE security

privilege may grant and revoke object privileges to other users and create synonyms
and views for any objects they own.

The CONNECT privilege is necessary before a user can connect to a database. Once

a user is granted a CONNECT privilege, they have been added to the database as a
user. All users must be granted the CONNECT security privilege before they can be
granted any other security privileges. A user with the privilege may create temporary

tables in a database, or perform queries on any data to which they have been granted
permission.

user_nameName of the user to revoke security privileges from

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-187

REVOKE FROM
CONNECT

DBA
RESOURCE

user_name

,

Figure 3-82 REVOKE (Security Privileges) syntax

 Example 1

The following revokes the DBA privilege from the users named vivian and jenny.
REVOKE DBA FROM vivian, jenny

 Example 2

The following revokes the RESOURCE privilege from the users named vivian and
jenny.
REVOKE RESOURCE FROM vivian, jenny

 Example 3

The following revokes the CONNECT privilege from the users named vivian and

jenny, revoking all privileges and removing the users from the database.
REVOKE CONNECT FROM vivian, jenny

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-188

3.73 ROLLBACK
The ROLLBACK command rolls back the current transaction to the beginning of the
transaction or to a predefined savepoint. Any user with CONNECT or higher

privileges can execute the command.

Use the ROLLBACK command to roll back all changes made by commands in a
current transaction. Using the ROLLBACK command releases all locks acquired by a

transaction. This command does not function while a database is running in the
AUTOCOMMIT mode.

Also, use the ROLLBACK command to roll back a portion of the changes made by

commands in a current transaction. Commands executed after the savepoint are rolled
back, but no commands before the savepoint are. The transaction remains active and
no locks are released.

savepoint_nameName of the savepoint to roll back to

ROLLBACK
WORK

TO savepoint_name

Figure 3-83 ROLLBACK syntax

 Example 1

The following rolls back the entire active transaction, effectively aborting the

transaction. All locks acquired by the transaction are released.
ROLLBACK WORK

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-189

 Example 2

The following rolls back all commands executed after the savepoint, SavePoint1, but
retains commands executed before the savepoint; the transaction remains active and

locks are not released.
ROLLBACK TO SavePoint1

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-190

3.74 SAVEPOINT
The SAVEPOINT command sets a savepoint in the current transaction and assigns a
name. Only users with CONNECT or higher privileges may execute the command.

The SAVEPOINT command can be used in conjunction with the ROLLBACK
command, to roll back a portion of the commands in a transaction. Specify a
savepoint name in the ROLLBACK command and DBMaker rolls back all

commands that were executed after the savepoint. The transaction remains active and
locks acquired by the transaction are not released.

When specifying a savepoint name that does not exist, DBMaker rolls back the entire

transaction and returns an error. The transaction is aborted and all locks acquired by
the transaction are released. If trying to assign the same savepoint name twice in the
same transaction, the first savepoint is canceled and the name is assigned to the second

savepoint.

savepoint_nameName to assign to the savepoint

SAVEPOINT savepoint_name

Figure 3-84 SAVEPOINT syntax

 Example

The following sets a savepoint named SavePoint1 in the active transaction.
SAVEPOINT SavePoint1

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-191

3.75 SELECT
The SELECT command allows you to find, retrieve, and display data. Only the table
owner, a DBA, a SYSADM, or a user with the SELECT privilege for that table may

execute the SELECT command on a table.

The result of the SELECT command is a set of rows known as the result set, which
meets the conditions specified. Specify the tables or views in a database to query; the

condition data must meet to be returned in the result set, and the sequence in which
the data in the result set is output. A SELECT statement can be a UNION of several
single commands.

selectSELECT clause lists the columns to retrieve data from

fromFROM clause lists the tables the columns are located in

where.......................WHERE clause specifies criteria return values must match

group by...................GROUP BY clause specifies groups for summary results

havingHAVING clause specifies filter conditions for summary results

order byORDER BY clause specifies the sort order

for browseFOR BROWSE clause specifies only shared locks should be
acquired on the data in the query

into INTO clause specifies the table where the result will be inserted

limitLIMIT clause specifies the number of return records from offset
n for the entire return set

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-192

order by into for browse

UNION ALL

UNION

fromselect

having
group bywhere

Figure 3-85 SELECT (using FROM) syntax

SELECT WITHOUT FROM

The SELECT without the use of the FROM syntax is used to get UDF or expression
results. It does not require the user to use the FROM table clause in the query. Thus,

the user cannot specify a column or table name in the SELECT without the use of the
FROM query.

The following syntax cannot be used in conjunction with the SELECT without the

use of the FROM syntax: WHERE, GROUP BY, HAVING, ORDER BY,
DISTINCT, and UNION.

SELECT expression

AS label()

Figure 3-86 SELECT without the use of the FROM syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-193

 Example
select abs(100), cos(100.0);

SELECT Clause

The SELECT clause contains the SELECT keyword and the list of database objects or
expressions to include in the result set. Use the ALL or DISTINCT keywords to

indicate whether duplicate values should be returned. DBMaker returns all rows by
default when either the ALL or DISTINCT keywords are not specified.

The value in the result list may be a column name, an expression, a constant, or an

asterisk (*). An asterisk represents all columns from the source table. Optionally prefix
a source name in front of the column name or asterisk.

Use any of the four basic types of expressions column, constant, function, and

aggregate functions, in the select item list. If including a constant in the select list, the
same value is returned for every row. An aggregate function returns one value for a set
of rows. Aggregate functions are usually used in the GROUP BY clause.

Use the OID associated with each row in a table as a column name by using the name
“OID” in the column list. The OID is essentially a hidden column whose value
uniquely identifies each row in a database. The OID values are not necessarily

sequential.

Use a display label to assign a temporary name to a column in the result set or to
values generated by an expression that do not come from a column. Use the AS

keyword to assign a display label to a column in the result set.

expressionExpression that returns a value to include in the result set.

column_nameName of a column to retrieve data values from.

labelName for the result set column that is different from the original
name for the source column.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-194

,

*

expression

column_name AS label

SELECT
DISTINCT

ALL

Figure 3-87 SELECT Clause syntax

FROM Clause

The FROM clause lists table sources and views used to select the data from. This

identifies where the column name comes from if there are ambiguities. The source
may be a table name, a view name a query result, or a synonym name. A source may
be a single source, or an outer source which has the keyword OUTER followed by one

or more single sources.

Supply an correlation name for a table name to refer to the table in other clauses of
the SELECT statement. This may help make the statement more readable.

Correlation names are especially useful with self-joins.

 Example:

The following query selects values from t2 that correspond to the maximum value
from column c1 and groups them by values from c2. Finally, the result set is given the
correlation name t3.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-195

SELECT * FROM (select max(c1) FROM t2 GROUP BY c2) AS t3 (c1);

Use the OUTER JOIN keyword OUTER, LEFT OUTER, JOIN, or LEFT JOIN to
form outer joins. There can be more than one OUTER JOIN keyword in a SELECT

statement. All sources before the OUTER keyword must be dominant sources. All of
the sources after the OUTER JOIN keyword must be subservient sources. Specify all
of the outer join table sequences in the FROM clause and specify the outer join factor

in the WHERE clause. The entire join factor in the WHERE clause will be treated as
the Outer Join factors. The other factors will be evaluated before the Outer Join
factors.

DBMaker also support ANSI and ODBC outer join syntax to specify the outer join
factors in the ON clause. The other factors in the WHERE clause will be evaluated
after the outer join factors.

A CROSS JOIN specifies the cross product of two tables. Returns the same rows as if
no WHERE clause was specified in an old-style, non-SQL-92-style join. The result is
same as if a user specified ',' in the FROM table_list.

 Example
select * from t1 cross join t2 cross join t3 where t1.c1 = t2.c1 and t2.c2 =
t3.c3;

The result is same as the following query:

 Result
ex: select * from t1,t2,t3 where t1.c1 = t2.c1 and t2.c2 = t3.c3;

In DBMaker 3.5 and later version, manually specify the type of scan to use in a query,

and which index to use in a scan. In addition, the DBMaker query optimizer now
automatically determines the most efficient type of scan to use, even if you have not
recently updated database statistics.

source.......................Name of the table to retrieve data from or query result.

index_nameName of the index to use for scanning

alias.........................Alternate name for the source used in other clauses

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-196

FROM

(

alias
source

,

)

()

ANSI Join

DBMaker Outer Join

ODBC Outer Join

Cross Join

Figure 3-88 FROM Clause syntax

 Example

Force an index scan with the following syntax.
tablename (INDEX [=] idxname [ASC|DESC])

The value of 0 can be used to force a table scan or the value 1 can be used to force a

primary key index scan, may also be used.

SOURCE SUBCLAUSE

The source subclause used in the FROM clause may be either a table name or a result

set from a query. To use the result set from a query, use the syntax provided in Figure
3-89.

Correlation_name.....Represents the result set of a subquery.

table_name

(select_statement)

AS
(column)

correlation_name
)(

,

Figure 3-89 Source subclause syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-197

WHERE Clause

Use the WHERE clause to specify the search condition and join criteria on the data
being selected. If a row satisfies the search conditions, it is returned as part of the
result set. Refer to the sub query topic to see how to use a SELECT statement, sub

query, within a WHERE clause.

Use the percent symbol (%) and the underscore symbol (_) as wildcards in the quoted
strings. The percent symbol matches zero or more characters, and the underscore

symbol matches exactly one character. The ESCAPE clause is optional and permits
the defining of an escape character in order to include the percentage sign and
underscore characters in a quoted string without having them interpreted as wildcards.

Use two consecutive single-quotes to include a single-quote character in a quoted
string.

The predicate used in the WHERE clause may be a simple comparison using the

following:

• Relational Operators — these may be one of the following: >, >=, <=, <, =, and
<>. The relational operator condition is satisfied when the expression on either

side of the relational operator fulfills the relation set up by the operator.

• BETWEEN — this comparison takes the form: x BETWEEN y AND z; the
BETWEEN condition is satisfied when the value or expression to the left of the

BETWEEN keyword lies in the inclusive range, denoted by the AND keyword,
of the two expressions on the right of the keyword.

• IN — this comparison takes the form: x IN (y, z, ...); the IN condition is

satisfied when the value or expression to the left of the IN keyword is included
in the list of values to the right of the keyword.

• IS NULL — this takes the form: x IS NULL; the IS NULL condition is satisfied

when the value or expression to the left of the IS NULL keywords is a NULL
value.

• IS NOT NULL — this takes the form: x IS NOT NULL; the IS NOT NULL

condition is satisfied when the value or expression to the left of the IS NOT
NULL keywords contains a value other than a NULL value.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-198

• LIKE — this takes the form: x LIKE ‘y’ ESCAPE ‘z’; the LIKE condition is
satisfied when the string value or expression to the left of the LIKE keyword

meets the criteria specified in the case-sensitive quoted string to the right of the
keyword.

• MATCH — this takes the form: x NOT CASE MATCH ‘y’; the MATCH

condition is satisfied when the quoted string to the right of the MATCH
keyword matches the entire string value or expression to the left of the keyword.
The NOT keyword inverts the search results and CASE keywords keyword

makes the search case-sensitive, both are optional.

• CONTAIN — this takes the form x NOT CASE CONTAIN ‘y’; the CONTAIN
condition is satisfied when the quoted string to the right of the CONTAIN

keyword matches any part of the string value or expression to the left of the
keyword. The NOT keyword inverts the search results and the CASE keywords
makes the search case-sensitive, both are optional.

• CONTAINS – the contains operator’s condition is satisfied when the
concatenated string from concatenate columns matches the string pattern.

Can use the syntax: [NOT] CONTAINS (column || column [|| column]…,

'string pattern'[, option string])

 Example:

The following select statement will select the record from c4 where both c1 and
c4 contain the string 'Mail Server'. The option CASE makes the search case-
sensitive.

Select c4 from mcol where contains (c1 || c4 'Mail Server', CASE)

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-199

WHERE

AND

OR

predicate

predicate)(NOT

Figure 3-91 WHERE Clause syntax

CAST

CAST allows the output data to be converted to another data type. The chart below
illustrates valid conversions. The table denotes the behavior of data types that are

converted from row X to column Y.

The Numeric, Character, and Date/Time data types include multiple data types.
Numeric data types include; integer (int, serial), smallint, float, double, and decimal.

Character data types include char and varchar. Date/Time data types include; date,
time, timestamp.

Xy Int
(serial)

Small-
int

decimal double float (Var)
char

(var)
binary

date time Time-
stamp

file blob clob

Int(serial) Y Y Y Y Y Y N N N N N N N
Smallint Y Y Y Y Y Y N N N N N N N
decimal Y Y Y Y Y Y N N N N N N N
double Y Y Y Y Y Y N N N N N N N
float Y Y Y Y Y Y N N N N N N N
(Var)char Y Y Y Y Y Y Y Y Y Y N N N
(var)binary N N N N N Y N N N N N N N
date N N N N N Y N Y N Y N N N
time N N N N N Y N N Y N N N N
Time-
stamp

N N N N N Y N Y Y Y N N N

file N N N N N Y Y N N N Y N N
blob N N N N N Y Y N N N N Y Y
clob N N N N N Y Y N N N N Y Y

Table 3-1 CAST Conversion Table

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-200

 Example 1

Use CAST() in a WHERE predicate.
SELECT * FROM t1 WHERE CAST(c1 AS CHAR(20)) like ‘2001%’;

 Example 2

Use CAST() in an expression.
SELECT CAST(c1+c2 as CHAR(10)) FROM t1

 Example 3

Use a nested CAST () statement.
SELECT CAST(CAST(123 as CHAR(10)) || CAST(45 as CHAR(10)) as INT) FROM t1

CASE

CASE is an SQL 99 function.

CASE

CASE
WHEN condition

expression WHEN condition

THEN

ELSE

expression END
expression

Figure 3-90CASE Syntax

 Example 1

CASE WHEN p1 THEN v1 ELSE CASE WHEN p2 THEN v2 ELSE… ELSE vn
END…END. This means that if p1 is true then v1 else if p2 is true then v2 else…else

vn. This statement can be performed with the following:
Select case when c1=3 then c2 else case when c1=5 then c3 else c4 end end from
t1;

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-201

 Example 2

CASE c1 WHEN d1 THEN v1 ELSE CASE c1 WHEN d2 THEN v2 ELSE…ELSE
vn END…END. This means that if c1=d1 then v1 else if c1=d2 then v2 else…else

vn. This statement can be performed with the following:
Select case c1 when 3 then c2 else case c1 when 5 then c3 else c4 end end from
t1;

 Example 3

CASE WHEN p1 THEN v1 WHEN p2 THEN v2 WHEN…ELSE vn END. This
means that if p1 is true then v1 else if p2 is true then v2 else…else vn. This statement
can be performed with the following:
Select case when c1=3 then c2 when c1=5 then c3 else c4 end from t1;

COALESCE

COALESCE is an SQL 99 function. COALESCE (v1, v2, v2,….vn) is equivalent to

“if v1 US NOT NULL then v1 else if v2 IS NOT NULL then v2 else………….else
vn”.

COALESCE expression()
expression,

Figure 3-91 COALESCE Syntax

 Example 1
Select coalesce(c1, 7) from t1;

 Example 2
Select coalesce(c1, c2, c3, 7) from t1;

NULLIF

NULLIF is an SQL 99 function. NULLIF(v1, v2) is the equivalent to “if v1=v2 then
NULL else v1.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-202

NULLIF expression ,()expression

Figure 3-92NULLIF Syntax

 Example 2
Select nullif(c1, 7) from t1;

 Example 2
Select nullif(t1.c1, t2.c1) from t1, t2;

Compound Comparisons

Combine simple conditions with the logical operators AND, OR, and NOT to form
compound conditions. Use the AND keyword to combine two search conditions

which must be both true. Use the OR keyword to combine two search conditions
when one or the other (or both) must be true. Finally, use the NOT keyword to select
rows where a search condition is false.

 Example 1
SELECT * from Customer
 WHERE City NOT IN (‘LA’, ‘NY’) AND Age > 40;

 Example 2
SELECT * From Orders
 WHERE Price > 10,000 OR Ship_Date = TODAY;

Join Conditions

A join condition is a relational operators comparison on two columns where each
column is from a different table (like: Orders.CusNum = Customer.CusNum).

Join two tables when creating a relationship with a join condition in the WHERE
clause between columns from two tables. The effect of the join is to create a
temporary composite table in which each pair of rows, one from each table, satisfying

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-203

the join condition is linked to form a single row. There are four table join types, two-
table-joins, multiple table-joins, self-joins, and outer-joins.

ON <SEARCH_CONDITION>

The ON <search_condition> specifies the condition on which the join is based. The
condition can specify any predicate, although columns and comparison operators are

often used.

 Example
SELECT ProductID, Suppliers.SupplierID
FROM Suppliers JOIN Products
ON (Suppliers.SupplierID = Products.SupplierID)

ANSI OUTER-JOIN

An outer join is a join of two or more tables with outer-join conditions for pairs of

tables. An outer-join condition is a comparison, relational operators, on two columns
from each table. All records of the left most table, will be returned and the result of
the right table will be NULL if the outer-join condition is FALSE.

FROM

alias
source

,

(

alias
Source

,
Right Join

Left Join
Inner Join

 Join

ON
condition

)

Figure 3-93 ANSI Join syntax

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-204

DBMAKER OUTER-JOIN

The following syntax is old DBMaker syntax. The difference with the ANSI outer-
join syntax is the outer join factor is decided by the DBMaker optimizer. The

RIGHT-JOIN is not supported with the following syntax and users cannot mix the
following syntax with the ANSI outer-join syntax.

(FROM

alias
source

,

alias
Source

,
Left Join

Outer
 Left Outer

Join

)

Figure 3-94DBMaker Outer-Join Syntax

ODBC OUTER-JOIN

The ODBC Outer-Join uses the same syntax as the ANSI Outer-Join with the
exception that all of the options must be used.

FROM

alias
source

,

alias
Source

,
Right Join

Left Join

ON
condition

 { oj

}

Figure 3-95 ODBC Outer-Join Syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-205

SELF-JOIN

To join a table to itself, list the table name twice in the FROM clause and assign it
two different aliases. Use the aliases to refer to each of the “two” tables in the

WHERE clause. Suppose in the Employee table that there is a Manager_ID field,
which is an employee ID for managers.

 Example

To list all of the employee’s names together with their manager’s name, join the
Employee table with itself
SELECT e.Emp_Name AS Emp, m.Emp_name AS Manager
 FROM Employee e, Employee m
 WHERE e.Manager_Id = m.Emp_Id

RIGHT-JOIN

Right-Join specifies that all rows from the right table not meeting the join condition
to be included in the result set, and output columns that correspond to the other table

are set to NULL, in addition to all rows returned by the inner-join.

 Example
select * from t1 right join t2 on t1.c1 = t2.c1;

INNER-JOIN

The usage of INNER JOIN specifies that all matching pairs of rows be returned. It
will discard unmatched rows from both tables. This is the default join type if only the

JOIN keyword is specified in a query.

 Example 1
select * from t1 inner join t2 on t1.c1 = t2.c1;

 Example 2
select * from t1 join t2 on t1.c1 = t2.c1;

 Result
select * from t1, t2 where t1.c1 = t2.c1;

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-206

TWO TABLE-JOIN

A two-table join combines two tables with join conditions.

 Example

The following is a two table-join, which combines the Emp_Name with the
Dept_Name using Dept_id.
SELECT Emp_Name, Dept_Name FROM Employee, Department
 WHERE Employee.Dept_id = Department.Dept_Id

 Example

The following is a two table outer join which selects all records of the Department
table and produce NULL for the project that does not belong to this department
SELECT Dept_id, Dept_Name, Proj_Name FROM Department d outer Project p
WHERE d.Dept_id = e.Dept_Id

MULTIPLE TABLE-JOIN

A multiple table-join is a join of more than two tables with join conditions for pairs of

tables. A join condition is a comparison, relational operators, on two columns from
each table.

 Example

The following is a three table-join, which selects all the projects engaged by the
employees in the Engineering department.
SELECT Dept_Name, Proj_Name FROM Department d, Project p, Employee e
 WHERE d.Dept_id = e.Dept_Id AND
 p.Emp_Id = e.Emp_Id AND
 Dept_Name = ‘Engineering’

GROUP BY Clause

Use the GROUP BY clause to produce summary data within a group. A group is a set
of rows that have the same values of group by columns. A single row of aggregate
results is produced for each group. The column to group results by is identified by

column name or display label.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-207

Using the GROUP BY clause restricts can be entered in the SELECT clause. A select
item in a group by query must be one of the following:

• An aggregate function used to produce a single value to summarize the rows
contained in a group.

• A grouping column, which is listed in the GROUP BY clause.

• A constant.

• An expression involving an above combination.

In practice, a GROUP BY query always includes both a grouping column and an

aggregate function. Each row that contains a null value in a column, specified by the
GROUP BY clause, belongs to a single group; all null values are grouped into one
group.

AND

OR

predicate

predicate)(NOT

HAVING

GROUP BY
,

column_name

Figure 3-96 GROUP BY Clause syntax

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-208

 Example

The following uses SELECT to retrieve Dept_Id and AVG(salary) for each employee
and then adds the employees AVG(salary) to ID 1 to get an average salary for the

entire group.
SELECT Dept_Id, AVG(Salary) FROM Employee
 GROUP BY Dept_Id;
SELECT Dept_Id AS ID1, AVG(Salary) FROM Employee
 GROUP BY ID1;

HAVING Clause

The HAVING clause is used to select or reject a group. A sub-query can appear in the
having clause. Refer to the SUBQUERY section for more information.

 Example

The following example shows the average sales amount for departments with total

sales exceeding one million dollars.
SELECT Dept_Name, AVG(Amount) FROM Sales
 GROUP BY Dept_Name
 HAVING SUM(Amount) > 1000000

ORDER BY Clause

The result rows of a query are not arranged in any particular order. Use the ORDER
BY clause to sort query results by the values contained in one or more columns.

The ASC/DESC keywords specify the sort order of the results as ascending, smallest
value first, or descending order. The default order is ascending. NULL values are
treated as larger that non-null values for sorting purposes. Using the ASC keyword to

specify sort order, NULL values would come after any non-null values.

column_nameName of the column or display label in the SELECT list to sort

 the query results by

column_numberInteger that represents the placement of a column or expression

 in the SELECT list

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-209

expressionTo sort the result query by a specified expression

ORDER BY

,

ASC
DESC

column_name

column_number

Figure 3-97 ORDER BY Clause syntax

 Example 1

The following sorts the results by name in ascending order by default, and age in

descending order.
SELECT Name, Address, Age FROM Customer
 ORDER BY Name, Age DESC

 Example 2

The following uses a column number and display label in the ORDER BY clause.
SELECT Dept_Id, Salary + Bounce AS Total_Com, Emp_Name
 FROM Employee
 ORDER BY 1, Total_Com

UNION OPERATOR

Use the UNION operator to combine the results of two or more queries into one

result. Duplicate rows are removed from the combined results when using the
UNION operator and the combined results have distinct values for each row. If
certain that no duplicate rows exist in individual results, or to keep duplicate rows, use

the UNION ALL keywords. UNION ALL keeps the rows from individual result sets
and is faster than the UNION operator.

There are restrictions on results that can be combined by a UNION operator:

• The two results need to contain the same number of columns.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-210

• The corresponding items in each result must have compatible data types, not
the same column names. The column name of the first result becomes the

column name of the combined result.

• Use an ORDER BY clause following the last SELECT clause and refer to the
ordered column by its position in the SELECT list column number.

 Example 1

The following shows the use of the UNION clause in a SELECT statement.
SELECT C1, C2 FROM T1
 UNION
SELECT C3, C4 FROM T2
 ORDER BY 2

 Example 2

The following example shows the use of the UNION ALL clause in a SELECT

statement.
SELECT ‘MOVIE’, Event FROM Entertainment WHERE Type = ‘MOVIE’
 UNION ALL
SELECT ‘BOOK’, Name FROM MyBook

SUB-QUERIES

A sub-query is a query that appears within the WHERE or HAVING clause of

another SQL statement. A sub query is always enclosed in parentheses, but otherwise
it has the same form of a SELECT statement.

A sub-query must produce a single column of data as its query result. In addition,

when the query result is used in a simple relational operator comparison, the sub
query must only create a single row value.

 Example

The following is a sub query selects employees whose salary is greater than the average.
SELECT Name FROM Employee
 WHERE Salary > (SELECT AVG(Salary) FROM Employee)

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-211

IN SUB-QUERY

The IN sub-query is a membership test. It is true if the value of the expression
matches one or more of the values selected by the sub query. In the IN, membership

test the sub query may return more than one row of one column data.

 Example

The following selects all the employees whose department is located in NY.
SELECT Name FROM Employee
 WHERE Dept_Id
 IN (SELECT Dept_Id FROM Department WHERE City = 'NY'’)

EXISTS SUB-QUERY

The existence test checks whether a sub query produces any rows. In a sub-query,

sometimes it is necessary to refer to the value of a column in the “current” row of the
main query. This is called an outer reference. The d.Dept_id column in the example is
an outer-reference. There can be multiple levels of sub-queries, and the outer reference

can refer to the columns of tables in any outer-level sub-query.

 Example 1

The following lists all departments with at least one EMPLOYEE in that Department
whose salary exceeds 500000.
SELECT Dept_Name FROM Department d
 WHERE EXISTS
 (SELECT Dept_Id FROM EMPLOYEE e
 WHERE e.Salary > 500000 AND d.Dept_Id = e.Dept_Id)

ANY/ALL/SOME SUB-QUERY

Use the ALL keyword in a sub query. The search condition is true if the comparison is
true for every value returned. If the sub query returns no value, an empty set, the
condition is true. If there is a NULL in the returning set, the condition is false.

Use the ANY keyword in a sub query. The search condition is true if the comparison
is true for at least one of the value returned. If the sub query returns no value, the
condition is false.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-212

 Example

The following example selects non-manager employees with a Salary greater than at
least one Manager.
SELECT Emp_Name FROM Employee
 WHERE Manager = 'N' AND Salary > ANY
 (SELECT Salary FROM EMPLOYEE WHERE Manager = 'Y')

FOR BROWSE Clause

The FOR BROWSE keywords designate the browse mode to be used in the selection.
In browse mode, no locks are acquired so other users do not block the selection. Since
no locks are acquired, the read is not guaranteed to be repeatable. Browse mode is

useful for browsing data or producing reports.

FOR BROWSE

column

SELECT
syntax

FOR READ ONLY

FOR UPDATE ,
OF

Figure 3-98 FOR BROWSE Clause syntax

LIMIT

LIMIT specifies the number of returned records from offset n for the entire return set.

offsetOffset from the first returned records in the result set

rows.........................The number of returned rows

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-213

LIMIT

offset

rows

offsetrows OFFSET

Figure 3-99 LIMIT syntax

 Example
select * from t1 order by c1 limit 10;

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-214

3.76 SET CONNECTION OPTIONS

The SET CONNECTION OPTIONS command provides syntax so users can set

connection options through SQL statements. Useful for users that use front-end tools
like Delphi to connect to the database and cannot get ODBC connection handles,
they can set connection options needed directly instead.

The following is the detailed description of all of the options used with this
command. The options fall into five categories: no value options, on/off options, number
options, string options, and symbol options.

no_value_optionsOption which has no option value

on_off_options…… ..Option with a value of on or off

string_options…… ...Option whose value a single quoted string, such as ‘FOB

number_options…Option whose value is an integer

symbol_options……..Option whose value is one of a set of symbols, such as {delete |
close | preserve}

SET

no_value_options

string_options

on_off_options
number_options

symbol_options
transaction_options

Figure 3-100 SET CONNECTION OPTIONS syntax

No Value Options

Options in this category have no option values and are simple commands.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-215

SET FLUSH

The SET FLUSH is a replication server option that flushes replication to the slave
site(s).

SET SYSINFO CLEAR

Clear system information resets system table, SYSINFO.

S Y S IN F O C L E A R

F L U S H

Figure 3-101 No Value Options syntax

ON/OFF Options

In this category, all valid option values are ON or OFF. Some only allow the value of
ON or OFF; others accept both.

SET AUTOCOMMIT ON/OFF

Turn autocommit ON or OFF.

SET BACKUP OFF

Set backup mode to non-backup. The setting is the same as setting the DB_BMODE
to 0.

SET BKSVR CMP ON/OFF

Set backup server's compact backup option ON or OFF.

SET BLOB BACKUP ON

Set backup mode to backup-data-and-blob. This setting is the same as setting

DB_BMODE to 2.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-216

SET BROWSE ON/OFF

Set connection option SQL_ATTR_TXN_ISOLATION to
SQL_TXN_READ_UNCOMMITTED (ON) or SQL_TXN_SERIALIZABLE

(OFF). For more information, please refer to the ODBC Programming Guide the
function “SQLGetInfo” with the option “SQL_DEFAULT_TXN_ISOLATION”.

SET DATA BACKUP ON

Set backup mode to backup-data. This setting is the same as setting the DB_BMODE
to 1.

SET FREE CATALOG CACHE ON/OFF

Used to set the system catalog cache ON to free it or OFF to save.

SET JOURNAL ON/OFF

Only a DBA may turn Journal writing ON or OFF.

SET REMOVE SPACE PADDING ON/OFF

Turn ON/OFF the facility that removes the space padding after a string data
automatically.

SET STRING CONCAT ON/OFF

This option is used for the string concatenate operator (||). If you set this option to
ON, all space padding in CHAR type data will be removed before the operator is

applied. If this option is OFF, all space padding will be kept.

SET SYSTEM INIT ON/OFF

Only a DBA may turn system mode ON or OFF. In the system mode, create system

tables.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-217

ON/OFF OPTIONS

Data

Backup OFF

BLOB
Backup ON

ON

Autocommit

BKSVR CMP

Browse

Free Catalog Cache
Journal

Remove Space Padding

System Init
String Concat

OFF

Figure 3-102 ON/OFF Options syntax

Number Options

This group contains options with values as integers. Each option may have their own

range of valid integers.

SET BKSVR JOURNAL FULL NUMBER

Set the backup server's Journal full percent rate, from 0 to 100.

SET BKSVR PID NUMBER

Set the backup server process ID to a number. Currently the number must be 0.

SET DDB LOGIN TIMEOUT NUMBER

Set the login timeout for a DDB connection.

SET DDB LOCK TIMEOUT NUMBER

This option sets the lock timeout for a DDB connection.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-218

SET INPUT PARAM N AS CFILE | ASCII

This set option is used before an INSERT or UPDATE statement that uses
parameters. It is used if the user wants to bind one or more of the parameters in the

statement to a client file. The input data for the corresponding parameter or
parameters in the succeeding statement will be bound to a client file. The data to
insert must be character type data, and the parameter must correspond to either a

LONG VARCHAR or LONG VARBINARY type column.

Use the ALL option to bind all parameters to a client file. The CFILE option must be
used to set the parameters to bind to the client file. To reset DBMaker so that it does

not bind parameters to a client file, use the SET INPUT PARAM statement with the
ASCII option.

numberSpecifies which parameter in sequence should be bound to the

client file

CFILE

ASCII
AS

number

ALL
SET INPUT PARAM

Figure 103 Syntax of the SET INPUT PARAM option

 Example:

In this example, the file ‘dmconfig.ini’ can be inserted into column c3 using a host

variable.
CREATE TABLE t1 (c1 INT, c2 INT, c3 LONG VARBINARY);
SET INPUT PARAM 3 AS CFILE;
INSERT INTO f1 VALUES (?,?,?);
2,2,’dmconfig.ini’;
end;

SET LOCK TIMEOUT NUMBER

Set the number of seconds to wait for the lock before returning to the application. If

the number is positive, the timeout is in seconds. If the number is zero, it does not
wait. If the number is negative, it will always wait.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-219

SET MAXTBROW NUMBER

Set the maximum number of rows to be returned when retrieving table data. If the
number is zero or negative, all rows will be returned.

SET RPSVR RETRY NUMBER

The number of retries after a network failure occurs when replicating.

NUMBER OPTIONS

Integer

String Length

BKSVR PID
DDB Login Timeout

BKSVR Journal Full

RPSVR Retry

DDB Lock Timeout

Lock Timeout

MAXTBROW

Figure 3-104 Number Options syntax

String Options

Options in this group use single-quoted strings as the value. For some options, the

values must fit in the special formats.

SET BKSVR PATH STRING

Set the backup Journal file path.

SET DATE INPUT FORMAT {ALL | STRING }

Set input format for DATE columns.

The valid formats are:

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-220

Format Example

‘mm/dd/yy’ 02/18/99’

‘mm-dd-yy’ ‘02-18-99’

‘dd-mon-yy’ ‘18-Feb-99’

‘mm/dd/yyyy’ ‘02/18/1999’

‘dd/mon/yyyy’ ‘18/Feb/1999’

‘dd-mon-yyyy’ ‘18-Feb-1999’

‘dd.mm.yyyy’ ’18.2.1999’

 Table 3-2(yy/yyyy: year, mm: month, dd: day)

When the ALL command is specified, all of the above date formats are allowed.

SET DATE OUTPUT FORMAT STRING

Set the output format for DATE columns. The formats are listed in the SET DATE
INPUT FORMAT command.

SET EXTNAME TO STRING

Set extension name of the server file objects to string.

SET TIME INPUT FORMAT { ALL | STRING }

Set the input formats for the TIME columns. Setting the input format to ALL allows

all formats.

Alternately, use one of the following formats for input and output formats:

Formats Example

‘hh:mm:ss.fff’ 22:10:20.30

‘hh:mm:ss’ 22:10:20

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-221

‘hh:mm 22:10

‘hh’ 22

‘hh:mm:ss.fff tt’ 10:10:20.30 PM

‘hh:mm:ss tt’ 10:10:20 PM

‘hh:mm tt’ 10:10 PM

‘hh tt’ 10 PM

‘tt hh:mm:ss.fff’ PM 10:10:20.30

‘tt hh:mm:ss’ PM 10:10:20

‘tt hh:mm’ PM 10:10

‘tt hh’ PM 10

Table 3-3(hh: hour, mm: minute, ss: second, fff: fraction, tt: AM/PM)

When the ALL command is applied, all of the above formats can be used to input

TIME columns.

SET TIME OUTPUT FORMAT STRING

Set output format for the TIME columns. The possible formats in the string are the

same options as “SET TIME INPUT FORMAT”43.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-222

STRING OPTIONS

String

All

BKSVR Path

ExtName
String

Time Input Format

Date Input Format

Time Output Format

Date Output Format

Figure 3-105 String Options syntax

Symbol Options

In this group, all option values are a set of symbols that mainly match ODBC
symbols. Please refer to the corresponding ODBC connection options for more
information.

SET CB MODE { CLOSE | DELETE | PRESERVE }

Set cursor behavior, as transactions are committed. For more information about these
three modes, please refer to the ODBC Programmer’s Guide in the SQLGetInfo

function section with the SQL_CURSOR_COMMIT_BEHAVIOR option.

SET CONCAT NULL RETURN { NULL | STRING }

This option is used for string concatenation with null for the CONCAT built-in

function or concatenate operator (||). The default setting for this option is NULL. If
this option is set to NULL, then any string concatenated with a null value will return
null. If the option is set to STRING, then any string concatenated with a null value

will return the string, because the null value will be treated as an empty string.

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-223

SET DISCONNECT { DISCONNECT | TERMINAT | WAIT }

Sets the action of SQLDisconnect(). If disconnect is set, it just disconnects from the
server. The terminate call will shutdown the database. The wait call option will cause

the call to wait for the server to completely shutdown before it returns. This is an
internal option of DBMaker for developing tools to shutdown the database by calling
the SQLDisconnect().

SET DFO DUPMODE { COPY | NULL }

This option determines file objects duplication when executing the “select into” on the
file object columns from the remote tables. If set to null, the FILE columns will be set

to NULL. Otherwise, the remote file objects will be copied into local tables.

SET FO TYPE { BLOB | FILE }

Selects the SQL types to map to a FILE column. If a file is selected, SQL_FILE will

be returned for FILE columns. Otherwise, the SQL_LONGVARBINARY will be
used.

SYMBOL OPTIONS

FO Type
File

BLOB

CB Mode Delete
Preserve

Close

DFO Dupmode

Disconnect Terminate

 Wait

Disconnect

Null

Copy

Figure 3-106 Symbol Options

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-224

 Example 1

SET BKSVR PID
SET BKSVR PID 0

 Example 2

SET BKSVR PATH
SET BKSVR PATH ‘d:\data\backup’

 Example 3

SET DATE INPUT FORMAT
SET DATE INPUT FORMAT ALL
SET DATE INPUT FORMAT ‘yyyy/mm/dd’

 Example 4

SET DATE OUTPUT FORMAT
SET DATE OUTPUT FORMAT ‘mm-dd-yy’ // result of DATE column will be like 12-31-99

 Example 5:

SET DDB LOCK TIMEOUT:
SET DDB LOCK TIMEOUT 20 // timeout is 20

 Example 6

SET DDB LOGIN TIMEOUT
SET DDB LOBIN TIMEOUT 15

The remaining examples use two tables named t1 on database db1 and db2. The

definitions of both tables named t1 are included.

 Example 7

SET DFO DUPMODE
CREATE TABLE t1 (c1 INT, c2 FILE)

Now, we use db2 as a remote database of db1.

 Example 8

SET DFO DUPMODE

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-225

SET DFO DUPMODE null

Insert data into t1.

 Example 9

SET DFO DUPMODE
SELECT c1, c2 from DB2:SYSADM.t1 INTO t1;

Then column c2 of t1 will be NULL. On the other hand, if we use.

 Example 10

SET DFO DUPMODE
SET DFO DUPMODE copy

Insert data into t1 by selecting tuples from db2:t1, column c2 of newly inserted rows
are copied from column c2 of db2:t1.

 Example 11

SET EXTNAME TO
SET EXTNAME TO ‘FOB’

 Example 12

SET LOCK TIMEOUT
SET LOCK TIMEOUT 30 // timeout is 30 seconds
SET LOCK TIMEOUT 0. // always wait
SET LOCK TIMEOUT –5 // always wait

 Example 13

SET MAXTBROW
SET MAXTBROW 10.... // return only first 10 tuples of data
SET MAXTBROW –3.... // return all tuples

 Example 14

SET SYSTEM INIT
SET SYSTEM INIT ON
CREATE TABLE SYSTEM.t1 (c1 int)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-226

 Example 15

SET TIME INPUT FORMAT
SET TIME INPUT FORMAT ALL // all formats accepted
SET TIME INPUT FORMAT ‘hh:mm’ // 10:20

 Example 16

SET TIME OUTPUT FORMAT
SET TIME OUTPUT FORMAT ‘hh:mm:ss’ // 10:20:55

Transaction Options

Set connection option SQL_ATTR_TXN_ISOLATION to

SQL_TXN_READ_UNCOMMITTED (ON) or SQL_TXN_SERIALIZABLE
(OFF). For more information, please refer to the ODBC Programming Guide the
function “SQLGetInfo” with the option “SQL_DEFAULT_TXN_ISOLATION”.

TRANSACTION OPTION

SET TRANSACTION ISOLATION LEVEL

READ UNCOMMITTED

SERIALIZABLE

Figure 3-107 TRANSACTION OPTIONS syntax

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-227

3.77 SUSPEND SCHEDULE
The SUSPEND SCHEDULE command suspends the replication schedule for an
asynchronous table replication. The local database will not try to connect to the

remote database until the replication schedule resumes. Only the local table owner, a
DBA, or a SYSADM may execute the command.

Use the SUSPEND SCHEDULE command to suspend a replication schedule for an

asynchronous table replication. To resume the replication schedule use the RESUME
SCHEDULE command.

remote_database_name….Name of the remote database to remove the replication

schedule from

SUSPEND SCHEDULE FOR REPLICATION TO remote_database_name

Figure 3-108 SUSPEND SCHEDULE syntax

 Example

The following suspends the replication schedule for the remote database named
DivOneDb.
SUSPEND SCHEDULE FOR REPLICATION TO DivOneDb

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-228

3.78 SYNCHRONIZE SCHEDULE
The SYNCHRONIZE SCHEDULE command synchronizes all data in the remote
database with data in the local database without waiting for the next scheduled time.

Only the local table owner, a DBA, or a SYSADM may execute the command.

Use the SYNCHRONIZE SCHEDULE command to synchronize data in the local
and remote tables for an asynchronous table replication.

remote_database_name….Name of the remote database to synchronize the replication
schedule for

REPLICATION TO remote_database_name

NO WAIT

WAIT

�

SYNC

SYNCHRONIZE

Figure 3-109 SYNCHRONIZE SCHEDULE syntax

 Example

The following example synchronizes the replication schedule for the remote database

named DivOneDb.
SYNCHRONIZE REPLICATION TO DivOneDb

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-229

3.79 UNLOAD STATISTICS
The UNLOAD STATISTICS command unloads database statistics into an ASCII
text file. Edit the file and load the desired statistics data back into the database. Only a

DBA or a SYSADM may execute the command.

Load statistical information for an entire database, or for one or more tables. For each
table specify whether to load the table statistics information, the column statistics

information, the index statistics information, or a combination of the three.

DBMaker records table data statistics on the number of pages, the number of rows,
and the average row length of sampled rows in a table. DBMaker records column data

statistics on the number of distinct column values, the average column length, the low
value, and the high value for all sampled values in a column. DBMaker records index
data statistics on the number of index pages, the number of index tree levels, the

number of leaf pages, the number of distinct key values, the number of pages per key,
and the cluster count for the index.

object_list.................List of database objects to unload statistics data for

file_name.................Name of the ASCII text file that statistics data will be saved in

UNLOAD STATISTICS
object_list

TO file_name

Figure 3-110 UNLOAD STATISTICS syntax

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-230

UNLOAD STATISTICS Object List

index_name

,
INDEX

table_name

,

()

Figure 3-111 UNLOAD STATISTICS Object List syntax

 Example

The following unloads all STATISTICS to the file stat.dat.
UNLOAD STATISTICS TO stat.dat;

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-231

3.80 UPDATE
The UPDATE command updates rows in a table. Rows in the system catalog tables
can not updated with this command. Only the table owner, a DBA, a SYSADM, or a

user with the UPDATE privilege for the entire table or for the specific column may
execute the command.

When updating a column the new column values must satisfy the column constraints

and referential integrity. Use the DEFAULT keyword to set the value of the column
to the default.

table_nameName of the table containing the rows to update

column_nameName of the column to update values in

literal.......................Literal value to update the column with

expressionExpression that returns a value to update the column with

constantConstant value to update the column with

search_condition.......Conditions a row must meet to be updated

cursor_name.............Name of the cursor to use for a positioned update (cursors are

only available within ODBC programs)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-232

UPDATE SETtable_name

WHERE
search_condition

CURRENT OF cursor_name

,

column_name =
constant

NULL
expression

literal

Figure 3-112 UPDATE syntax

 Example 1

The following shows how to update the Employees table and change the salary of all
employees named “Chris”.
UPDATE Employees SET Salary = 5000 WHERE Name = ‘Chris’

 Example 2

The following shows how to give a salary raise of 10% to all employees named

“Chris”.
UPDATE Employees SET Salary = Salary*1.10 WHERE Name = ‘Chris’

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-233

3.81 UPDATE STATISTICS
The UPDATE STATISTICS command updates database statistics information.
Keeping statistics information current helps the database to perform queries more

efficiently. Only the owner of the object, a DBA or a SYSADM may execute the
command.

Update statistical information for the entire database or take update statistical

information for one or more tables. For each table specify whether to update statistical
information for the table, the column, the index, or a combination of the three. In
addition, specifying a number between 1 and 100 for the SAMPLE keyword can set

the percentage of data to sample.

DBMaker records index data statistics on the number of index pages, the number of
index tree levels, the number of leaf pages, the number of distinct key values, the

number of pages per key, and the cluster count for the index.

object_list.................List of database objects to update statistics data for

number....................Percentage of data to use when updating statistics data

UPDATE STATISTICS
object_list SAMPLE = number

Figure 3-113 UPDATE STATISTICS syntax

UPDATE STATISTICS Object List

DBMaker records table data statistics on the number of pages, the number of rows,
and the average row length of sampled rows in a table.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-234

DBMaker also records column data statistics on the number of distinct column
values, the average column length, the low value, and the high value for all sampled

values in a column.

index_name

,
INDEX

table_name

,

()

Figure 3-114 UPDATE STATISTICS Object List syntax

 Example 1

The following updates all STATISTICS in the database with a sampling of 30%.
UPDATE STATISTICS SAMPLE = 30

 Example 2

The following updates all STATISTICS on table1.
UPDATE STATISTICS table1 SAMPLE = 50

 Example 3

The following updates STATISTICS for column c1 and index ix1 on table1.
UPDATE STATISTICS table1 (INDEX (ix1));

1SQL Commands 3

©Copyright 1995-2004 CASEMaker Inc. 3-235

3.82 UPDATE TABLESPACE
STATISTICS
The UPDATE TABLESPACE STATISTICS command updates tablespace statistical
information. Keeping statistical information current helps the tablespace to perform

queries more efficiently. Only a DBA or a SYSADM may execute the command.

DBMaker will update the tablespaces and associated file statistical value to update
tablespace statistics.

DBMaker records tablespace data statistics on the number of pages, the number of
free pages, the number of frames, and the number of free frames.

DBMaker records file data statistics on the number of pages/frames, and the number

of free pages/frames.

object_list.................List of database objects to update statistical data for

 Example

The following updates the DEFTABLESPACE STATISTICS.
UPDATE TABLESPACE STATISTICS DEFTABLESPACE

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 3-236

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-1

4 Built-in Functions

DBMaker provides a number of built-in functions. These functions can be used on
columns in a result set or columns that restrict rows in a result set. This chapter lists

each function by type. The arguments and returned values for each function are listed
below the syntax diagram providing the name, data type, and value.

The Built-in Functions types are:

• String functions

• Numeric functions

• Date and time functions

• System functions

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-2

4.1 ABS
The ABS function returns the absolute value of number, as a double precision
floating-point number.

numberDouble: Number to find the absolute value for

Return value.............Double: Absolute value of number

ABS (number)

Figure 4-1 ABS syntax

 Example

The following syntax returns 3.14000000000000e+012.
ABS(-3.14E12)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-3

4.2 ACOS
The ACOS function returns the arc cosine for a number in the double precision
floating-point number format. The number argument must be in the range 0 to π

radians.

number....................Double: Number to find the arc cosine for

Return valueDouble: The arc cosine for a number

ACOS (number)

Figure 4-2 ACOS syntax

 Example

The following syntax returns 1.04719755119660e+000.
ACOS(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-4

4.3 ADD_DAYS
The ADD_DAYS function returns a result from adding the number of days to the
date. The number argument may be a negative number.

date..........................Date: Date to add days to

numberInteger: Number of days to add

Return value.............Date: Result of adding number days to date

ADD_DAYS (date, number)

Figure 4-3 ADD_DAYS syntax

 Example 1

The following syntax returns the date1999-03-01.
ADD_DAYS('1999-02-24', 5)

 Example 2

The following syntax returns the date 2000-02-29.
ADD_DAYS('2000-02-24', 5)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-5

4.4 ADD_HOURS
The ADD_HOURS function returns a result after adding the number in hours to
time. The number argument may be a negative number.

time.........................Time: Time to add hours to

number.................... Integer: Number of hours to add

Return valueTime: Result of adding number hours to time

ADD_HOURS (time, number)

Figure 4-4 ADD_HOURS syntax

 Example 1

The following syntax returns the time 20:11:12.
ADD_HOURS('10:11:12', 10)

 Example 2

The following syntax returns the time 22:11:12.
ADD_HOURS('10:11:12', -12)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-6

4.5 ADD_MINS
The ADD_MINS function returns a result after adding the number in minutes to
time. The number argument may be a negative number.

timeTime: Time to add minutes to

numberInteger: Number of minutes to add

Return value.............Time: Result of adding number minutes to time

ADD_MINS (time, number)

Figure 4-5 ADD_MINS syntax

 Example 1

The following syntax returns the time 10:21:12.
ADD_MINS('10:11:12', 10)

 Example 2

The following syntax returns the time 09:59:12.
ADD_MINS('10:11:12', -12)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-7

4.6 ADD_MONTHS
The ADD_MONTHS function returns a result after adding a number in months to
date. The number argument may be a negative number.

dateDate: Date to add months to

number.................... Integer: Number of months to add

Return valueDate: Result of adding number months to date

ADD_MONTHS (date, number)

Figure 4-6 ADD_MONTHS syntax

 Example 1

The following syntax returns the date 1999-07-24.
ADD_MONTHS('1999-02-24',5)

 Example 2

The following syntax returns the date 2000-01-01.
ADD_MONTHS('2000-01-01',12)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-8

4.7 ADD_SECS
The ADD_SECS function returns a result after adding a number in seconds to time.
The number argument may be a negative number.

timeTime: Time to add seconds to

numberInteger: Number of seconds to add

Return value.............Time: Result of adding number seconds to time

ADD_SECS (time, number)

Figure 4-7 ADD_SECS syntax

 Example 1

The following syntax returns the time 10:11:22.
ADD_SECS('10:11:12',10)

 Example 2

The following syntax returns the time 10:10:52
ADD_SECS('10:11:12', -20)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-9

4.8 ADD_YEARS
The ADD_YEARS function returns a result after adding a number in years to date.
The number argument may be a negative number.

dateDate: Date to add years to

number.................... Integer: Number of years to add

Return valueDate: Result of adding number years to date

ADD_YEARS (date, number)

Figure 4-8 ADD_YEARS syntax

 Example 1

The following syntax returns the date 2001-03-04.
ADD_YEARS('1999-03-04', 5)

 Example 2

The following syntax returns the date 1995-02-28.
ADD_YEARS('2000-02-29', -5)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-10

4.9 ASCII
The ASCII function returns the ASCII code value of the first character in string. If
string contains no characters, a value of 0 (NULL) is returned. An error will be

returned when a value for the string argument is not specified.

string........................String: Character, in the first position to obtain an ASCII code

Return value.............Integer: ASCII code of the character specified in string

ASCII (string)

Figure 4-9 ASCII syntax

 Example 1a

The following syntax returns 65, which is the ASCII code for “A”.
ASCII('A')

 Example 1b

The following syntax also returns 65, which is the ASCII code for “A”.
ASCII('ABC')

 Example 2a

The following syntax returns 97, which is the ASCII code for “a”.
ASCII('a')

 Example 2b

The following syntax also returns 97, which is the ASCII code for “a”.
ASCII('abc')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-11

 Example 3

The following syntax returns 49, which is the ASCII code for “1”.
ASCII('1')

 Example 3

The following syntax returns 33, which is the ASCII code for “!”.
ASCII('!')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-12

4.10 ASIN
The ASIN function returns a double precision floating-point number from the arc
sine of number (in the range from -π/2 to π/2).

numberDouble: Number to find the arc sine for

Return value.............Double: Arc sine of number

ASIN (number)

Figure 4-10 ASIN syntax

 Example

The following syntax returns the arc sine of number; 5.23598775598299e-001.
ASIN(0.5)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-13

4.11 ATAN
The ATAN function returns a double precision floating-point number from the
tangent of number (in the range from -π/2 to π/2).

number....................Double: Number to find the arc tangent for

Return valueDouble: Arc tangent of number

ATAN (number)

Figure 4-11 ATAN syntax

 Example

The following syntax returns the arc tangent of number; 4.63647609000806e-001.
ATAN(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-14

4.12 ATAN2
The ATAN2 function returns the arc tangent of x/y in the range -π to π as a double
precision floating-point number.

xDouble: Numerator in the ratio x/y to find the arc tangent for

yDouble: Denominator in the ratio x/y to find the arc tangent for

Return value.............Double: Arc tangent of x/y

ATAN2 (x, y)

Figure 4-12 ATAN2 syntax

 Example

The following syntax returns the arc tangent of x/y, 4.63647609000806e-001.
ATAN2(0.1, 0.2)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-15

4.13 ATOF
The ATOF function returns the value represented by the character string in the string
argument as a double precision floating-point number.

stringString: String to convert to a double-precision floating-point

 number

Return valueDouble: Value of the character string in string

ATOF (string)

Figure 4-13 ATOF syntax

 Example 1

The following returns -1.23400000000000e+001, which is the double precision
floating-point value of the character string "-12.34".
ATOF('-12.34')

 Example 2

The following returns -1.23400000000000e+035, which is the double-precision
floating-point value of the character string "-12.34E34".
ATOF('-12.34E34')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-16

4.14 BLOBLEN
The BLOBLEN function returns the data length of an input BLOB. BLOBLEN can
get the data length for CLOB, BLOB, and even file type object.

objectBLOB: Source BLOB

Return value.............Integer: Get BLOB type data length of source BLOB

BLOBLEN (object)

Figure 4-14 BLOBLEN syntax

 Example

The following returns the BLOB length of “content”.
BLOBLEN(content)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-17

4.15 CEILING
The CEILING function returns the integral value, greater than or equal to number, as
a double precision floating-point number.

number....................Double: Number to find the nearest larger integer value for

Return valueDouble: The next integer value greater than number

CEILING (number)

Figure 4-15 CEILING syntax

 Example 1

The following syntax returns 1.30000000000000e+001, which is the next integer

value with a value greater than 12.3.
CEILING(12.3)

 Example 2

The following syntax returns -1.20000000000000e+001, which is the next integer
value with a value greater than -12.3.
CEILING(-12.3)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-18

4.16 CHAR
The CHAR function returns the character that has the ASCII code value specified by
number. The value specified for number should be a valid ASCII code value between 0

and 255; other values are not valid ASCII codes and are not supported by the CHAR
function. Specifying a value that is not a valid ASCII code value may return incorrect
or invalid results. An error will be returned when a value for the number argument is

not provided.

numberInteger: ASCII code of the character to obtain

Return value.............String: Character represented by the ASCII code specified by

number

CHAR (number)

Figure 4-16 CHAR syntax

 Example 1

The following syntax returns the string “A”, which has an ASCII code value of 65.
CHAR(65)

 Example 2

The following syntax returns the string “a”, which has an ASCII code value of 97.
CHAR(97)

 Example 3

The following syntax returns the string “1”, which has an ASCII code value of 49.
CHAR(49)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-19

 Example 4

The following syntax returns the string “!”, which has an ASCII code value of 33.
CHAR(33)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-20

4.17 CHAR_LENGTH
The CHAR_LENGTH function returns the number of characters in string, excluding
trailing blanks and the string termination character, when present. An error will be

returned if a value for the string argument is not provided.

string........................String: String to find the length of

Return value.............Integer: Leftmost count characters in string

CHAR_LENGTH (string _expression)

Figure 4-17 CHAR_LENGTH function syntax

 Example

The following function command returns “4”.
select CHAR_LENGTH(' abc ');
CHAR_LENGTH(' ABC ')
===========================
 4

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-21

4.18 CHARACTER_LENGTH
The CHARACTER_LENGTH function returns the number of characters in string,
excluding trailing blanks and the string termination character, when present. An error

will be returned if a value for the string argument is not provided.

stringString: String to find the length of

Return value Integer: Leftmost count characters in string

CHARACTER_LENGTH (string_expression)

Figure 4-18 CHARACTER_LENGTH function syntax

 Example

The following function command returns “4”.
select CHARACTER_LENGTH(' abc ');
CHARACTER_LENGTH(' ABC ')
===========================
 4

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-22

4.19 CHECKMEDIATYPE
The CHECKMEDIATYPE function can be used to determine the media type
specified for a BLOB, CLOB, or FILE type column. The media types that the

command can detect include: MsWordType, HtmlType, XmlType,
MsWordFileType, HtmlFileType, and XmlFileType. The function will return True if
the column contains one of the six media types, and false if it does not.

blobColumn name on which to perform the check

return value:.............True if the record in the column matches one of the six
recognized media types

CHECKMEDIATYPE (blob)

Figure4-19 Syntax for CHECKMEDIATYPE

 Example:

The following shows the creation of a table with an MsWordFileType column. Two
files are inserted: a Word document and a PowerPoint file. Executing the

CHECKMEDIATYPE command displays whether or not the column contains media
type data.
CREATE TABLE minutes (id INT, date DATE, doc MSWORDFILETYPE);
INSERT INTO minutes VALUES (1, 3/3/2003, ‘c:\meeting\20030303.doc’);
INSERT INTO minutes VALUES (2, 3/3/2003, ‘c:\meeting\20030303_present.ppt’);
SELECT CHECKMEDIATYPE (doc) FROM minutes;

 CHECKMEDIATYPE

1
0

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-23

4.20 CONCAT
The CONCAT function returns a string expression formed by joining string1 and
string2. A return value will occur only if the string expression in string1 is placed at the

beginning of the result string, and the string expression in string2 is placed at the end
of the result string; an error will be returned if both values for the arguments have not
been provided.

DBMaker uses the following rule to determine the value returned if one of the string
expressions contains a NULL value.

Any string that is concatenated with a null value using the CONCAT built-in

function or concatenate operator (||) will return NULL. If you want to return the
string value when concatenating a string value with a null value, you must set the SET
CONCAT NULL RETURN option to STRING. A null value concatenated with a

null value will always return a null value, regardless of the value of the SET
CONCAT NULL RETURN built-in-function.

string1String: String to place at the beginning of the result string

string2String: String to place at the end of the result string

Return valueString: Formed by joining string1 and string2

CONCAT (string1, string2)

Figure 4-20 CONCAT syntax

 Example 1

The following returns “master plan”. Take notice the space at the end of the first

string.
CONCAT(‘master ’, ‘plan’)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-24

 Example 2

The following returns, “mastermind”.
CONCAT(‘master’, ‘mind’)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-25

4.21 COS
The COS function returns the cosine of number, expressed in radians, as a double
precision floating-point number.

number....................Double: Number to find the cosine for

Return valueDouble: The cosine of number

COS (number)

Figure 4-21 COS syntax

 Example

The following syntax returns a value of 8.77582561890373e-001.
COS(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-26

4.22 COSH
The COSH function returns the hyperbolic cosine of number, expressed in radians, as
a double precision floating-point number.

numberDouble: Number to find the hyperbolic cosine for

Return value.............Double: The hyperbolic cosine of number

COSH (number)

Figure 4-22 COSH syntax

 Example

The following returns the hyperbolic cosine of number; 1.12762596520638e+000.
COSH(0.5)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-27

4.23 COT
The COT function returns the cotangent of number, expressed in radians, as a double
precision floating point number.

number....................Double: Number to find the cotangent for

Return valueDouble: The cotangent of number

COT (number)

Figure 4-23 COT syntax

 Example

The following returns the cotangent of number, 1.83048772171245e+000.
COT(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-28

4.24 CURDATE
The CURDATE function returns the current date.

Return value.............Date: The current date

CURDATE ()

Figure 4-24 CURDATE syntax

 Example

The following returns the current date.
CURDATE()

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-29

4.25 CURRENT_DATE
The CURRENT_DATE function returns the current date from the default
date/time/timestamp DBMaker output format.

Return valueDATE: The current date

CURRENT_DATE

Figure 4-25 CURRENT_DATE syntax

 Example 1

The following returns the current date.
insert into t1 values (CURRENT_DATE);
select CURRENT_DATE;
select c1 from t1 where c2 = CURRENT_DATE;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,
CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the
values, and then update the values.
insert into sql99t5 values (CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,
CURRENT_USER);
1 row inserted

select CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER
============= ========== ======================== ============================
16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

update sql99t5 set c1 = cast(CURRENT_TIMESTAMP as char(20)),
 c2 = CURRENT_DATE,

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-30

 c3 = CURRENT_TIME,
 c4 = CURRENT_TIMESTAMP where c1 = CURRENT_USER;
1 row updated

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-31

4.26 CURRENT_TIME
The CURRENT_ TIME function returns the current time from the default time
DBMaker output format.

Return valueTIME: The current time

CURRENT_TIME

Figure 4-26 CURRENT_ TIME syntax

 Example 1

The following returns the current time.
insert into t1 values (CURRENT_ TIME);
select CURRENT_ TIME;
select c1 from t1 where c2 = CURRENT_ TIME;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,

CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the
values, and then update the values.
insert into sql99t5 values (CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,
CURRENT_USER);
1 row inserted

select CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER
============= ========== ======================== ============================
16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

update sql99t5 set c1 = cast(CURRENT_TIMESTAMP as char(20)),
 c2 = CURRENT_DATE,
 c3 = CURRENT_TIME,

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-32

 c4 = CURRENT_TIMESTAMP where c1 = CURRENT_USER;
1 row updated

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-33

4.27 CURRENT_TIMESTAMP
The CURRENT_ TIMESTAMP function returns the current timestamp from the
default timestamp DBMaker output format.

Return valueTIMESTAMP: The current timestamp

CURRENT_TIMESTAMP

Figure 4-27 CURRENT_ TIMESTAMP syntax

 Example

The following returns the current timestamp.
insert into t1 values (CURRENT_ TIMESTAMP);
select CURRENT_ TIMESTAMP;
select c1 from t1 where c2 = CURRENT_ TIMESTAMP;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,
CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the
values, and then update the values.
insert into sql99t5 values (CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,
CURRENT_USER);
1 row inserted

select CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER
============= ========== ======================== ============================
16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

update sql99t5 set c1 = cast(CURRENT_TIMESTAMP as char(20)),
 c2 = CURRENT_DATE,

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-34

 c3 = CURRENT_TIME,
 c4 = CURRENT_TIMESTAMP where c1 = CURRENT_USER;
1 row updated

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-35

4.28 CURRENT_USER
The CURRENT_ USER function returns the current user connected to DBMaker.

Return valueUSER: The current user

CURRENT_USER

Figure 4-28 CURRENT_ USER syntax

 Example

The following returns the current user.
insert into t1 values (CURRENT_ USER);
select CURRENT_ USER;
select c1 from t1 where c2 = CURRENT_ USER;

 Example 2

The following will insert the CURRENT_TIME, CURRENT_DATE,

CURRENT_TIMESTAMP, and CURRENT_USER into one row, display the
values, and then update the values.
insert into sql99t5 values (CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP,
CURRENT_USER);
1 row inserted

select CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP, CURRENT_USER;

CURRENT_TIME CURRENT_D* CURRENT_TIMESTAMP CURRENT_USER
============= ========== ======================== ============================
16:53:09 2001-09-26 2001-09-26 16:53:09 SYSADM

update sql99t5 set c1 = cast(CURRENT_TIMESTAMP as char(20)),
 c2 = CURRENT_DATE,
 c3 = CURRENT_TIME,

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-36

 c4 = CURRENT_TIMESTAMP where c1 = CURRENT_USER;
1 row updated

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-37

4.29 CURTIME
The CURTIME function returns the current time.

Return valueTime. The current time

CURTIME ()

 Example

The following syntax returns the current time.
CURTIME ()

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-38

4.30 DATABASE
The DATABASE function returns the name of the database corresponding to the
current connection. Alternately, determine the name of the database in an ODBC

program by calling the SQLGetConnectOption with the
SQL_CURRENT_QUALIFIER connection option.

Return value.............String: The name of the database on the current connection

DATABASE ()

Figure 4-29 DATABASE syntax

 Example

The following returns the name of the database corresponding to the current
connection.
DATABASE()

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-39

4.31 DATEPART
The DATEPART function returns the date part of timestamp.

timestampTimestamp: Timestamp to extract the date part from

Return valueDate: Date part of timestamp

DATEPART (timestamp)

Figure 4-30 DATEPART syntax

 Example

The following syntax returns the date 1999-08-07.
DATEPART('1999-08-07 10:11:12.123')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-40

4.32 DAYNAME
The DAYNAME function returns a character string containing the data-source
specific name of the day (for example, Sunday, Monday, …, Saturday) that date falls

on.

date..........................Date: Date to find the name of the day for

Return value.............String: Weekday that date falls on

DAYNAME (date)

Figure 4-31 DAYNAME syntax

 Example

The following returns “Saturday”.
DAYNAME('1999-12-25')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-41

4.33 DAYOFMONTH
The DAYOFMONTH function returns the day of the month found in date as an
integer value in the range 1-31.

dateDate: Date to find the day of the month for

Return value Integer: Day of the month that date falls on

DAYOFMONTH (date)

Figure 4-32 DAYOFMONTH syntax

 Example

The following returns 23.
DAYOFMONTH('1999-01-23')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-42

4.34 DAYOFWEEK
The DAYOFWEEK function returns the day of the week found in date as an integer
value in the range 1-7, where 1 is Sunday, 2 is Monday, … , and 7 is Saturday.

date..........................Date: Date to find the day of the week for

Return value.............Integer: Day of the week that date falls on

DAYOFWEEK (date)

Figure 4-33 DAYOFWEEK syntax

 Example 1

The following returns 3.
DAYOFWEEK('2000-02-29')

 Example 2

The following returns 6.
DAYOFWEEK('2000-03-03')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-43

4.35 DAYOFYEAR
The DAYOFYEAR function returns the day of the year found in date as an integer
value in the range 1-366, 366 is only returned for the last day of a leap year.

dateDate: Date to find the day of the year for

Return value Integer: Day of the year that date falls on

DAYOFYEAR (date)

Figure 4-34 DAYOFYEAR syntax

 Example 1

The following returns 31.
DAYOFYEAR('1999-01-31')

 Example 2

The following returns 365.
DAYOFYEAR('1999-12-31')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-44

4.36 DAYS_BETWEEN
The DAYS_BETWEEN function returns the number of days between two dates. The
date1 argument can be earlier or later than the date2 argument.

date1........................Date: First date of two to calculate the number of days between

date2........................Date: Second date of two to calculate the number of days

 between

Return value.............Integer: Number of days between date1 and date2

DAYS_BETWEEN (date1, date2)

Figure 4-35 DAYS_BETWEEN syntax

 Example 1

The following returns 31.
DAYS_BETWEEN('1999-01-15', '1999-02-15')

 Example 2

The following returns 31.
DAYS_BETWEEN('1999-02-15', '1999-01-15')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-45

4.37 DEGREES
The DEGREES function returns the number of degrees in radians as a double
precision floating-point number.

radiansDate: Radians value to convert to degrees

Return valueDouble: Number of degrees in radians

dmlic (integer)

Figure 4-36 DEGREES syntax

 Example

The following returns 1.79908747671078e+002.
DEGREES(3.14)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-46

4.38 DMLIC
The DMLIC()function is a UDF located in the shared/udf directory. The function
will return the following criteria when the corresponding DMLIC(number) is used:

DMLIC(1) returns the platform type

DMLIC(2) returns the DBMaker version

DMLIC(3) returns the DBMaker internal description code

DMLIC(4) returns the maximum number of connections permitted (1-5)

DMLIC(5) returns the per/host license or per/client license mode

value........................Number from 1 to 5

Return value.............String.

dmlic (integer)

Figure 4-37 DMLIC syntax

 Example 1

The following returns the platform, Windows NT 4.0, Windows 2000, etc.
SELECT DMLIC(1) FROM SYSINFO

 Example 2

The following returns the DBMaker version number 3.x or 4.x.
SELECT DMLIC(2) FROM SYSINFO

 Example 3

The following returns the DBMaker internal description code, 999994.
SELECT DMLIC(3) FROM SYSINFO

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-47

 Example 4

The following returns the maximum number of users permitted at one time from 1-5.
SELECT DMLIC(4) FROM SYSINFO

 Example 5

The following returns “Per/host license” or “per/client license”.
SELECT DMLIC(5) FROM SYSINFO

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-48

4.39 EXP
The EXP function returns the exponential function ex as a double precision floating-
point number.

xDouble: Power to raise the natural logarithm to

Return value.............Double: Natural logarithm (e) to the power of x

EXP (x)

Figure 4-38 EXP syntax

 Example

The following returns 2.71828182845905e+000.
EXP(1)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-49

4.40 FILEEXIST
The FILEEXIST function determines if the file object specified by fileobject exists as a
physical file. Possible return values are 1 for a file that exists, and 0 file a file that does

not exist.

fileobjectFile: File object to check the existence of

Return value Integer: Boolean value indicating whether the file exists

FILEEXIST (fileobject)

Figure 4-39 FILEEXIST syntax

 Example 1

The following returns 1, indicating the file exists.
FILEEXIST(file_column)

 Example 2

The following returns 0, indicating the file does not exist.
FILEEXIST(nofile_column)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-50

4.41 FILELEN
The FILELEN function returns the file size of fileobject as an integer value. The
fileobject argument must be a column in the database of the FILE data type.

fileobject...................File: File to find the length of

Return value.............Integer: Length of the file in bytes

FILELEN (fileobject)

Figure 4-40 FILELEN syntax

 Example

The following returns 211 for a file that is 211 bytes in size.
FILELEN(file_column)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-51

4.42 FILENAME
The FILENAME function returns the file name of fileobject as a string. The fileobject
argument must be a column in the database of the FILE data type.

fileobjectFile: File to find the name of

Return valueString: Name of the file

FILENAME (fileobject)

Figure 4-41 FILENAME syntax

 Example

The following returns C:\PATH\MYFILE.FIL.
FILENAME(file_column)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-52

4.43 FIX
The FIX function returns an integer value for the integral part of number.

numberDouble: Number to find the integral part of

Return value.............Integer: Integral part of number

FIX (number)

Figure 4-42 FIX syntax

 Example 1

The following returns 11.
FIX(11.99)

 Example 2

The following returns 12.
FIX(12.01)

 Example 3

The following returns a value of –11.
FLOOR(-11.99)

 Example 4

The following returns a value of –12.
FLOOR(-12.01)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-53

4.44 FLOOR
The FLOOR function returns a double-precision floating-point value for the greatest
integral value less than or equal to number.

number....................Double: Number to find the next integral value less than

Return valueDouble: Integral part of number

FLOOR (number)

Figure 4-43 FLOOR syntax

 Example 1

The following returns 1.20000000000000e+001.
FLOOR(12.01)

 Example 2

The following returns 1.10000000000000e+001.
FLOOR(11.99)

 Example 3

The following returns -1.20000000000000e+001.
FLOOR(-11.99)

 Example 4

The following returns -1.30000000000000e+001.
FLOOR(-12.01)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-54

4.45 FREXPE
The FREXPE function returns the exponent n from the equation

nnumber 2X ×= as an integer value, where the value of X is in the range 0.5 =< X

=< 1.

numberDouble: Number to find the next exponent n for from the

 equation nnumber 2X ×=

Return value.............Integer: Exponent n from the equation nnumber 2X ×=

FREXPE (number)

Figure 4-44 FREXPE syntax

 Example

The following returns 3, where n must equal 3 when number equals 4.0 and X is
restricted to values between 0.5 to 1.
FREXPE(4.0)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-55

4.46 FREXPM
The FREXPM function returns the mantissa X from the equation

nnumber 2X ×= as a double-precision floating-point number, where the value of X

is in the range 0.5 =< X =< 1.

number....................Double. Number to find the next mantissa X for from the
equation nnumber 2X ×= .

Return value Integer. Mantissa X from the equation nnumber 2X ×= .

FREXPM (number)

Figure 4-45 FREXPM syntax

 Example 1

The following returns the value of 5.00000000000000e-001, which means X must
equal 0.5 or 5.00000000000000e-001 when number equals 4.0 and n equals an exact

integer value.
FREXPM(4.0)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-56

4.47 FTOA
The FTOA function returns a string containing number with a fixed amount of digits
after the decimal point. The digits argument specifies the number of digits after the

decimal point, and the format argument specifies whether the return value should be
in regular decimal format or exponential format.

The format argument has four possible values, “f”, “F”, “e”, and “E”. Using “f” or “F”

returns a string in regular decimal format, for example, 123.45, when digits is 2. Using
“e” or “E” returns a string in exponential format, for example,1.23e+02. After
conversion, the exponential digits will be converted to the regular decimal equivalent.

numberDouble: Number to convert to a string

digitsInteger: Number of digits after the decimal

formatString: Format to return the number in

Return value.............String: String containing number with a fixed number of digits in
the specified format

FTOA (number, digits, format)

Figure 4-46 FTOA syntax

 Example 1

The following syntax returns the value "123.45".
FTOA(123.456789, 2, 'f')

 Example 2

The following syntax returns the value "1.23e+02".
FTOA(123.456789, 2, 'e')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-57

4.48 HIGHLIGHT
The HIGHLIGHT function returns the modified source text in which all of the
matching text patterns will be highlighted with preTag and endTag before and after.

At most 10000 (MaxTagSpace) byte tags can be added. If the pattern contains
Boolean operators [&, |, !, (,)], all the simple searching pattern will be tagged except
the ! (NOT) patterns. The input text can be CLOB, file, or char type.

textCLOB: Source Text

BoolPatn..................Char: Patterns to be hi-lighted, can be Boolean expression
pattern

sensitive Integer: Whether the match is case sensitive, 1 means yes and 0
means no

PreTag.....................Char: Tag before pattern, NULL denotes none

EndTagChar: Tag after pattern, NULL denotes none

Return valueBLOB: Modified source text after highlighting patterns

HIGHLIGHT (text, BoolPatn, sensitive, PreTag,
EndTag)

Figure 4-47 HIGHLIGHT syntax

 Example 1

The following will return the modified content in which all “Intel” or “AMD” are
highlighted with preTag “<<” and endTag “>>”.
select highlight(content,’Intel | AMD’,0,’<<’,’>>’) from news where content match
‘Intel| AMD’

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-58

4.49 HITCOUNT
The HITCOUNT function returns the frequency of patterns found in source text.

Rule of count values for Boolean patterns are:

• a AND b : min(count(a), count(b))

• a OR b : count(a) + count(b)

• NOT a : count = 0

textCLOB: Source text

BoolPatnChar: Patterns to be highlighted can be Boolean expression
patterns

sensitiveInteger: Whether the match is case sensitive, 1/0 means yes/no,
respectively

Return value.............Integer: The frequency of searched text patterns in the source

text

HITCOUNT (text, BoolPatn, sensitive)

Figure 4-48 HITCOUNT syntax

 Example

The following returns the frequency of “target” found in source data “content”, and
the finding is case insensitive.
HITCOUNT(content, “target”, 0)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-59

4.50 HITPOS
The HITPOS function shows the position information of the n-th pattern found in
source text, the offset can be: start offset, end offset, pattern length, begin offset

(higher than 24 bits), BINARY, OR end offset (lower 8 bits). The offset starts at 1.

textCLOB: Source Text

BoolPatn..................Char: Patterns to be hi-lighted can be Boolean expression pattern

sensitive Integer: Whether the match is case sensitive, 1/0 means yes/no,
respectively

n Integer: The n-th pattern in source text

RetTypeChar: Return position type:

0: begin offset (default setting)

1: end offset

2: pattern length (endoff - begoff + 1)

3: begin offset (higher 24 bits) BINARY OR end offset

 (lower 8 bits)

Return value Integer: Get position information of the n-th pattern found in
source text. If n-th pattern is not found, the value will be 0

HITPOS (text, BoolPatn, sensitive, n, RetType)

Figure 4-49 HITPOS syntax

 Example

The following examples return 5, 3, 5, and 7using the source text “a b A c”.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-60

HITPOS(src,'A', 1, 1, 0) = 5 ('A')

HITPOS(src,'A&B' 0, 2, 0) = 3 ('b')

HITPOS(src,'a|b|c', 0, 3, 0) = 5 ('A')

HITPOS(src,'!a&c' 0, 1, 0) = 7 ('c')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-61

4.51 HMS
The HMS function returns the time hours: minutes: seconds in time format. The hours’
argument represents the hours’ component of the time, and has valid values from 0 to

23. Hours must be entered using the 24-hour format; there is no method provided for
entering values for AM and PM to indicate the time in 12-hour format. The minutes’
argument represents the minutes’ component of the time, and has valid values from 0

to 59. The seconds’ argument represents the seconds’ component of the time, and has
valid values from 0 to 59.

hours Integer: Hours component of the time

minutes.................... Integer: Minutes component of the time

seconds Integer: Seconds component of the time

Return valueTime: Time format composite of hours, minutes, and seconds

HMS (hours, minutes, seconds)

Figure 4-50 HMS syntax

 Example 1

The following returns 10:11:12, which is equivalent to 10:11:12 AM.
HMS(10, 11, 12)

 Example 2

The following returns 22:11:12, which is equivalent to 10:11:12 PM.
HMS(22, 11, 12)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-62

4.52 HOUR
The HOUR function returns the hour in time as an integer value in the range 0 to 23.

timeTime: Time to find the hour component of

Return value.............Integer: Hour component of time

HOUR (time)

Figure 4-51 HOUR syntax

 Example 1

The following returns 10.
HOUR('10:11:12')

 Example 2

The following returns 22.
HOUR('PM 10:11:12')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-63

4.53 HTMLHIGHLIGHT
The HTMLHIGHLIGHT function returns modified source data in which all text
matching patterns will be highlighted with preTag and endTag before and after.

HTMLHIGHLIGHT also provides a highlight function to quote the patterns in an
HTML file without destroying the HTML document structure.

At most 10000 (MaxTagSpace) byte tags can be added. If the pattern contains

Boolean operators [&, |, !, (,)], all the simple searching pattern will be tagged expect
the ! (NOT) patterns. The input text can be CLOB, file or char type. No content
inside tags, including comments, will be highlighted. All tags (include comments) are

treated as SPACE character. For example, if pattern is “DBMaker License”, then the
HTML data “DBMaker
License” will be highlighted. However, if the HTML
data is “DBMaker”, it will not match “DBMaker” pattern! Only the data

after <BODY> can be highlighted.

textCLOB: Source text.

BoolPatn..................Char: Patterns to be highlighted can be Boolean expression

pattern

sensitive Integer: Whether the match is case sensitive, 1/0 means yes/no,
respectively

PreTag.....................Char: The tag after pattern, NULL denotes none

EndTagChar: The tag after pattern, NULL denotes none

Return valueBLOB: The modified text after highlighting patterns

HTMLHIGHLIGHT (text, BoolPatn, sensitive, PreTag, EndTag)

Figure 4-52 HTMLHIGHLIGHT syntax

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-64

 Example

The following returns modified content in which all text matching “Intel” or “AMD”
will be highlighted with “<<” and “>>” before and after.
HTMLHIGHLIGHT(content,’Intel | AMD’,0,’<<’,’>>’)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-65

4.54 HTMLTITLE
The HTMLTITLE function finds the title (text between html tags “<title>” and
“</title>” in source HTML data) of HTML data.

object BLOB: Source HTML data

Return valueVarchar: Return the title of the source HTML data

HTMLTITLE (object)

Figure 4-53 HTMLTITLE syntax

 Example

The following returns title in source HTML data “htmlFile”.
HTMLTITLE(htmlFile)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-66

4.55 HYPOT
The HYPOT function returns the length of the hypotenuse of a right angle triangle as
a double precision floating-point number. The hypotenuse is calculated according to

the equation z2=x2+y2 (Pythagorean Theorem), where z is the length of the hypotenuse.

xDouble: Length of one leg of the right triangle you are finding
the hypotenuse for

yDouble: Length of the other leg of the right triangle you are
finding the hypotenuse for

Return value.............Double: Length of the hypotenuse of the right triangle

HYPOT (x, y)

Figure 4-54 HYPOT syntax

 Example

The following returns 5.
HYPOT(3,4)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-67

4.56 INSERT
The INSERT function returns a character string where length characters from string1
have been replaced by string2 beginning at start. The value of start indicates the

position in string1 where the first character of string2 is placed. If the value of length is
zero, string2 is inserted into string1 without replacing any characters. An error is
returned if a value for all arguments is not provided.

DBMaker uses the following rules to determine the value returned if one of the string
expressions contains a NULL value or if one of the integer arguments contains an
atypical value:

• If string1 contains a NULL value, the function returns a NULL value.

• If start, length, or string2 contains a NULL value, the function returns the string
expression in string1.

• If the value of start is less than or equal to zero, or the value of length is less than
zero, the function returns the string expression in string1.

• If the value of start is greater than the length of string1 plus one, the function

returns the string expression in string1.

string1String: String to insert characters into

start Integer: Position where the first character from string2 is inserted

in string1

length Integer: Number of characters to replace in string1

string2String: String to insert into the original source string

Return valueString: String formed by inserting string1 in string2

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-68

INSERT (string1, start, length, string2)

Figure 4-55 INSERT syntax

 Example 1

The following returns the string “Good morning!”
INSERT(‘morning!’, 1, 5, ‘Good ’)

 Example 2

The following returns the string “Good morning!”
INSERT(‘Good ’, 6, 8, ‘morning!’)

 Example 3

The following returns the string “Good night!”
INSERT(‘Good morning!’, 6, 7, ‘night’)

 Example 4

The following returns the string “Good morning, sir. Here is your coffee.”
INSERT(‘Good morning! Here is your coffee.’, 13, 1, ‘, sir.’)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-69

4.57 INVDATE
The INVDATE function determines if the date specified by the date argument is
valid. Possible return values are:

• 1 for invalid dates (for example, out of date range)

• 0 for valid dates (for example, ‘0001-01-01’ to ‘9999-12-31’)

• -1 for dates with unknown values (for example, NULL values)

dateDate: Date to check the validity of

Return value Integer: Boolean value indicating whether the date is valid

INVDATE (date)

Figure 4-56 INVDATE syntax

 Example

The following returns a 0, indicating the date is valid.
INVDATE(‘2000-01-01’)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-70

4.58 INVTIME
The INVTIME function determines if the time specified by the time argument is
valid. Possible return values are:

• 1 for invalid times (for example, out of time range)

• 0 for valid times (for example, ‘00:00:00’ to ‘24:00:00’)

• -1 for times with unknown values (for example, NULL values)

timeTime: Time to check the validity of

Return value.............Integer: Boolean value indicating whether the time is valid

INVTIME (time)

Figure 4-57 INVTIME syntax

 Example

The following returns a 0, indicating the time is valid.
INVTIME(‘0001-01-01’)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-71

4.59 INVTIMESTAMP
The INVTIMESTAMP function determines if the timestamp specified with a
timestamp argument is valid. Possible return values are:

• 1 for invalid timestamps (for example, out of timestamp range)

• 0 for valid timestamps (for example, ‘00:00:00’ to ‘24:00:00’)

• -1 for timestamps with unknown values (for example, NULL values)

timestampTimestamp: Timestamp to check the validity of

Return value Integer: Boolean value indicating whether the timestamp is valid

INVTIMESTAMP (timestamp)

Figure 4-58 INVTIMESTAMP syntax

 Example

The following returns a 0, indicating the timestamp is valid.
INVTIMESTAMP(‘0001-01-01’)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-72

4.60 LAST_DAY
The LAST_DAY function returns the last date in the same month as the date
specified in the date argument.

date..........................Date: Date to find the last date in the same month of

Return value.............Date: Last date in the same month as date

LAST_DAY (date)

Figure 4-59 LAST_DAY syntax

 Example 1

The following returns ‘1996-02-29’.
LAST_DAY('1996-02-08')

 Example 2

The following returns ‘2002-12-31’.
LAST_DAY('2002-12-25')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-73

4.61 LCASE
The LCASE function converts all upper case letters in string to lower case; numbers
and symbols are not affected. If the string argument is NULL, a NULL value is

returned. If you do not provide a value for the string argument, an error will be
returned.

stringString: Text to convert to lower case

Return valueString: Text from the string argument in lower case

LCASE (string)

Figure 4-60 LCASE syntax

 Example 1

The following returns the string “abcdef”.
LCASE('ABCdef')

 Example 2

The following returns the string “abc123”.
LCASE('ABC123')

 Example 3

The following returns the string abc@#$.
LCASE('ABC@#$')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-74

4.62 LDEXP
The LDEXP function returns the result of the equation nnumber 2X ×= as a
double precision floating-point number.

xDouble: Mantissa x from the equation nnumber 2X ×=

n..............................Integer: Exponent n from the equation nnumber 2X ×=

Return value.............Double: Result of the equation nnumber 2X ×=

LDEXP (x, n)

Figure 4-61 LDEXP syntax

 Example

The following returns 8.00000000000000e+000.
LDEXP(0.5, 4)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-75

4.63 LEFT
The LEFT function returns the leftmost count characters in string. If the value of count
is less than zero, a NULL value is returned. An error will be returned if a value for all

arguments is not provided.

stringString: String to extract characters from

count Integer: Number of characters to extract

Return valueString: Leftmost count characters in string

LEFT (string, count)

Figure 4-62 LEFT syntax

 Example

The following returns the string “Good”.
LEFT('Good morning!', 4)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-76

4.64 LENGTH
The LENGTH function returns the number of characters in string, excluding trailing
blanks and the string termination character, when present. An error will be returned if

a value for the string argument is not provided.

string........................String: String to find the length of

Return value.............Integer: Leftmost count characters in string

LENGTH (string)

Figure 4-63 LENGTH syntax

 Example

The following returns 13.
LENGTH('Good morning! ')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-77

4.65 LOCATE
The LOCATE function returns the starting position of the first occurrence of string1
in string2. The search for the first occurrence of string1 begins with the character

position specified by start. Assigning a value of 1 to start indicates the search should
begin with the first character in string2. If string1 is not found in string2, a value of 0 is
returned. DBMaker uses the following rules to determine the value returned if one of

the string expressions contains a NULL value or when start contains an atypical value:

• If string1 contains a NULL value, the function will return a NULL value

• If string2 or start contain a NULL value, the function will return 0

• If start is less than or equal to zero, the function will return the correct value

• If start is greater than the length of string2 plus one, the function will return 0

string1String: String to locate

string2String: String to search

start Integer: Position in string2 to start searching

Return value Integer: Starting position of string1 in string2

LOCATE (string_exp1, string_exp2, 1)

Figure 4-64 LOCATE syntax

 Example 1

The following syntax returns a value of 4.
LOCATE(‘def’, ‘abcdefghi’, 1)

 Example 2

The following syntax returns the value of 0.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-78

LOCATE(‘def’, ‘abcdefghi’, 5)

 Example 3

The following syntax returns a value of 4.
LOCATE(‘def’, ‘abcdefghi’, 4)

 Example 4

The following syntax returns a value of 4.
LOCATE(‘def’, ‘abcdefghi’, -1)

 Example 5

The following syntax returns a value of 0.
LOCATE(‘def’, ‘abcdefghi’, 10)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-79

4.66 LOG
The LOG function returns the natural logarithm of x as a double-precision floating-
point number.

x..............................Double: Value to find the natural logarithm of

Return valueDouble: Natural logarithm of x

LOG (x)

Figure 4-65 LOG syntax

 Example

The following returns 1.00000000000000e+000.
LOG(2.71828182845905e+000)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-80

4.67 LOG10
The LOG10 function returns the logarithm with base 10 of x as a double precision
floating-point number.

xDouble: Value to find the natural logarithm with base 10 of x

Return value.............Double: Natural logarithm with base 10 of x

LOG10 (x)

Figure 4-66 LOG10 syntax

 Example

The following returns 2.
LOG10(100)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-81

4.68 LOWER
The LOWER function performs the same calculation as LCASE. It makes all
characters in the string lower case characters.

Return valueString_expression: returns all characters in lower case

LOWER (string_expression)

Figure 4-67 Lower function syntax

 Example
select lower('ABCDEF');
LOWER('ABCDEF')
================
abcdef

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-82

4.69 LTRIM
The LTRIM function returns the characters of string with leading blanks removed. An
error will be returned if a value for all arguments is not provided.

string........................String: String to trim characters from the left of

Return value.............String: String with leading blanks removed

LTRIM (string)

Figure 4-68 LTRIM syntax

 Example

The following returns the string “Good morning!”
LTRIM(' Good morning!')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-83

4.70 MDY
The MDY function returns the date month/day/year in the current date format. The
month argument represents the month component of the date, and has valid values

from 1 to 12. The day argument represents the day component of the time, and has
valid values from 1 to 31. The year argument represents the year component of the
time, and has valid values from 0001 to 9999.

month...................... Integer: Month component of the date

day Integer: Day component of the date

year Integer: Year component of the date

Return valueDate: Date format composite of hours, minutes and seconds

MDY (month, day, year)

Figure 4-69 MDY syntax

 Example 1

The following returns the date 1996-02-08 when the current date format is set to
yyyy-mm-dd.
MDY(2,8,1996)

 Example 2

The following returns the date 02/08/2001 when the current date format is set to

mm/dd/yyyy.
MDY(2,8,2001)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-84

4.71 MINUTE
The MINUTE function returns the minutes in time as an integer value in the range 0
to 59.

timeTime: Time to find the minute component of

Return value.............Integer: The minute component of time

MINUTE (time)

Figure 4-70 MINUTE syntax

 Example

The following returns 11.
MINUTE('10:11:12')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-85

4.72 MOD
The MOD function returns the remainder, modulus, of x divided by y as a double
precision floating-point number.

x..............................Double: Dividend

y..............................Double: Divisor

Return valueDouble: Remainder

MOD (x, y)

Figure 4-71 MOD syntax

Â Example

The following returns 2.00000000000000e+000.
MOD(17, 3)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-86

4.73 MODFI
The MODFI function returns a double precision floating-point number for the
integer part of number.

numberDouble: Number to determine the integer part of

Return value.............Double: Integer part of number

MODFI (number)

Figure 4-72 MODFI syntax

 Example 1

The following returns 3.00000000000000e+000.
MODFI(3.1415926535897936)

 Example 2

The following returns -3.00000000000000e+000.
MODFI(-3.1415926535897936)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-87

4.74 MODFM
The MODFM function returns a double-precision floating-point number for the
mantissa part of number.

number....................Double: Number to determine the mantissa part of

Return valueDouble: Mantissa part of number

MODFM (number)

Figure 4-73 MODFM syntax

 Example 1

The following returns the value of 1.41592653589790e-001.
MODFM(3.1415926535897936)

 Example 2

The following returns the value of -1.41592653589790e-001.
MODFM(-3.1415926535897936)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-88

4.75 MONTH
The MONTH function returns the month in date as an integer value in the range 1
to 12.

date..........................Date: Date to find the month component of

Return value.............Integer: The month component of date

MONTH (date)

Figure 4-74 MONTH syntax

 Example

The following returns 2.
MONTH('1996-02-29')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-89

4.76 MONTHNAME
The MONTHNAME function returns a character string containing the data-source
specific name of the month (for example, JAN, FEB, …, DEC) that date falls on. The

date argument must be a valid date or DBMaker will return an error.

dateDate: Date to find the name of the month for

Return valueString: The name of the month that date falls in

MONTHNAME (date)

Figure 4-75 MONTHNAME syntax

 Example 1

The following returns “FEB”.
MONTHNAME('1996-02-29')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-90

4.77 NEXT_DAY
The NEXT_DAY function returns the date proceeding the date that weekday falls on.
Valid values for the weekday argument are the names of the days of the week

(Monday, Tuesday, …, Sunday) or their abbreviations (Mon, Tue, …, Sun). Values
for weekday are not case-sensitive.

date..........................Date: Date after which to find the next date that a weekday falls

on

weekdayString: Weekday the date will fall on

Return value.............Date: Next date after date that weekday falls on

NEXT_DAY (date, weekday)

Figure 4-76 NEXT_DAY syntax

 Example 1

The following syntax returns the date 1996-03-04.
NEXT_DAY('1996-02-29', 'Monday')

 Example 2

The following syntax returns the date 1996-03-05.
NEXT_DAY(‘1996-02-29’, ‘Tuesday’)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-91

4.78 NOW
The NOW function returns the current date and time as a timestamp value.

Return valueTimestamp: The current date and time

NOW ()

Figure 4-77 NOW syntax

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-92

4.79 PI
The PI function returns the constant value of π, 3.1415926535897936, as a decimal
number with a precision of 38 and a scale of 16.

Return value.............Decimal: The constant value π

PI ()

Figure 4-78 PI syntax

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-93

4.80 POSITION
The POSITION function returns the starting position of the first occurrence of
string1 in string2. If string1 is not found in string2, a value of 0 is returned. DBMaker

uses the following rules to determine the value returned if one of the string expressions
contains a NULL value or when start contains an atypical value:

• If string1 contains a NULL value, the function will return a NULL value

• If string2 or start contain a NULL value, the function will return 0

string1String: String to locate

string2String: String to search

Return value Integer: Starting position of string1 in string2

POSITION (string_exp1 IN string_exp2)

Figure 4-79 POSITION function syntax

 Example 1

The following function command returns the value of “4”.
select position('abc' in 'defabcjlkjl');
POSITION('ABC' IN 'DEFABCJLKJL')
================================
 4

 Example 2

The following function command returns the value of “1”.
select position('abc' in 'abcdefghihj');
POSITION('ABC' IN 'ABCDEFGHIHJ')
================================
 1

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-94

 Example 3

The following function command returns the value of “0”.
select position('abc' in 'jlkjlkklj');
POSITION('ABC' IN 'JLKJLKKLJ')
==============================
 0

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-95

4.81 POW
The POW function returns xy as a double-precision floating-point number.

x..............................Double: Number to raise to a power y

y..............................Double: Power to raise number x to

Return valueDouble: Value of x to the power y

POW (x, y)

Figure 4-80 POW syntax

 Example

The following returns 8.00000000000000e+000.
POW(2, 3)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-96

4.82 QUARTER
The QUARTER function returns the quarter that date falls in as an integer value in
the range 1 to 4, where 1 represents January 1 through March 31.

date..........................Date: Date to find the quarter for

Return value.............Integer: The quarter that date falls in

QUARTER (date)

Figure 4-81 QUARTER syntax

 Example

The following returns the value of 1.
QUARTER('2002-01-20')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-97

4.83 RADIANS
The RADIANS function returns the number of radians in degrees as a double
precision floating-point number.

degreesDouble: Number of degrees to convert to radians

Return valueDouble: Number of radians in degrees

RADIANS (degrees)

Figure 4-82 RADIANS

 Example

The following returns 3.14159265358979e+000.
RADIANS(180)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-98

4.84 RAND
The RAND function returns a random Integer value.

Return value.............Integer: Random number

RAND ()

Figure 4-83 RAND syntax

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-99

4.85 REPEAT
The REPEAT function returns a character string composed of string repeated count
times. DBMaker uses the following rules to determine the value returned if the string

expression contains a NULL value or is an empty string. If string or count contained in
a NULL value, the function returns a NULL value. If count is less than 0 or string is an
empty string, the function returns an empty string. If you do not provide a value for

all arguments, an error will be returned.

stringString: String to repeat

count Integer: Number times to repeat string

Return valueString: String composed of string repeated count times

REPEAT (string, count)

Figure 4-84 REPEAT syntax

 Example 1

The following returns the string “Good morning! Good morning!”
REPEAT('Good morning! ', 2)

 Example 2

The following returns the string “Zzzz Zzzz Zzzz Zzzz ”.
REPEAT('Zzzz ', 4)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-100

4.86 REPLACE
The REPLACE function replaces all occurrences of string2 in string1 with string3.
DBMaker uses the following rules to determine the value returned if one of the string

expressions contains a NULL value or is an empty, zero length, and string:

• If string1 is NULL return NULL.

• If string2 or string3 is NULL return string1.

• If string2 is empty return string1.

string1......................String: String to replace characters in

string2......................String: String to replace

string3......................String: String to replace with

Return value.............String: String composed of string1 with all occurrences of string2
replaced with string3

REPLACE (string1, string2, string3)

Figure 4-85 REPLACE syntax

 Example 1

The following returns the string “Good evening! Good evening!”
REPLACE('Good morning! Good morning!', 'morning', 'evening')

 Example 2

The following example returns the string “Goodbye Dave.”
REPLACE('Hello, Dave.', 'Hello,', 'Goodbye')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-101

4.87 RIGHT
The RIGHT function returns the rightmost count characters in string. If the value of
count is less than zero, a NULL value is returned. An error will be returned if a value

for all arguments is not provided.

stringString: String to extract characters from

count Integer: Number of characters to extract

Return valueString: Rightmost count characters in string

RIGHT (string, count)

Figure 4-86 RIGHT syntax

 Example

The following returns the string “morning!”
RIGHT('Good morning! ', 10)

NOTE There are two spaces after the exclamation point in both the function argument
and the return value.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-102

4.88 RND
The RND function rounds number to the nearest integer.

numberDouble: Number to round

Return value.............Integer: Nearest integer value to number

RND (number)

Figure 4-87 RND syntax

 Example 1

The following returns 12.
RND(12.01)

 Example 2

The following returns 12.
RND(12.49)

 Example 3

The following returns 13.
RND(12.50)

 Example 4:

The following returns 13.
RND(12.99)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-103

4.89 ROUND
The ROUNDS function number to the nearest integer.

number....................Double: Number to round

Return value Integer: Nearest integer value to number

ROUND (number)

Figure 4-88 ROUND syntax

 Example 1

The following returns 12.
ROUND(12.01)

 Example 2:

The following returns 12:
ROUND(12.49)

 Example 3

The following returns 13.
ROUND(12.50)

 Example 4

The following returns 13.
ROUND(12.99)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-104

4.90 RTRIM
The RTRIM function returns the characters of string with trailing blanks removed. An
error will be returned if a value for all arguments is not provided.

string........................String: String to trim characters from the right of

Return value.............String: String with trailing blanks removed

RTRIM (string)

Figure 4-89 RTRIM syntax

 Example

The following returns the string “Good morning!”
RTRIM('Good morning! ')

NOTE There are two spaces after the exclamation point in the function argument.

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-105

4.91 SECOND
The SECOND function returns the seconds in time as an integer value in the range of
0 to 59.

time.........................Time: Time to find the second component of

Return value Integer: The second component of time

SECOND (time)

Figure 4-90 SECOND syntax

 Example

The following returns 12.
MINUTE('10:11:12')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-106

4.92 SECS_BETWEEN
The SECS_BETWEEN function returns the number of seconds between two times.
The time1 argument can be earlier or later than the time2 argument.

time1Time: First time of two to calculate the number of seconds

 between

time2Time: Second time of two to calculate the number of

 seconds between

Return value.............Integer: Number of seconds between time1 and time2

SECS_BETWEEN (time1, time2)

Figure 4-91 SECS_BETWEEN syntax

 Example

The following returns 36000.
SECS_BETWEEN('10:10:10', '20:10:10')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-107

4.93 SESSION_USER
The SESSION _ USER function returns the current user connected to DBMaker.

Return valueThe current session user

SESSION_USER

Figure 4-92 SESSION_ USER syntax

 Example

The following returns the current SESSION_USER.
insert into t1 values (SESSION_USER);
select SESSION_USER;
select c1 from t1 where c2 = SESSION_USER;

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-108

4.94 SIGN
The SIGN function returns an integer indicating the sign of number. The values
returned are +1 for positive numbers, 0 for zero, and -1 for negative numbers.

numberDouble: Number to find the sign of

Return value.............Integer: Value corresponding to the sign of number

SIGN (number)

Figure 4-93 SIGN syntax

 Example 1

The following returns the value of 1.
SIGN(12.3)

 Example 2

The following returns the value of 0.
SIGN(0)

 Example 3

The following returns the value of –1.
SIGN(-12.3)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-109

4.95 SIN
The SIN function returns the sine of number, expressed in radians, as a double
precision floating-point number.

number....................Double: Number to find the sine for

Return valueDouble: The sine of number

SIN (number)

Figure 4-94 SIN syntax

 Example

The following returns the value of 4.79425538604203e-001.
SIN(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-110

4.96 SINH
The SINH function returns the hyperbolic sine of number, expressed in radians, as a
double precision floating-point number.

numberDouble: Number to find the hyperbolic sine for

Return value.............Double: The hyperbolic cosine of number

SINH (number)

Figure 4-95 SINH syntax

 Example

The following returns the value of 5.21095305493747e-001.
SINH(0.5)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-111

4.97 SPACE
The SPACE function returns a character string consisting of count spaces. If the value
of count is less than zero, a NULL value is returned.

count Integer: Number of spaces

Return valueString: String containing count spaces

SPACE (count)

Figure 4-96 SPACE syntax

 Example 1

The following returns a string consisting of three blank spaces “ ”.
SPACE(3)

 Example 2

The following returns the string “ Good morning!” with three blank spaces in front.
CONCAT(SPACE(3), ‘Good morning!’)

NOTE There are three spaces before the first letter in the return value.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-112

4.98 SQRT
The SQRT function returns the square root of x as a double-precision floating-point
number.

xDouble: Number to find the square root of

Return value.............Double: Square root of x

SQRT (x)

Figure 4-97 SQRT syntax

 Example

The following returns 1.30000000000000e+001.
SQRT(169)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-113

4.99 STRTOINT
The STRTOINT function converts the string to an integer, when the string argument
is NULL a NULL value is returned. An error will be returned if the string cannot be

converted to an integer.

stringString: Text to convert to integer

Return value Integer: The year component of date

STRTOINT (string)

Figure 4-98 STRTOINT syntax

 Example

The following returns 1234.
STRTOINT(‘1234’)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-114

4.100 SUBBLOB
The SUBBLOB function returns a temporary BLOB from an input blob beginning at
the byte position specified by start for length bytes. The first BLOB byte is counted

from 1. This function is an add-on; run the script libblob.sql provided by DBMaker
to install it. DBMaker uses the following rules to determine the value returned if one
of the expressions contains a NULL value or is zero.

• If blob is NULL the function returns a NULL value

• If start or length is NULL the function returns a temporary BLOB

• If start <= 0 or length < 0 the function returns a NULL value

• If start > length of blob the function returns a NULL value

• If length is 0, the function returns an empty temporary BLOB

blobBLOB: CLOB, FILE to extract partial data from

startInteger: Position to begin extracting the data of blob

length.......................Integer: Number of bytes to extract

Return value.............BLOB: Temporary BLOB extracted from blob

SUBBLOB (blob, start, length)

Figure 4-99 SUBBLOB syntax

 Example

The following returns temporary BLOB data extracted from Data BLOB from byte
position 1001 to byte position 1100.
SUBBLOB(Data, 1001, 100)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-115

4.101 SUBBLOBTOBIN
The SUBBLOBTOBIN function returns a binary string derived from input blob,
beginning at the byte position specified by start for length bytes. The first byte of

BLOB is counted from 1. This function is an add-on; run the libblob.sql script
provided by DBMaker to install it. DBMaker uses the following rules to determine
the value returned if one of the expressions contains a NULL value or is zero.

• If blob is NULL the function returns a NULL value

• If start or length is NULL the function returns a string with the same data as
blob

• If start <= 0 or length < 0 the function returns a NULL value

• If start > length of blob the function returns a NULL value

• If length is 0 the function returns an empty string

blobBLOB (BLOB, CLOB, FILE) to extract partial data from

start Integer. Position to begin extracting the data of blob

length Integer. Number of characters to extract

Return valueBinary string. Data extracted from blob

SUBBLOBTOBIN (string, start, length)

Figure 4-100 SUBBLOBTOBIN syntax

 Example

A binary string with data extracted from the Data BLOB byte position 1001 to 1100.
SUBBLOBTOBIN(Data, 1001, 100)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-116

4.102 SUBBLOBTOCHAR
The SUBBLOBTOCHAR function returns a character string that is derived from the
input blob beginning at the byte position specified by start for length bytes. The first

byte of BLOB is counted from 1. This function is an add-on, run the libblob.sql
script provided by DBMaker to install it. DBMaker uses the following rules to
determine the value returned if one of the expressions contains a NULL value or is

zero.

• If blob is NULL the function returns a NULL value

• If start or length is NULL return the string, which is the same data as blob

• If start <= 0 or length < 0 the function returns a NULL value

• If start > length of blob the function returns a NULL value

• If length is 0 the function returns an empty string

blobBLOB: BLOB, CLOB, FILE to extract partial data from

startInteger: Position to begin extracting the data of blob

length.......................Integer: Number of characters to extract

Return value.............Character String: Data extracted from blob

SUBBLOBTOCHAR (string, start, length)

Figure 4-101 SUBBLOBTOCHAR syntax

 Example

A character string with data extracted from Data BLOB byte position 1001 to 1100.
SUBBLOBTOCHAR(Data, 1001, 100)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-117

4.103 SUBSTRING
The SUBSTRING function returns length characters beginning at start from string.
DBMaker uses the following rules to determine the value returned if one of the

expressions contains a NULL value or is zero.

• If string is NULL the function returns a NULL value.

• If start or length is NULL the function returns string.

• If start < 0 or length < 0 the function returns a NULL value.

• If start >= length of string the function returns a NULL value.

• If length is 0 the function returns an empty string.

stringString: String to extract a substring from

start Integer: Position to begin extracting the substring

length Integer: Number of characters to extract

Return valueString: Substring extracted from string

SUBSTRING

string, start, length

String

(

from start for length
)

Figure 4-102 SUBSTRING syntax

 Example 1

The following returns the string “morning”.
SUBSTRING('Good morning!', 6, 7)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-118

 Example 2
select substring(cast(123456 as char(10)) from length('abc') for length('abc'));
SUBSTRING(CAST(123456 AS CHAR(10)
=================================
345

 Example 3
Select substring(‘abcdef’, 2, 2)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-119

4.104 TAN
The TAN function returns the tangent of number, expressed in radians, as a double-
precision floating-point number.

 number...................Double: Number to find the tangent for

Return valueDouble: The tangent of number

TAN (number)

Figure 4-103 TAN syntax

 Example

The following returns the value of 5.46302489843790e-001.
TAN(0.5)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-120

4.105 TANH
The TANH function returns the hyperbolic tangent of a number as a double precision
floating-point number expressed in radians.

NumberDouble: Number to find the hyperbolic tangent for

Return value.............Double: The hyperbolic tangent of Number

TANH (number)

Figure 4-104 TANH syntax

 Example

The following returns the value of 4.62117157260010e-001.
TANH(0.5)

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-121

4.106 TIMEPART
The TIMEPART function returns the time part of Timestamp.

timestampTimestamp: Timestamp to extract the time part from

Return valueDate: Time part of Timestamp

TIMEPART (timestamp)

Figure 4-105 TIMEPART syntax

 Example

The following returns 10:11:12.
TIMEPART('1996-02-29 10:11:12.123')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-122

4.107 TIMESTAMPADD
The TIMESTAMPADD function returns the timestamp calculated by adding
Numbered Intervals to Timestamp.

IF INTERVAL UNIT INTERVAL
“f” (or SQL_TSI_FRAC_SECOND for ODBC programs) Fractions of a second
“s” (or SQL_TSI_SECOND for ODBC programs) Seconds
“m” (or SQL_TSI_MINUTE for ODBC programs) Minutes
“h” (or SQL_TSI_HOUR for ODBC programs) Hours
“D” (or SQL_TSI_DAY for ODBC programs) Days
“W” (or SQL_TSI_WEEK for ODBC programs) Weeks
“M” (or SQL_TSI_MONTH for ODBC programs) Months
“Q” (or SQL_TSI_QUARTER for ODBC programs) Quarters
“Y” (or SQL_TSI_YEAR for ODBC programs) Years

Table 4-1 TIMESTAMPADD NUMBERED INTERVAL table

intervalString: Unit interval to add

numberInteger: Number of unit intervals to add

timestamp.................Timestamp: Timestamp to add interval to

Return value.............Timestamp: Result of Timestamp + Interval × Number

TIMESTAMPADD (interval, number, timestamp)

Figure 4-106 TIMESTAMPADD syntax

 Example

The following returns 1996-01-17 06:10:10.
TIMESTAMPADD('h',20,'1996-01-16 10:10:10')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-123

4.108 TIMESTAMPDIFF
The TIMESTAMPDIFF function returns the number of unit intervals between
timestamp2 and timestamp1.

IF INTERVAL UNIT INTERVAL
“f” (or SQL_TSI_FRAC_SECOND for ODBC programs) Fractions of a second
“s” (or SQL_TSI_SECOND for ODBC programs) Seconds
“m” (or SQL_TSI_MINUTE for ODBC programs) Minutes
“h” (or SQL_TSI_HOUR for ODBC programs) Hours
“D” (or SQL_TSI_DAY for ODBC programs) Days
“W” (or SQL_TSI_WEEK for ODBC programs) Weeks
“M” (or SQL_TSI_MONTH for ODBC programs) Months
“Q” (or SQL_TSI_QUARTER for ODBC programs) Quarters
“Y” (or SQL_TSI_YEAR for ODBC programs) Years

Table 4-2 TIMESTAMPDIFF NUMBERED INTERVAL table

intervalString: Unit Interval to return the difference in

timestamp1Timestamp: First Timestamp to find the interval between

timestamp2Timestamp: Second Timestamp to find the Interval between

Return valueDouble: Result of Timestamp2 - Timestamp1

TIMESTAMPDIFF (interval, timestamp1, timestamp2)

Figure 4-107 TIMESTAMPDIFF syntax

 Example

The following returns 2.40000000000000e+001.
TIMESTAMPDIFF('h','1996-01-16 10:10:10', '1996-01-17 10:10:10')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-124

4.109 TO_DATE
The TO_DATE function converts a selected string to a DATE format. The string
may be of any data type, but must conform to a valid date when converted to a date.

The TO_DATE function consists of two parameters, char_string and
date_format_string. The char_string parameter represents the string that is to be
matched, while the date_format_string represents the format that the DATE type data

result set will take.

string_exprString expression from which the expression is matched

date_format_string....The format that the date format should take. Use Y or y to

denote years, M or m to denote months, and D or d to denote days. Use / or – to
denote a separator.

Return value.............The string expression returned as a DATE type data string.

TO_DATE (string_expr, date_format_string)

Figure 4-108 TO_DATE syntax

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-125

4.110 TRIM
The TRIM function combines the LTRIM and RTRIM functions. More than one
character can be specified in the trim_char_value_expr and each character is viewed as

a valid trim character.

The default trim option is BOTH when at least one LEADING, TRAILING, or
BOTH options are not specified. The default trim_char_value_expr character is the

space character (' '). In addition, if the trim_char_value_expr were an empty string
(''), the resulting string would be trim_source string. If the trim_source is NULL,
than the result would also be NULL, no matter which trim option and trim character

were used. The LENGTH function can also be used with the TRIM function as
shown in some of the examples that follow.

TRIM

FROM
LEADING
TRAILING

BOTH

trim_expr

()trim_source

Figure 4-109 TRIM function syntax

 Example 1
select trim(both 'a' from 'aabcaa');
TRIM(BOTH 'A' FROM 'AABCAA')
==============================
bc

 Example 2
select trim(from 'aabcaa');
TRIM(FROM 'AABCAA')
=====================
aabcaa

 Example 3
select trim('a' from 'aabcaa');
TRIM('A' FROM 'AABCAA')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-126

========================
bc

 Example 4
select trim('abc' from 'abckjkjjdcba');
TRIM('ABC' FROM 'ABCKJKJJDCBA')
=================================
kjkjjd

 Example 5
select trim ('a c' from 'ac ddbc');
TRIM ('A C' FROM 'AC DDBC')
===========================
ddb

 Example 6
select length(trim(leading from ' abc '));
LENGTH(TRIM(LEADING FROM ' ABC '
================================
 3

 Example 7
select length(trim(leading 'a' from 'aabc '));
LENGTH(TRIM(LEADING 'A' FROM 'AA
================================
 2

 Example 8
select length(trim(trailing from 'aabc '));
LENGTH(TRIM(TRAILING FROM 'AABC
===============================
 4

 Example 9
select length(trim(trailing 'a' from 'aabcaa'));
LENGTH(TRIM(TRAILING 'A' FROM 'A
================================
 4

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-127

4.111 UCASE
The UCASE function converts all lower case characters in string to uppercase. If the
string argument is NULL, a NULL value is returned. An error will be returned if a

value for the string argument is not provided.

stringString: Text to convert to upper case

Return valueString: Text from the string argument in upper case

UCASE (string)

Figure 4-110 UCASE syntax

 Example 1

The following returns the string “ABCDEF”.
UCASE('ABCdef')

 Example 2

The following returns the string “ABC123”.
UCASE('abc123')

 Example 3

The following returns the string ABC@#$.
UCASE('abc@#$')

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-128

4.112 UPPER
This function performs the same calculation as UCASE. It capitalizes all characters in
the string. NULL string argument will return NULL.

Return value.............String_expression: returns all characters in UPPER case

UPPER (string_expression)

Figure 4-111UPPER function syntax

 Example
select upper('abcdef');
UPPER('ABCDEF')
=================
ABCDEF

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-129

4.113 USER
The USER function returns the authorization name of the current user. The
authorization name of the user is also available by calling the SQLGetInfo with the

SQL_USER_NAME option.

Return valueString: The name of the current user

USER ()

Figure 4-112 USER syntax

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-130

4.114 WEEK
The WEEK function returns the week date that falls in the integer value range from 1
to 53.

date..........................Date: Date to find the week for

Return value.............Integer: The week that date falls in

WEEK (date)

Figure 4-113 WEEK syntax

 Example

2002-02-11 is in the 5th week of 2002, the following returns 5 ().
WEEK('2002-02-01')

1Built-in Functions 4

©Copyright 1995-2004 CASEMaker Inc. 4-131

4.115 YEAR
The YEAR function returns the year in date as an integer value in the range 1 to 9999.

dateDate: Date to find the year component of

Return value Integer: The year component of date

YEAR (date)

Figure 4-114 YEAR syntax

 Example

The following returns 2002.
YEAR(‘2002-02-01’);

2002

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 4-132

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-1

5 System-Stored
Procedures

System-Stored Procedures are dynamic library modules that will not be loaded until
called. System-stored procedures include shared objects and XML import and XML

export procedures.

A shared object is a signed integer variable existing in the database shared
memory (DCCA). The access of a shared object is more efficient and independent of

the transaction. Unlike data records, shared objects will not be stored in a database
file. So that the lifecycle of shared object ends when it is dropped or
database is shut down.

 Every user connected to the database can see shared objects (after a SYSADM has
added them) and can set or get each of the shared object’s values unless a lock has
been placed on them by another user. A shared object is a signed integer (4 bytes in

size). All users also have equal rights/permissions to the shared objects, thus any user
can override or reset an objects’ settings except for the lock permission.

The other two system-stored procedures (XMLEXPORT and XMLIMPORT) can

only be used by a SYSADM or a DBA to import and export xml files.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-2

5.1 SOADD
The SOADD system-stored procedure is used to increase the shared object’s value.

 The prototype for SOADD is:
SOADD(
 INTEGER SHID,
 INTEGER ADDEND,
 INTEGER NEW_VAL OUTPUT)

................................setid : the id of the shared object

................................addend : the positive or negative value to add

................................new_val : the value after adding

 Example

The following syntax is used to add 3 to shared object 2 and get the new value = 3.
dmSQL> call SYSADM.SOAdd(2,3,?);
new_val: 3

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-3

5.2 SOCREATE
The SOCREATE system-stored procedure is used to create shared objects. To use a
shared object, use SOCreate() to create the shared object with a specified identifier

and initial value. Then, use SORead(), SOSet()or SOAdd() (to read, modify, or to
increase the shared object value respectively) by indicating its identifier. Since the
shared object can be accessed by any connection, it supports SOLock() and SOUnlock

for concurrency control. When the shared object is no longer in use it can be dropped
with SODrop().

 The prototype for SOCREATE is:
SOCREATE(
 INTEGER SETID,
 INTEGER INIT_VAL,
 INTEGER SHID OUTPUT)

............................... setid : the assigned id of the shared object

0: system assigned, otherwise: user assigned

............................... init_val : initial value

............................... shid : id of the created shared object

 Example 1

The following syntax is used to create a shared object with an initial value = 0 with a
system assigned id = 0.
dmSQL> call SYSADM.SOCreate(0,0,?);
Shid: 1

 Example 2

The following syntax is used to create shared object 2 with an initial value = 0.
dmSQL> call SYSADM.SOCreate(2,0,?);
Shid: 2

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-4

5.3 SODROP
The SODROP system-stored procedure is used to drop a shared object when the
object is no longer in use.

 The prototype for SODROP is:
 SODROP(INTEGER SHID)

................................shid : id of the shared object to drop

 Example

The following syntax is used to drop shared object 1.
dmSQL> call SYSADM.SODrop(1);

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-5

5.4 SOLOCK
The SOLOCK system-stored procedure is used to lock a shared object. After a shared
object has been locked, other users cannot read, set, add, drop, lock, or unlock it.

Only the user that set the lock can use the other six system-stored procedures on it.

 The prototype for SOLOCK is:
SOLOCK(INTEGER SHID)

............................... shid : id of shared object which are desired to lock

 Example

The following syntax is used to lock shared object 1.
dmSQL> call SYSADM.SOLock(1);

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-6

5.5 SOREAD
The SOREAD system-stored procedure is used to read (get) the value of a shared
object.

 The prototype for SOREAD is:
SOREAD(
 INTEGER SHID,
 INTEGER VAL OUTPUT)

................................shid : the id of shared object

................................val : value of the shared object

 Example

The following syntax is used to get the value of shared object 2.
dmSQL> call SYSADM.SORead(2,?);
val: 3

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-7

5.6 SOSET
The SOSET system-stored procedure is used to set or modify a shared object’s values.

 The prototype for SOSET is:
SOSET(
 INTEGER SHID,
 INTEGER NEW_VAL,
 INTEGER OLD_VAL OUTPUT)

............................... shid : the id of shared object

...............................new_val : value to assign

...............................old_val : value before the assignment

 Example

The following syntax is used to set the value of shared object 2 to –2.
dmSQL> call SYSADM.SOSet(2,-2,?);
old_val: 3

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-8

5.7 SOUNLOCK
The SOUNLOCK system-stored procedure is used to unlock a shared object. After a
shared object has been locked, other users cannot read, set, add, drop, lock, or unlock

it. Only the user that placed a lock on the shared object may unlock it.

 The prototype for SOUNLOCK is:
SOUNLOCK(INTEGER SHID)

................................shid : id of shared object which are desired to unlock

 Example

The following syntax is used to unlock shared object 1.
dmSQL> call SYSADM.SOUnlock(1);

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-9

5.8 XMLEXPORT
The XMLEXPORT system-stored procedure provides a programmable interface for
users to export XML data from DBMaker. Only a SYSADM or a DBA can call these

stored procedures. In addition, the execute privilege cannot be granted to other users
because XMLEXPORT is a system-stored procedures.

XMLEXPORT will export tables from a DBMaker database to an XML file and can

process multiple tables within one call of the corresponding stored procedures.
Descriptions on the mapping between the content of XML files and DBMaker tables
are outlined in a description string. This description string is used as one of the

arguments passed into the stored procedure.

 The prototype for XMLEXPORT is:
XMLEXPORT(
 VARCHAR(256) FILE_PATH,
 VARCHAR(256) DB_TAG,
 VARCHAR(256) XML_HEADER,
 VARCHAR(16000) OBJECT_STR,
 VARCHAR(256) OPTION_STR,
 VARCHAR(256) LOG_PATH)

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-10

NAME TYPE
LENGTH

(bytes)
Description

Case

Sensitivity

file_path varchar 256 Full path of exported
xml file

Depends on operating
system

db_tag varchar 256 Customized database
tag

Yes (output has the
same capitalization)

xml_header varchar 256 Customized xml
header

Yes (output has the
same capitalization)

object_str varchar 16000 Description string for
exported objects

Depends on DBMaker
setting

option_flag varchar 256 Description string for
option flags

No

log_path varchar 256 Full path of error log
file on the client

Depends on operating
system

Table 5-1 XMLEXPORT Arguments table

Constructing XMLEXPORT Arguments

First, the XML file being exported from a database must be generated on the server.

The file_path is specified by a full path string passed in as one of the arguments of the
corresponding stored procedure.

Second, the db_tag can be used to customize a tag. The default value (database name)

will be used if a NULL or empty string is present.

Third, the argument object_str is used;
Object_str=:

{ <element> [; <element>…]

<element>=:

{TABLE_NAME | <select_query>} [#TABLE_TAG]

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-11

An <element> represents a table. The delimiter used between <element> is a semi-
colon (;). If the first token from <element> is "select" (case insensitive comparison),

this <element> is seen as <select_query> [#TABLE_TAG].

Otherwise, this <element> is seen as TABLE_NAME [#TABLE_TAG]. “If <element>
= TALBE_NAME [#TABLE_TAG]”, all columns in this table will be selected and no

customized column tag can be specified. That is to say, in the exported XML file, the
names of column tags are the same as their corresponding table column names. The
TABLE_TAG is for users to specify a customized table tag. If no TABLE_TAG is

there, the table name in the database will be used as table tag name.

If users want to specify any customized column tag name, they can only use
<select_query>[#TABLE_TAG] in the <element> string. The customized column tag

names are specified by using column alias names in the <select_query> statement. The
user must use "AS" in their <select_query>, like; "select c1 as name, c2 as type from
t2" as the <select_query> statement, then column c1 will become the "name" tag and

column c2 will become the “type" tag in the exported XML file.

Fourth, users can specify an option with an option string using option_flag. Each
option is separated by semicolon (;). For example, if the user wants column names to

be treated as attributes, they can use "column_as_attribute" in the option string. If
users do not specify a certain option, that option is not set. The option flag string is
case-insensitive.

OPTION FLAG SET NOT SET

blob_in_separate_file BLOB/CLOB column
data is exported as a temp

file separate from the
XML file. The name of
that temp file is recorded

in the exported dtd.

Blob/Clob column data is
exported as part of the

XML file.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-12

column_as_attribute Columns are exported as
attributes instead of an

element in XML file.

Columns are exported as
an element in XML file.

capitalize_tag_name All tag names are
capitalized in the XML
file.

The capitalization of all
tag names stays the same
as that of the

corresponding names in
database.

file_type_as_link File type data content will
not be exported. Only the
name of the file is

exported in the XML file.

File type data content will
be exported as part of the
XML file.

no_schema_dtd Will not generate a
schema dtd along with the
XML file generated.

Will generate a
corresponding DTD along
with the XML file

exported.

Table 5-2 XMLEXPORT OPTIONS

Lastly, the log file generated during the exporting of XML files are saved on the client

machine in the log_path.

Exporting XML Files

Suppose that we want to export two tables (one is card, and the other is contact) from
a DBMaker database called Customer as one file /usr/john/xmlexport.xml. In the

xmlexport.xml file, we want to use "EMPLOYEE" as our customized database tag,

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-13

"TITLE" as our customized table tag for the table "card" and "NUMBER" as our
customized table tag for the table "contact".

In addition, the customized column tags for C1, C2, C3 and C4 of the table card are
NO, FIRST_NAME, LAST_NAME and JOB respectively. We will not use
customized column tags for the table "contact". We also want to capitalize all tag

names in the XML file and all BLOB column data (if any) will be saved in another
temporary file. Finally, our log file name is going to be saved as
/client/john/xmlexport.log. The contents of these two tables are as follows:

dmSQL> select * from card;
 C1 C2 C3 C4
=========== ==================== ==================== ====================
 1 Eddie Chang Manager
 2 Hook Hu SoftwareEngineer
 3 Jackie Yu SoftwareEngineer
 8 Jerry Liu Manager

dmSQL> select * from contact;
 NO FIRST_NAME LAST_NAME PHONE
=========== ==================== ==================== ====================
 1 Eddie Chang 2145678
 2 Hook Hu 2335678
 3 Jackie Yu 2346678
 4 Jerry Liu 2345671

 To export an XML file:

1. File_path is the full path of the XML file to be exported. The generated file will
be on the server, thus the specified file path must also be on the server. The
string '/usr/john/xmlexport.xml' will be used for this argument.

2. db_tag is a customized database tag. A NULL or empty string means that a
default value is used. The string 'EMPLOYEE' will be used for this argument.

3. In this example, we will use the object_str string;

'select c1 as NO, c2 as FIRST_NAME, c3 as LAST_NAME, c4 as JOB

from card#TITLE;contact#NUMBER'

4. We will use the "capitalize_tag_name;blob_in_separate_file" tag as our option
string for this argument.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-14

5. For this argument, we will use "/client/john/xmlexport.log" for log path.

6. ‘The resulting CALL XMLExport statement will have the following form’

call XMLExport (

'/usr/john/xmlexport.xml',

'EMPLOYEE',

'select c1 as NO, c2 as FIRST_NAME, c3 as LAST_NAME, c4 as JOB

from card#TITLE;contact#NUMBER',

'capitalize_tag_name;blob_in_separate_file',

'/client/john/xmlexport.log');

7. Part of the export file xmlexport.xml would be;

<EMPLOYEE>

 <TITLE>

 <NO>1</NO>

 <FIRST_NAME>Eddie</FIRST_NAME>

 <LAST_NAME>Chang</LAST_NAME>

 <JOB>Manager</JOB>

 </TITLE>

 <TITLE>

 <NO>2</NO>

 <FIRST_NAME>Hook</FIRST_NAME>

 <LAST_NAME>Hu</LAST_NAME>

 <JOB>SoftwareEngineer</JOB>

 </TITLE>

 <TITLE>

 <NO>3</NO>

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-15

 <FIRST_NAME>Jackie</FIRST_NAME>

 <LAST_NAME>Yu</LAST_NAME>

 <JOB>SoftwareEngineer</JOB>

 </TITLE>

 <TITLE>

 <NO>4</NO>

 <FIRST_NAME>Jerry</FIRST_NAME>

 <LAST_NAME>Liu</LAST_NAME>

 <JOB>Manager</JOB>

 </TITLE>

 <NUMBER>

 <NO>1</NO>

 <FIRST_NAME>Eddie</FIRST_NAME>

 <LAST_NAME>Chang</LAST_NAME>

 <PHONE>2145678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>2</NO>

 <FIRST_NAME>Hook</FIRST_NAME>

 <LAST_NAME>Hu</LAST_NAME>

 <PHONE>2335678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>3</NO>

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-16

 <FIRST_NAME>Jackie</FIRST_NAME>

 <LAST_NAME>Yu</LAST_NAME>

 <PHONE>2346678</PHONE>

 </NUMBER>

 <NUMBER>

 <NO>4</NO>

 <FIRST_NAME>Jerry</FIRST_NAME>

 <LAST_NAME>Liu</LAST_NAME>

 <PHONE>2345671</PHONE>

 </NUMBER>

</EMPLOYEE>

 Alternatively,

1. Using the option "column_as_attribute" and calling XMLExport:

call XMLExport (

'/usr/john/xmlexport.xml',

'EMPLOYEE',

'select c1 as NO, c2 as FIRST_NAME, c3 as LAST_NAME, c4 as JOB

from card#TITLE ',

'capitalize_tag_name;blob_in_separate_file;column_as_attribute

','/client/john/xmlexport.log');

2. The partial result will become:

<EMPLOYEE>

 <TITLE NO="1" FIRST_NAME="Eddie" LAST_NAME="Chang"

JOB="Manager" />

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-17

 <TITLE NO="2" FIRST_NAME="Hook" LAST_NAME="Hu"

JOB="SoftwareEngineer" />

 <TITLE NO="3" FIRST_NAME="Jackie" LAST_NAME="Yu"

JOB="SoftwareEngineer" />

 <TITLE> NO="4" FIRST_NAME="Jerry" LAST_NAME="Liu"

JOB="Manager" />

</EMPLOYEE>

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-18

5.9 XMLIMPORT
The XMLIMPORT system-stored procedure provides a programmable interface for
users to import XML data to DBMaker. Only a SYSADM or a DBA can call these

stored procedures. In addition, the execute privilege cannot be granted to other users
because XMLIMPORT is a system-stored procedures.

XMLIMPORT will import tables from XML files to tables in DBMaker. When

importing from an XML file, users can simply store the whole XML file in the
database instead of parsing it, (analyzing the file content and importing data into
tables). The XML file being imported must be on the server and the log file generated

during the importing of an XML file is saved on the client machine.

If users just want to store the whole XML file instead of parsing it, they must specify
the "key" used for storing the XML file. The key value can then be used when

querying a database for the stored XML file.

 The prototype for XMLIMPORT is:
XMLIMPORT(
 VARCHAR(256) FILE_PATH,
 VARCHAR(16000) OBJECT_STR,
 VARCHAR(256) OPTION_STR,
 VARCHAR(256) LOG_PATH)",

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-19

NAME TYPE LENGTH
(BYTES)

DESCRIPTION CASE
SENSITIVITY

file_path varchar 256 Full path of

exported xml
file

Depends on

operating system

object_str varchar 16000 Description
string for

exported objects

XML tags are case
sensitive; table names

and table column
names depends on
DBMaker setting

option_flag varchar 256 Description
string for

option flags

No

log_path varchar 256 Full path of
error log file on
the client

Depends on
operating system

Table 5-3 XMLIMPORT Arguments table

Constructing XMLIMPORT Arguments

First, the XML file being imported from a database must be generated on the server.
The file_path is specified by a full path string passed in as one of the arguments of the

corresponding stored procedure.

Second, the object_str argument is used to describe imported objects. This
information includes document levels, the mapping between customized column tag

names, and inserted table column names, as well as the mapping between customized
table tag name and table name in the database. The format is as follows:
object_str =:
 { <table_element> [; <table_element>]...}

<table_element> =
 { <document mapping information>#<table mapping information> }

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-20

<document mapping information> =:
 {<document level string>[(<column tag names>)]

<document level string> =: {/<level1> [/<level2>/.....]}

<column tag names> =: {<tag1> [, <tag2>]...}

<table mapping information> =: <table import definition>

<table import definition> =: { <insert sql statement> | <target table
name>[(<table column names>)] }

<insert sql statement> =: INSERT INTO <target table name> [(<table column
names>)] VALUES (<value list>)

<table column names> =: {<col1> [, <col2>] ...}

<value list> =: {<insert value>, <insert value>,...}

<insert value> =: {<constant> | <expression>}

Figure 5-1 object_str Argument Syntax

If users want to store the whole XML file instead of parsing it and storing the content

in tables, they should use special handling in <column tag names>. Please see example
5.

<table_element>represents a table. The delimiter used between <element> is a semi-

colon (;). In the <document level string>, the document levels from the root level to
the table level are specified.

<root>
 <database>
 <table1>
 <column1>
 </column1>
 <column2>
 </column2>
 </table1>

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-21

 <table2>
 </table2>
 </database>
</root>

Figure 5-2 Sample XML File

Based on the sample xml file in figure 5.2, to import data stored in the <table1> tag of

the<database>, specify a <document level string> of the "/root/database/table1".

In <column tag names>, specify which column tags to insert into the table. If no
<column tag names> are specified, all column tags under a certain table tag are

inserted.

In the <table import definition>, use either the format of <INSERT SQL statement>
or TABLE_NAME [<table column names>]. When using the <INSERT SQL

statement>, the INSERT SQL statement will be like this:
INSERT INTO <target table name> [(<table column names>)] VALUES (<value list>)

The <table column names> columns to be inserted are specified. If no <table column
names> are specified, it is implied that the user is trying to insert all columns in the

target table (this is the same as the syntax for the ordinary INSERT SQL statement.)
Also, if there is a <column tag names> located in the <document mapping
information>, than the number of column tags specified in <column tag names> must

be equal to the number of host variables in the <value list>. If there are no <column
tag names> located in the <document mapping information>, it is implied that all
column tags under the base element are to be inserted into the target table. The

schema information in the dtd file is also used to check whether the number of tags is
equal to the number of host variables located in the <value list>.

The mapping between <table column names>, <value list> and <column tag names>

in the <document mapping information> file must be appropriate. The <column tag
names> are mapped to host variables in the <value list> file. The sequence of columns
in <table column names> combined with the sequence values in <value list> and the

sequence of tags <column tag names> decides what values are inserted into <value
list>.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-22

When using <target table name>[(<table column names>)], specify the table to be
inserted into <target table name>. This <target table name> is mapped to the last level

in <document level string>.

When this format is used, a constant value insert or expression insert cannot be used.
If there is no <column tag names> specified in <document mapping information>,

there should be no <table column names> present either. If there is <column tag
names> in <document mapping information>, the number of tags in <column tag
names> must be equal to the number of columns in <table column names>.

In <table column names>, specify mapped table columns to be inserted. If no <table
column names> are specified, all table columns will be inserted. If that is the case,
there should be no <column tag names> in <document mapping information>. The

schema information in the dtd file will be used to check whether the number of all
tags under the base element is equal to the number of all columns in the target table.

Users are responsible for the mapping between <table column names> and <column

tag names>. The location of tags in <column tag names> should be mapped to that of
columns in <table column names>.

 Example 1

If the <table column names> is (c1, c2, c3), <value list> is (?,?,?) and <column tag
names> is (tg1, tg2, tg3), the value in tg1 is inserted into c1, the value in tg2 is

inserted into c2 and the value in tg3 is inserted into c3.

 Example 2

Assume that table t1 has four columns, c1, c2, c3, and c4, and that we have four tags,
tg1, tg2, tg3, tg4, in the xml element we are trying to import. Also, assume that the
obj_str is, "/root/book/order(tg1, tg2)#insert into t1 (c1, c2, c3) values (?,?+3, 5)".

From the string, we decide that table t1 is our target table, that the column c1 in table
t1 has the inserted value of tag tg1, that column c2 has the inserted value of tag tg2
plus 3, and that column c3 has the inserted constant value of 5.

 Example 3

If the user does not specify the usage of the <column tag names> file in the

<document mapping information>, it is implied that the sequence of xml column tags

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-23

matches the sequence of what is located in the <table column names>, and that all
column tags under the base element are to be inserted into the target table.

Assume that our target table t2 has five columns, c1, c2, c3, c4, and c5. Also, assume
that in our xml file, the sequence of tags is tg1, tg2, tg3, and tg4. If the obj_str is,
"/root/book/order#insert into t2 (c1, c2, c3, c4, c5) values (?, ?, ?, ?, 6)", the value of

tg1 is inserted into c1 of t2, the value of tg2 is inserted into c2 of t2, the value of tg3
is inserted into c3 of t2, the value of tg4 is inserted into c4 of t2 and the constant
value of 6 is inserted into c5 of t2.

If the obj_str is "/root/book/order(tg1, tg2, tg3, tag4)#insert into t1 values (?, ?, ?, ?)".
This tells us that users are trying to insert 4 tags into all columns of our target table.
The value of tg1 is inserted into c1 of t1, the value of tg2 is inserted into c2 of t1, the

value of tg3 is inserted into c3 of t1, and the value of tg4 is inserted into c4 of t1.

 Example 4

If obj_str is "/root/book/order(tg1, tg2)#insert into t1 values (?, ?, acos(1))", the result
of acos(1) is inserted into c3 of t1.

 Example 5

For users who want to store the whole XML file in the record instead of parsing the
whole XML file and storing the content (i.e., parsing the whole XML file and then

storing the data in XML file in table), they have to specify a "virtual tag" in <column
tag names>. This special "virtual tag" is named "_XML_FILE_".

If this "_XML_FILE_" is used as the column tag name, the columns represented by

the column tags preceding this special "virtual tag" are used as the key value. In
addition, the mapped value in the <value list> file must be a single host variable
without any further calculation.

If the following object string, "/root/book/order(tag1, tag2, XML_FILE_)#insert into
t2 (c1, c2, c3, c4, c5) values (?+2, ?*5, ?, 7, 8)", is used then the whole file will be
inserted into c3 of table t2.

If <table_element> in the object string, "/root/book/order(tag1, tag2,
_XML_FILE_)#customer(firstname, lastname, xml_file)", is used for the table
"customer", then firstname is inserted from the tag1 tag into the XML file. In

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-24

addition, the lastname is inserted from the tag2 tag into the XML file and the xml_file
will be inserted from the whole XML file. The firstname and lastname are used as keys

for finding a specific XML file.

 Example 6

In <column tag names> = <tag1, tag2, tag3> and <table column names> = <c1, c2,
c3>, there are three pairs of mapping: tag1 <-> c1, tag2 <-> c2, tag3 <-> c3. Tag
names and column names are all-or-nothing. That means that empty tag names such

as (tag1, ,tag3) are not permissible, neither are empty column names. All customized
tag names must specify or none of them at all.

So, the object string "/root/book/order(tag1, , tag2)#insert into t2 (c1, c2) values

(?, ?, ?)" is not permissible. An object string of "/root/book/order(tag1, tag2,
tag3)#insert into t2 (c1, c2, c3, c4) values (?, ?, ?,) is permissible. What is inserted
into c4 of t2 depends on the table schema information.

Thirdly, the option_flag string is case-insensitive. When the option_flag string is set,
the column_as_attribute columns in the imported XML file are treated as attributes.
When the option_flag string is not set, the columns are treated as elements in the

XML file.
Option_flag=:{[<attribute>[;<attribute>]…]}
<attribute>=:
{
column_as_attribute
}

Lastly, the log file of errors generated during the importing of XML files are saved on
the client machine in the log_path.

 Importing XML Files

Assume that we have an XML file, xmlimport.xml under the /usr/john directory. The
file is listed as follows.
<ROOT>
 <EMPLOYEE>
 <TITLE>
 <TAG1>1</TAG1>

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-25

 <TAG2>Eddie</TAG2>
 <TAG3>Chang</TAG3>
 <TAG4>Manager</TAG4>
 </TITLE>
 <TITLE>
 <TAG1>2</TAG1>
 <TAG2>Hook</TAG2>
 <TAG3>Hu</TAG3>
 <TAG4>SoftwareEngineer</TAG4>
 </TITLE>
 <TITLE>
 <TAG1>3</TAG1>
 <TAG2>Jackie</TAG2>
 <TAG3>Yu</TAG3>
 <TAG4>SoftwareEngineer</TAG4>
 </TITLE>
 <TITLE>
 <TAG1>4</TAG1>
 <TAG2>Jerry</TAG2>
 <TAG3>Liu</TAG3>
 <TAG4>Manager</TAG4>
 </TITLE>
 <NUMBER>
 <NO>1</NO>
 <FIRST_NAME>Eddie</FIRST_NAME>
 <LAST_NAME>Chang</LAST_NAME>
 <PHONE>2145678</PHONE>
 </NUMBER>
 <NUMBER>
 <NO>2</NO>
 <FIRST_NAME>Hook</FIRST_NAME>
 <LAST_NAME>Hu</LAST_NAME>
 <PHONE>2335678</PHONE>
 </NUMBER>
 <NUMBER>
 <NO>3</NO>
 <FIRST_NAME>Jackie</FIRST_NAME>
 <LAST_NAME>Yu</LAST_NAME>
 <PHONE>2346678</PHONE>
 </NUMBER>

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-26

 <NUMBER>
 <NO>4</NO>
 <FIRST_NAME>Jerry</FIRST_NAME>
 <LAST_NAME>Liu</LAST_NAME>
 <PHONE>2345671</PHONE>
 </NUMBER>
 </EMPLOYEE>
<ROOT>

We are trying to import the data recorded in the importxml.xml file into the
following database schema:
Database Name: DB1
Table Name: CARD(C1 CHAR(30), C2 CHAR(30), C3 CHAR(30), C4 CHAR(30))
Table Name: CONTACT(NO CHAR(30), FIRST_NAME CHAR(30), LAST_NAME CHAR(30), PHONE
CHAR(30))

From the content of the above .xml file, we can see that under the <EMPLOYEE>
element, there are two sub-elements. We can map <EMPLOYEE> element as the
database level, the <TITLE> as the table level and the <NUMBER> as another table

level in the import database.

Assume that we want to import <TITLE> into CARD table and <NUMBER> into
CONTACT table. The mapping of xml document tags to database tables is as

follows:
/ROOT/EMPLOYEE/TITLE -> /DB1/CARD
/ROOT/EMPLOYEE/NUMBER -> /DB1/CONTACT

The mapping between the XML document tags and table columns is as follows:

The elements under /ROOT/EMPLOYEE/TITLE(the mapping between <TITLE>

and CARD table):
TAG1 -> NO
TAG2 -> FIRST_NAME
TAG3 -> LAST_NAME
TAG4 -> JOB

The elements under /ROOT/EMPLOYEE/NUMBER (the mapping between
<NUMBER> and the CONTACT table):
NO -> NO
FIRST_NAME -> FIRST_NAME

1System-Stored Procedures 5

©Copyright 1995-2004 CASEMaker Inc. 5-27

LAST_NAME -> LAST_NAME
PHONE -> PHONE

In addition, we can see in xmlimport.xml that columns are treated as elements in the
target XML file. Finally let us assume that our log file is /client/john/xmlimport.log.

For importing into table CARD, the elements under /ROOT/EMPLOYEE/TITLE
are imported. TAG1 is mapped to column C1, TAG2 is mapped to column C2,
TAG3 is mapped to column C3 and TAG4 is mapped to column C4.

For Importing into table CONTACT, the elements under
/ROOT/EMPLOYEE/NUMBER are imported. All elements under the <NUMBER>
tag are imported and they are assumed a direct mapping to columns in table

CONTACT.

Note that xml tags are case-sensitive subsequently, ROOT, EMPLOYEE, TITLE,
TAG1, TAG2, and TAG3 in this example must be capitalized. The case-sensitivity of

table names and table column names depends on DBMaker settings.

 To use XMLIMPORT with the above files:

1. The file must be on the server, thus the specified full path must also be on the
server. The file_path used in the argument is "/usr/john/xmlimport.xml".

2. The object_str can be used like this;

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#INSERT INTO CARD

(C1,C2,C3,C4) VALUES (?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#contact'

or

'/ROOT/EMPLOYEE/TITLE#INSERT INTO CARD (C1,C2,C3,C4) VALUES
(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#contact'

or

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#CARD
(C1,C2,C3,C4);/ROOT/EMPLOYEE/NUMBER#contact'

3. The object string used can have several formats:

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#INSERT INTO CARD

(C1,C2,C3,C4) VALUES (?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#CONTACT'

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 5-28

or, since there are four tags mapping four columns and the sequence of tags
are the same as the columns:

'/ROOT/EMPLOYEE/TITLE#INSERT INTO CARD (C1,C2,C3,C4) VALUES

(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#CONTACT'

or,

'/ROOT/EMPLOYEE/TITLE#INSERT INTO CARD VALUES

(?, ?, ?, ?);/ROOT/EMPLOYEE/NUMBER#CONTACT'

or, since no further calculation of host variables is required:

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3, TAG4)#CARD(C1, C2, C3,

C4);/ROOT/EMPLOYEE/NUMBER#CONTACT'

4. Since columns are treated as elements in the XML file, we will not set the
option_flag here. If these columns were not treated as elements, the option_flag
could be set.

option_flag =: {[<attribute> [;<attribute>]...]}

<attribute> =:

{

column_as_attribute

}

5. The log_path will be: "/client/john/xmlimport.log This is where errors are
recorded during the process of XMLIMPORT. "

6. Call XMLIMPORT using one of possible forms of obj_str:

call XMLImport (

'/usr/john/xmlimport.xml',

'/ROOT/EMPLOYEE/TITLE(TAG1, TAG2, TAG3,

TAG4)#CARD(C1,C2,C3,C4);/ROOT/EMPLOYEE/NUMBER#contact',

'',

'/client/john/xmlimport.log');

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-1

6 dmSQL Commands

The commands presented in this chapter require the use of CASEMaker’s
dmSQLTool included with DBMaker to function.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-2

6.1 CREATE DATABASE
The CREATE DATABASE command creates a new database. To execute the
CREATE DATABASE command, DBMaker must have write permission from the

operating system on the directory to create the database in. Any user can execute the
CREATE DATABASE command.

DBMaker stores all configuration information for each database in the dmconfig.ini
file. This file contains a database configuration section for each database you can
connect to from the computer. The dmconfig.ini file is an ASCII text file, and can be
edited with a text editor.

Each database configuration section is comprised of a section header followed by one
or more keyword lines. The section header is the name of the database enclosed in
square brackets. The keyword lines consist of a keyword and a corresponding value(s).

If a keyword requires or supports multiple values, delimit individual values with either
spaces or commas. Depending on their purpose, keywords may be used, at start time
or connect time.

Key words in the dmconfig.ini file are not case-sensitive. Keyword values may be case-
sensitive, depending on the keyword and the operating system the database is running
on. When creating a database, DBMaker will examine the dmconfig.ini file for a

database configuration section. If a database configuration section with the same name
as the database exists, DBMaker uses the values specified in this section when it
creates the database. If a database configuration section with the same name as the

database does not exist, DBMaker uses default values when it creates the database and
adds a new configuration section.

Choose a database name that is unique from all computers that will be connecting.

Since, DBMaker stores configuration information for all local and remote databases in
the dmconfig.ini file, using the same name for two databases will cause a conflict. You
cannot change the database name once it has been created, unless you unload all data

and recreate the database with a new name. Database names have a maximum length
of eight characters, and may contain letters, numbers, and the underscore character.
Database names are not case-sensitive.

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-3

In the DBMaker physical storage model, files are physical units of storage that contain
the data. Files are managed by the operating system, while data in the files is managed

by the DBMS. DBMaker uses three types of files Data, BLOB, and Journal.

Data and BLOB files store user and system data. Although they have similar
characteristics, DBMaker manages these two file types in different ways to improve

performance. Data files store table and index data, while BLOB files store only binary
large objects.

Journal files are special files that provide a real-time, historical record of all changes

made to a database and the status of each change. This allows the database to undo
changes made by a transaction that fails, or redo changes made successfully but not
written to disk after a database crash. Journal files are used only by the database

management system, and are not used to store user data.

In the DBMaker logical storage model, tablespaces are the logical storage structures
used to partition information in a database into manageable areas. Each tablespace

may contain several tables and indexes. Data in the tablespace is managed by the
DBMS, but is physically stored in files. There are three types of tablespaces regular,
autoextend, and system.

Regular tablespaces have a fixed size and contain one or more Data or BLOB files.
They may be extended manually by enlarging existing files in the tablespace or adding
new files to the tablespace. A regular tablespace may contain a maximum of 32767

files, with a maximum cumulative file size of 8TB. On Unix platforms, regular
tablespaces may be placed on raw devices.

NOTE For more information on raw devices, see your Unix system documentation.

Autoextend tablespaces automatically increase in size to a maximum of 8TB to hold
additional data as required. They must contain one data file, and may contain one
BLOB file. To add new files to an autoextend tablespace, first convert it to a regular

tablespace. If an autoextend tablespace is created with only one Data file and no
BLOB file, a BLOB file may be added later. Autoextend tablespaces do not support
raw devices.

DBMaker generates system tablespaces, while a database is created. Each database has
one system tablespace, which contains the system catalog tables used to store schema,

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-4

security, and status information. The system tablespace is created as an autoextend
tablespace, unless created on a Unix raw device. System tablespaces may be converted

to regular tablespaces. System tablespaces are created with an initial data file size of
600KB, and an initial BLOB file size of 20KB.

DBMaker will create one system data file and one system BLOB file in the system

tablespace, and create one user data file and one user BLOB file in the default user
tablespace. In addition to these files, DBMaker also creates at least one system Journal
file to log database transactions.

The default names for the system files are DATABASE.SDB, DATABASE.SBB, and
DATABASE.JNL, where DATABASE is the name of the database. To change the
default names, use the DB_DBFIL, DB_BBFIL, and DB_JNFIL keywords in the

dmconfig.ini file. Use DB_DBFIL to specify the name of the system data file,
DB_BBFIL to specify the name of the system BLOB file, and DB_JNFIL to specify
the name of the system Journal file. Specify a new name before creating a database or

the default name will be used. The name of a system file may not be changed after
creating the database.

The default user files names are DATABASE.DB and DATABASE.BB.DATABASE

is the name of the database. To change the default names, use the DB_USRDB and
DB_USRBB keywords in the dmconfig.ini file. Use DB_USRDB to specify the name
and size of the default user data file, and DB_USRBB to specify the name and size of

the default user BLOB file. When using these two keywords to specify new names for
the default user files, also include the size of the file in Data pages or BLOB frames,
separated from the filename by a space or comma. If the default name is not used for

either of the default user files, specify a new name before creating the database.

DBMaker can use up to eight Journal files to log database transactions. To create
multiple Journal files, add additional filenames after the DB_JNFIL keyword,

separated by spaces or commas. DBMaker automatically creates these Journal files
when it creating the database. It is possible to add additional Journal files to a database
after creating it by adding additional Journal filenames and restarting the database in

new Journal mode.

To include a path with a filename, include the drive and full path on Windows 95 or
Windows NT systems. On Unix systems, include either a full or a relative path. By

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-5

default, the file will be created in the directory specified by the DB_DBDIR keyword
in the dmconfig.ini file, or the application directory if the DB_DBDIR keyword is

not present. DBMaker system files may have filenames with a maximum length of 79
characters, and may contain any characters and symbols permitted by the operating
system, except spaces.

The default sizes for the system files are 600KB for the data file, 20KB for the BLOB
file, and 4000KB for the Journal file. To change the default file sizes, use the
DB_BFRSZ and DB_JNLSZ keywords in the dmconfig.ini file.

The DB_BFRSZ keyword specifies the size of frames in the system BLOB file, which
also changes the size of the system BLOB file. Provide a value for DB_BFRSZ when
you create your database if you do not want to use the default, and it cannot be

changed creating the database.

The DB_JNLSZ keyword specifies the size of the system Journal file in Journal
blocks, which are the primary unit of storage in a Journal file. Journal blocks store a

record of every transaction performed on the database. The size of each Journal block
is fixed at 4KB. Each Journal block can store information on as many transactions as
will fit into a block. To specify a size for a system Journal file, set the DB_JNLSZ

keyword to a value between 23-524287 blocks. To calculate the actual size of the file
in kilobytes, multiply this value by 4KB. If your database has multiple Journal files,
DBMaker creates each Journal file with the size specified by DB_JNLSZ. The default

value for DB_JNLSZ is 250. The DB_JNLSZ keyword may be changed at any time,
but it will not take effect until the next time the database is started in New Journal
Mode.

The default sizes for the default user files are 600KB for the default user data file, and
20KB for the default user BLOB file. To change the default file sizes, use the
DB_USRDB and DB_USRBB keywords in the dmconfig.ini file.

The DB_USRDB keyword specifies the size of the default user data file in data pages,
which are the primary unit of storage. Data pages store table records, index keys, and
any BLOB data small enough to fit onto the data page. Each data page can store as

many table rows or index keys as will fit onto a page. The size of each data page is
fixed at 4KB. To specify a size for the default user data file, set the size parameter of
the DB_USRDB keyword to a value between 2-524287 pages. To calculate the actual

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-6

size of the file in kilobytes, multiply this value by 4KB. The default value of
DB_USRDB is 150.

The DB_USRBB keyword specifies the size of the default user BLOB file in BLOB
frames, which are the primary unit of storage in a BLOB file. BLOB frames store large
binary data objects, graphics, audio and video, or large text, which does not fit onto a

data page. Each BLOB frame can only store a single BLOB. The size of each BLOB
frame is specified by the DB_BFRSZ keyword, which can range from 8KB to 256KB.
To specify a size for the default user BLOB file, set the size parameter of the

DB_USRBB keyword to a value between 2-524287 frames. To calculate the actual
size of the file in kilobytes, multiply this value by the value of DB_BFRSZ. The
default value for DB_USRBB is 2.

Security mode determines whether DBMaker uses security privileges to control access
to the database. There are four levels of security privileges: CONNECT,
RESOURCE, DBA, and SYSADM.

CONNECT security privilege permits a user to connect to the database, view the
system tables, and access any database objects granted privileges on by the owner, a
DBA, or a SYSADM. New database objects cannot be created with the CONNECT

security privilege. The CONNECT security privilege must be granted before being
granted any other privilege.

RESOURCE security privilege permits users to create and drop tables, indexes, views,

synonyms, and domains. A user can only drop tables, views, synonyms, and domains
they created. In addition, a user can grant and revoke object privileges to other users
on any database objects created by them. Users with RESOURCE security privilege

also have all privileges of the CONNECT security privilege.

DBA security privilege permits a user to start, terminate, and back up databases,
manage database resources, tablespaces and files, and access all tables, indexes, views,

synonyms, and domains without having been granted privileges. Also grant, change,
and revoke object privileges on any database object owned by any user. A DBA may
not grant security privileges to new users or create new groups, but may add and

remove users from existing groups. Users with DBA security privilege also have all
privileges of RESOURCE and CONNECT.

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-7

SYSADM security privilege permits a user to grant and revoke security privileges to all
users, create and drop groups, and add or remove users from groups. Also, change the

password of any user. There is only one user in each database with SYSADM security
privileges. DBMaker automatically creates this user when creating the database, and
assigns the user name SYSADM. A SYSADM may not grant SYSADM security

privileges to any other users. The SYSADM also has all privileges of DBA,
RESOURCE, and CONNECT.

Set the security mode before creating a database. After creating a database, the security

mode cannot change unless the database is unloaded and recreated. Use the
DB_SECUR keyword in the dmconfig.ini file to set the security mode. If the
DB_SECUR keyword is not used when creating a database, the security mode is ON

by default.

When security mode is ON, only users with appropriate security privileges can
connect to the database. A user name and password are required to connect to a

database. DBMaker maintains a list of authorized users and their security privileges
for the database, and checks this list to determine the specific commands each user can
execute.

When security mode is OFF, any user can connect to a database with any user name.
Passwords are not required to connect to a database, and DBMaker ignores passwords.
DBMaker does not maintain a list of users or security privileges for the database, and

any user can execute any command.

When executing the CREATE DATABASE command, DBMaker creates a new
database, starts the database, and connects you as the SYSADM. DBMaker does not

assign a password to the SYSADM user when it is created. Change the SYSADM
password immediately after creating the database to prevent unauthorized access to
the database. DBMaker starts a newly created database in single-user mode to prohibit

other users from logging on to the database before you can change the SYSADM
password. To put the new password into effect and allow other users to connect, shut
down the database and restart it in either single- or multi-user mode.

DBMaker starts all databases in single-user mode by default. To start a database in
multi-user mode, use the DB_SVADR and DB_PTNUM keywords in the client-side
dmconfig.ini file and the DB_PTNUM keyword in the server-side dmconfig.ini file.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-8

The DB_SVADR keyword specifies the IP address or host name of the computer the
DBMaker server is running on. This keyword is required only on the client side; it is

optional on the server side. To specify an IP address or host name, set the
DB_SVADR keyword to any valid IP address or host name. Use a hostname; also
ensure that the Domain Name Service (DNS) is properly set up on your computer.

The DB_PTNUM keyword specifies the port number the DBMaker server is bound
to. This keyword is required on both the client and server sides. To specify a port
number, set the DB_PTNUM keyword to a value between 1025 - 65535. If not

specifying a port number, DBMaker uses port number 23000 by default.

database_nameName of the new database to create

CREATE

DATABASE

DB

database_name

Figure 6-1 CREATE DATABASE syntax

 Example 1

The following creates a new database named Accounts with the default settings for all
parameters. A database configuration section for this database does not exist in the
dmconfig.ini file when this command is executed. This creates a single-user database

in the application directory using the default file names ACCOUNTS.SDB,
ACCOUNTS.SBB, ACCOUNTS.DB, ACCOUNTS.BB and ACCOUNTS.JNL
and the default file sizes of 600KB for the .SDB and .DB files, 20KB for the .SBB

and .BB files, and 4000KB for the .JNL file. To start this database in multi-user
mode, add the DB_SVADR and DB_PTNUM keywords to the Accounts database
configuration section in the dmconfig.ini file after creating the database.
CREATE DATABASE Accounts

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-9

 Example 2

The following creates a new database named Accounts using the settings shown in the
dmconfig.ini section below.
CREATE DATABASE Accounts

 Excerpt

This database configuration section exists in the dmconfig.ini file when the command

is executed. This creates a single-user database with security in the
C:\DATABASE\ACCOUNTS directory, using file names ACCOUNTS.SDB for the
system data file, ACCOUNTS.SBB for the system BLOB file, ACNTDATA.DB for

the default-user data file, ACNTBLOB.BB for the default user BLOB file, and
ACNTHIST.JN1, ACNTHIST.JN2, and ACNTHIST.JN3 for the three Journal
files. The file sizes are 600KB for the system data file, 20KB for the system BLOB file,

1000KB for the default user data file, 8000KB for the default user BLOB file, and
2000KB for each of the three Journal files. To start this database in multi-user mode,
add the DB_SVADR and DB_PTNUM keywords to the Accounts database

configuration section in the dmconfig.ini file after creating the database.
[ACCOUNTS]
DB_DBDIR = C:\DATABASE\ACCOUNTS
DB_DBFIL = ACCOUNTS.SDB
DB_BBFIL = ACCOUNTS.SBB
DB_USRDB = ACNTDATA.DB 250
DB_USRBB = ACNTBLOB.BB 250
DB_BFRSZ = 32
DB_JNFIL = ACNTHIST.JN1, ACNTHIST.JN2, ACNTHIST.JN3
DB_JNLSZ = 500

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-10

6.2 CONNECT
The CONNECT command establishes a connection to a database. The user name
and password are case-sensitive, while the database name is not. Any user with

CONNECT or higher security privileges can execute the CONNECT command.

Before connecting to a database, the dmconfig.ini file on the computer must contain
a database configuration section for the target database. The database configuration

section should already exist if the database was created on the local computer. If the
database was created on a remote computer, add the database configuration section.

Use the CONNECT command to connect to a single-user database. This starts the

database and establishes a connection. Only one user may be connected to a single-
user database.

Before connecting to a single-user database, specify the database directory. Use the

DB_DBDIR keyword to set the directory containing the database in the dmconfig.ini
file.

Use the CONNECT command to connect to a client/server database while the

database server is running. If the database server is not running, start it before trying
to connect.

Before connecting to a client/server database, specify the IP address of the host

computer running the DBMaker server and the port number of the database. Use the
DB_SVADR and DB_PTNUM keywords to set the IP address and the port number
in the dmconfig.ini file. Alternatively, substitute a host name in place of an IP address

when using the DB_SVADR keyword.

DBMaker will try to connect to a client/server database until the connection timeout
period expires. The connection timeout period is specified by the DB_CTIMO

keyword in the dmconfig.ini file. The DB_CTIMO keyword does not apply to
single-user databases.

The user name and password are not optional with one exception; if the password is

NULL omit it. You may also omit the user name and password from the CONNECT
command using the DB_USRID and DB_PASWD keywords in the dmconfig.ini

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-11

file. The DB_USRID keyword specifies a default user name and the DB_PASWD
keyword specifies a default password. You cannot specify one parameter on the

command line and the other in the configuration file; DBMaker always takes the user
name and password from the same location. DBMaker ignores the values specified by
the DB_USRID and DB_PASWD keywords if you provide a username and password

with the CONNECT command.

database_name.........Name of the database being connected to

user_nameName of the user connecting to the database

passwordCurrent password of user user_name

CONNECT TO database_name

password
user_name

Figure 6-2 CONNECT syntax

 Value 1

The dmconfig.ini file will provide a value for the DB_DBDIR keyword in the
Tutor1 configuration section.
[TUTOR1]
DB_DBDIR = C:\DBMAKER\DATABASE\TUTOR1

 Example 1

The following connects the user jenny with password grala833 to the single-user

Tutor1 database.
CONNECT TO Tutor1 jenny grala833

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-12

 Value 2a

The dmconfig.ini file will provide a value for the DB_SVADR and DB_PTNUM
keywords in the Tutor2 configuration section.
[TUTOR2]
DB_SVADR = 192.72.116.137
DB_PTNUM = 35400

 Value 2b

Alternatively use a host name for the DB_SVADR keyword instead of an IP address.
[TUTOR2]
DB_SVADR = mars.syscom.com.tw
DB_PTNUM = 35400

 Example 2

The following connects the user amanda with password grixa944 to the multi-user

Tutor2 database.
CONNECT TO Tutor2 amanda grixa944

 Value 3

The dmconfig.ini file provides values for the DB_SVADR, DB_PTNUM,
DB_USRID, and DB_PASWD keywords in the Tutor2 configuration section.
[TUTOR2]
DB_SVADR = 192.72.116.137
DB_PTNUM = 35400
DB_USRID = vivian
DB_PASWD = shuka828

Alternatively, substitute a host name for the IP address for DB_SVADR, the same as

in Value 2b.

 Example 3

The following connects the user vivian with password shuka828 to the multi-user
Tutor2 database. The user name and password are not provided in the command
since they are specified by the DB_USRID and DB_PASWD keywords in the

dmconfig.ini configuration section. If you provide a user name and password in the

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-13

command, DBMaker ignores the values specified by the DB_USRID and
DB_PASWD keywords.
CONNECT TO Tutor2

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-14

6.3 DEF TABLE
The dmSQL command DEF TABLE is used to display schema information for a
specified table. This command should not be used on system tables.

DEF TABLE table_name

Figure 6-3 DEF TABLE Command

Â Example 1a

Create a table:
dmSQL> create table t1 (c1 char(10), c2 integer, c3 char(20)))

Â Example 1b

Execute the command:
dmSQL> “def table t1”

Â Result
dmSQL>
Create table SYSADM.T1 (
C1 CHAR (10) default null,
C2 INTEGER default null,
C3 CHAR(10) default null)
In DEFTABLESPACE lock mode page fillfactor 100;
CREATE trigger tr1 after insert on SYSADM.T1 for each row (call ins_t2(new.c1,\
New .c2,new.c3)));

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-15

6.4 DEF VIEW
The dmSQL command DEF VIEW is used to display the construction of definitions.
This command should not be used on system views.

DEF VIEW table_name

Figure 6-4 DEF VIEW Command

Â Example 1a

Create a view:
dmSQL> create view v1 (vc1, vc2) as select c1, c2 from t1

Â Example 1b

Execute the command:
dmSQL> “def view v1”

Â Result
dmSQL>
create view SYSADM.V1 as select C1,C2,C3 from SYSADM.T1;

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-16

6.5 DISCONNECT
The DISCONNECT command closes an active database connection. Any user with
CONNECT or higher security privileges can execute the command.

AUTOCOMMIT mode controls when DBMaker will commit a transaction. When
AUTOCOMMIT mode is on, each command is treated as a separate transaction.
DBMaker automatically commits each command executed if it completes successfully,

or rolls it back if an error occurs during execution. When AUTOCOMMIT mode is
off, all commands between successive COMMIT WORK commands form a single
transaction.

Executing the COMMIT WORK command commits any changes made in the
transaction, and executing the ROLLBACK WORK command rolls back all changes.
When disconnecting from a database and AUTOCOMMIT mode is off, the active

transaction is aborted. Any changes made by the transaction are not recorded in the
database.

When disconnecting from a multi-user database, the database remains active and

accessible to other users. When disconnecting from a single-user database running on
UNIX the database shuts down. When disconnecting from a multiple-connection
database running on Windows, the database shuts down only if you are the last

connected user.

DISCONNECT

Figure 6-5 DISCONNECT syntax

 Example

The following disconnects an active database.
DISCONNECT

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-17

6.6 EXPORT
The Export command facitates the extraction of data from database tables and inserts
the data into text files. There are two configurations used. The export command

interface is used for specifying command options. The description file is used for
specifying the export file format.

EXPORT COMMAND INTERFACE

The Export command syntax is as follows:

<data_file>This is the target file into which you will insert the data. It
should be in full path. If you do not specify data_file, the export file name will be
<table_name>_out.txt.

TABLEPlease specify the table you want to export.

[DESCRIPTION <description_file>] This is the description file for the data format in
the resulting data file. In the description file, users will specify some rules for the

resulting data file. Refer to the DESCRIPTION FILE FORMAT section for more
information. If the description file is not specified, the description file name will be
<table_name>_out.dsc. If this file does not exist, DBMaker will use the default output

format.

The default file format will be variable format. That means:

• TAB as column delimiter

• New line character as row terminator

• No quotation marks

• All columns in source table are exported in the same order as they are in the

table

[LOG <log_file>]This file logs the errors that occur during the course of unloading
data. If this option is not specified, the default log file name, export.log, will be used.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-18

[STOP_ON_ERROR] Specifies that you want want to stop unloading data if an
error occurs. If this option is not specified, the unloading of data will continue even if

an error has occured.
EXPORT
[INTO <data_file>]
TABLE [<owner_name>.]<table_name>
[DESCRIPTION <description_file>]
[LOG <log_file>]
[STOP_ON_ERROR]

DESCRIPTION FILE

You can specify the format of the description file for formatting the unloading result.
Two types of format can be used, fixed format and variable format.

FIXED FORMAT DESCRIPTION FILE

When the fixed format description file is used, users want each column of the export
result to be aligned vertically. The separators used for alignment will be space

characters.

FORMAT = FIXED. This specifies the description file format for fixed length
data files.

[LOB_FORMAT= INTERNAL | EXTERNAL] This specifies that when
exporting columns of large object types (such as blob, clob, nclob, nblob and other
files) external files will be generated. For each column of large object type in each row,

an external file will be generated. If this option is not specified, the content of data
will be embedded in a datafile.

When naming external files it’s important to keep the following in mind:

blobtempdir<m>\blbtmpf<n>.<tmp | txt>.

m specifies the minimum un-used number counted from 1 in the directory.

 For example, if there are already directories named blobtempdir1, blobtempdir2 and

blobtempdir3, the newly created directory for containing external files will be
blobtempdir4.

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-19

n specifies the minimum un-used number counted from 1 in the directory.

Whether the file extension name is tmp or txt depends on whether the exported

column is BLOB type, FILE type or CLOB type. If the column type is BLOB or
FILE, the file extension name will be tmp. Otherwise, the column type is txt.

server_column_name This lists the names of the source table columns that are going

to be exported from the database. If there are spaces in table name, use double quotes
to enclose the column names.

column_position Specifies the column byte position in data file.

server_columnname and column_position are separated by space character(s).
column_position is specified by two numbers that are separated by (:).For example a
1:40 means the data loader should look for data from 1st byte to 40th byte in data file.

We will use space characters to align the data field vertically. If the data in the source
table exceeds the field length, the data output will be truncated.
FORMAT=FIXED
[LOB_FORMAT=INTERNAL | EXTERNAL]
<server_column_name> <column_position>

EXPORT

owner_name

TABLE

INTO data_file

DESCRIPTION description_name

LOG log_file STOP_ON_ERROR

table_name

Figure 6-6 EXPORT syntax

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-20

VARIABLE FORMAT DESCRIPTION FILE

When variable format description file is chosen, the fields of resulting data output will
be separated by a user specified delimiter.

FORMAT=VARIABLE This specifies that the resulting output file is in variable
format.

[COLUMN_DELIMITER=<delimiter>] This specifies a character that separates

each column in datafile. The character should be single quoted. For example, to
indicate that a SPACE is used as column delimiter, use ‘ ‘. Aside from normal
characters, take the following escape sequences that represent special characters.

CHARACTER ESCAPE SEQUENCE

REPRESENTATION
TAB \t

NEW LINE \n

For example, if the delimiter is a TAB, users will use ‘\t’ in <delimiter>. If the column

delimiter is not specified, we will use TAB (\t) as the column delimiter. Use discretion
when choosing a delimiter.

If the number of column delimiters is fewer than the number of target table columns

specified by users, NULL will be used for the insert value.

[ROW_TERMINATOR=<row_terminator>] This string denotes the end of a row.

[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE] This indicates that the

output data will be quoted by either single quotes or double quotes. If there is
quotation mark in the data, the output will show two consecutive quotation marks.

[LOB_FORMAT=INTERNAL | EXTERNAL]: This specifies that when exporting

columns of large object types, such as blob, clob, nclob, nblob and other large files,
external files will be generated. For each column of large object type in each row, an
external file will be generated. If this option is not specified, the content of the data

will be embedded in a datafile.

When naming external files it’s important to keep the following in mind:
blobtempdir<m>\blbtmpf<n>.<tmp | txt>.

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-21

m specifies the minimum un-used number counted from 1 in the directory.

 For example, if there are already directories named blobtempdir1, blobtempdir2 and

blobtempdir3, the newly created directory for containing external files will be
blobtempdir4.

n specifies the minimum un-used number counted from 1 in the directory.

Whether the file extension name is tmp or txt depends on whether the exported
column is BLOB type, FILE type or CLOB type. If the column type is BLOB or
FILE, the file extension name will be tmp. Otherwise, the column type is txt.

server_column_name: This variable lists the names of columns of a server table which
are to be exported. The order of these names represents the order of column export. If
there is no such list, all the columns in source table will be export in the same order as

that of table columns.
FORMAT=VARIABLE
[COLUMN_DELIMITER=<delimiter>]
[ROW_TERMINATOR=<row_terminator>]
[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE]
[LOB_FORMAT=INTERNAL | EXTERNAL]
[<server_column_name>]

IMPORT/EXPORT DATA RULES

The following table outlines the rules that must be applied when attempting to import

or export data to or from a file.

DATA TYPE IMPORT/EXPORT FORMAT EXAMPLE

BINARY Use HEX format
To import the binary
number “0x004D2”, use
004D2 in datafile

CHAR Characters are used exclusively
To import the word
“inception”, use
inception in the datafile

VARCHAR See CHAR data type

DATE

The format YYYY/MM/DD will be
used for exporting

To import the date
“2003/07/25”, use
2003/07/25 in the
datafile

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-22

DATA TYPE IMPORT/EXPORT FORMAT EXAMPLE

TIME Export and import will use the
format HH:MM:SS

To import the time
“14:30:25”, use
14:30:25 in the datafile

TIMESTAMP
The combination of DATE format
and TIME format forms the format
of TIMESTAMP

to import the timestamp
“2003/07/25 14:30:25”,
use 2003/07/25
14:30:25 in data file

DECIMAL Use numeric data representation
To import the number
“36.82”, use 36.82 in
data file

DOUBLE
Use numeric data as described in
DECIMAL or scientific notation of
numbers

To import the number
“13e+12”, use 13e+12 in
datafile

FLOAT See DOUBLE

INTEGER Use integer data
To import the integer
“576”, use 576 in
datafile

LONG
VARBINARY

Two formats can be used: embedded
or external file format.
For embedded format, HEX
characters are used.
For external file format, the URL is
provided.
Use description flag
LOB_FORMAT to indicate your
option. For details see description
file specifications.

(1) embedded format:
The format used will be
the same as BINARY.

(2) external file format:
For example, if users
want to import a binary
file whose full path is
“c:\My
Document\GRAPH.GI
F”. The URL provided
will be c:\My
Document\GRAPH.GI
F

LONG
VARCHAR Similar to the case for LONG

VARBINARY, two formats can be
used. The input data will be in
ASCII string instead of HEX string.

(1) embedded format:
Same as CHAR format.
(2) external file format:
Same as LONG
VARBINARY.

FILE

For FILE type, import/export will

adopt the same rule for LONG

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-23

DATA TYPE IMPORT/EXPORT FORMAT EXAMPLE

VARBINARY.
OID

Same rule as INTEGER
SERIAL

Same rule as INTEGER
SMALLINT

Same rule as INTEGER
NULL data

For variable format, NULL data is
recognized by the fact that there’s

nothing between two consecutive
delimiters.

For fixed format, NULL data is

recognized by the fact that there’s all
space characters between columns.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-24

6.7 IMPORT
The Import command is used for extracting data from a text file and then inserting
the data into database tables. The import command interface is used for specifying

command options. The description file is used for specifying the import file format.

IMPORT COMMAND INTERFACE

The Import Command Interface provides you with several options for importing data.
Options include controling the stoppage criteria for data loading, the logging of errors

and the data encoding of source data files. The format, of source data files, is
described in the description file.

[<owner_name>.]<table_name> This identifies the table to be loaded from the

datafile. If you do not specify the <owner_name>, the current connection user will be
assigned as the owner.

[FROM <data_file>]This is the actual file that contains data to be loaded. If you do

not specify data_file, the datafile name will be <table_name>_in.txt. For example, if
the import table name is t1 and datafile name is not specified in command, the
datafile name will be t1_in.txt.

[DESCRIPTION <description_file>] This is the description file for describing the data
format in the datafile. If this option is not specified, the description file name will be
assigned as <table_name>_in.dsc. For example, if the import table name is t1 and

description file is not specified, the description file name will be assigned as t1_in.dsc.
If this file is not found, a default description file format will be used, variable
description file format.

[LOG <log_file>]This identifies the log file, which logs any errors during the
course of data loading. It will show the content of the record, which triggers the error
as well as the corresponding error message. If you do not specify this option, the

default log name will be import.log.

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-25

[STOP_ON_ERROR] The loading of data will stop if an error occurs during the
import process if this variable is set. If it is not specified, the loading will continue

even when an error occurs.
IMPORT [<owner_name>.]<table_name>
[FROM <data_file>]
[DESCRIPTION <description_file>]
[LOG <log_file>]
[STOP_ON_ERROR]

IMPORT

FROM data_file

table_name

owner_name

DESCRIPTION description_name

LOG log_file STOP_ON_ERROR

Figure 6-7 IMPORT syntax

DESCRIPTION FILE

Two types of description file are used. One is fixed format and the other is variable
format. Parse errors in the description file will be shown as clearly as possible. You will

know why the error has happened by checking the error message. The error message
will display the problem that occurred when parsing a specific word.

FIXED FORMAT DESCRIPTION FILE

FORMAT=FIXED ..When the format is set to fixed this means the description file
describes the format for fixed length datafiles.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-26

[START_WITH_ROW=<row_number>] You can specify from which record you
want to start loading data. The default number is 1, if the you do not specify this

option. If START_WITH_ROW is greater than total rows of data in datafile, no data
will be loaded. The row_number is must be a positive number.

[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>] This lets

you specify the interval of the rows of records loaded between each commit-
transaction. If this option is not specified, DBMaker will commit transaction for every
5 rows. If the variable is set at -1, there will be no commit. In this case you must

commit transaction manually if you want the load to be effective. If the variable is set
at 0, the entire import is seen as a single transaction. The system will then issue a
commit after the loading is finished.

The number of rows committed will still count a record even if an error occurs when
loading the record.

For example, you set NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=10,

and an error occurs when the 4th record is loaded. The 1st to 3rd records and 5th to 10th
records will still be committed and the 1st to 10th records still seen as one transaction
unit. Of course, when STOP_ON_ERROR is specified, the 5th record to 10th record

won’t be committed at all only the 1st to 3rd records will be committed.

This option is valid only when auto-commit is off.

[LOB_FORMAT=INTERNAL | EXTERNAL] If clob/blob format is internal, the text

in data file is seen as the data that is going to be imported. Otherwise, the text is seen
as a URL to external files that are going to be imported.

server_column_name.This lists the names of the target table columns that are going to

be imported from a datafile. If there are spaces or equal signs in the table column
name, use double quotes to enclose it.

column_position........This is the column byte position in datafiles. server_column_name
and column_position are separated by space characters. column_position is specified by
two numbers that are separated by (:).For example a 1:40 means the data loader
should look for data from 1st byte to 40th byte in a datafile. Use space characters to

align the data field vertically. If the data in the source table exceeds the field length,
the rest of row data will be truncated. Each line is terminated by either new line or a

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-27

carriage return and a new line, depending on whether the loader is a Windows
platform. If a line is smaller than the maximum position, spaces will be padded to fill

the hole. If a line is longer than the maximum position, the rest of the line is ignored.
FORMAT=FIXED
[START_WITH_ROW=<row_number>]
[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>]
[LOB_FORMAT=INTERNAL | EXTERNAL]
<server_column_name> <column_position>

NOTE The fields, server_column_name, and column_position are separated by space
characters.

 An example for importing a file with fix format description file is as follows:

The datafile exists as follows:
Davolio Nancy...... Sales Representative Ms.
Fuller Andrew...... Vice President, Sales Dr.
Leverling Janet.... Sales Representative Ms.
Peacock Margaret... Sales Representative Mrs.
Buchanan Steven.... Sales Manager Mr.
Suyama Michael..... Sales Representative Mr.
King............... Robert Sales Representative Mr.

The description file for this datafile may look like this:
START_WITH_ROW=1
NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=5
Name 1:20
Position 20:45
Gender 50:54

VARIABLE FORMAT DESCRIPTION FILE
FORMAT=VARIABLE
[START_WITH_ROW=<row_number>]
[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>]
[{COLUMN_DELIMITER=<delimiter>}]
[ROW_TERMINATOR=<row_terminator>]
[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE]
[ESCAPE_CHAR=YES|NO]
[LOB_FORMAT=INTERNAL | EXTERNAL]
[<server_column_name> <column_number>]

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-28

FORMAT=VARIABLE This means this file contains the format for variable length
description files.

[START_WITH_ROW=<row_number>] You can specify from which record you
want to start loading data. The default number is 1, if the you do not specify this
option. If START_WITH_ROW is greater than total rows of data in datafile, no data

will be loaded. The row_number is must be a positive number.

[NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=<number>] This lets
you specify the interval of the rows of records loaded between each commit-

transaction. If this option is not specified, DBMaker will commit transaction for every
5 rows. If the variable is set at -1, there will be no commit. In this case you must
commit transaction manually if you want the load to be effective. If the variable is set

at 0, the entire import is seen as a single transaction. The system will then issue a
commit after the loading is finished.

The number of rows committed will still count a record even if an error occurs when

loading the record.

For example, you set NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=10,
and an error occurs when the 4th record is loaded. The 1st to 3rd records and 5th to 10th

records will still be committed and the 1st to 10th records still seen as one transaction
unit. Of course, when STOP_ON_ERROR is specified, the 5th record to 10th record
won’t be committed at all only the 1st to 3rd records will be committed.

This option is valid only when auto-commit is off.

[COLUMN_DELIMITER=<delimiter>] This specifies a character that separates
each column in datafile. The character should be single quoted. For example, to

indicate that a SPACE is used as column delimiter, use ‘ ‘. Aside from normal
characters, take the following escape sequences that represent special characters.

CHARACTER ESCAPE SEQUENCE

REPRESENTATION
TAB \t

NEW LINE \n

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-29

For example, if the delimiter is a TAB, users will use ‘\t’ in <delimiter>. If the column
delimiter is not specified, we will use TAB (\t) as the column delimiter. Use discretion

when choosing a delimiter.

If the number of column delimiters is fewer than the number of target table columns
specified by users, NULL will be used for the insert value.

[ROW_TERMINATOR=<row_terminator>] This is a string that denotes the end of a
row. The row_terminator should be double-quoted. The escape sequence rule for
column delimiter applies to row terminator. In addition to that, the carriage-return

also can be the escape sequence:

CHARACTER ESCAPE SEQUENCE

REPRESENTATION
CARRIAGE RETURN \r

For example, if a carriage return and a new line character form a row terminator, the
<row_terminator> should be “\r\n”. If no row terminator is specified, a new line
character (‘\n’) will be used as row terminator. The number of characters in row

terminator should not be greater than 2.

Note that, no column delimiter should be in row_terminator.

[QUOTATION=SINGLE_QUOTE | DOUBLE_QUOTE] This indicates whether the

alphabetic data in one field of a data source file is quoted. If SINGLE_QUOTE is
specified, the data enclosed by single quotes is seen as one column of data. If
DOUBLE_QUOTE is specified, the data enclosed by double quotes is seen as one

column of data.

[ESCAPE_CHAR=YES | NO] This indicates whether an escape character (\) is used or
not. The default is YES. If the escape character is used, the column delimiter character

after escape character is seen as real data. For example, if we specify that a TAB be
used as the column delimiter, and ESCAPE_CHAR is YES, a \TAB data is seen as
TAB in data instead of column delimiter. For row terminator, this escape character

means the line continues, and the \n is seen as real data. This rule also applies to the
quotation mark.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-30

[LOB_FORMAT=INTERNAL | EXTERNAL] If clob/blob format is internal,
the text in the datafile is seen as the data that is going to be imported. Otherwise, the

text is seen as a URL to external files that are going to be imported.

server_column_name.This lists the names of the target table columns that are going to
be imported from a datafile. If there are spaces or equal signs in the table column

name, use double quotes to enclose it.

column_numberThis is the cardinal number of each field in data file.
server_column_name and column_number are separated by space characters.

NOTE Note that if server_column_name and column_number are not specified, all columns
in datafile will be imported into target table columns in the same order as datafile
columns. That is to say, the 1st column in datafile will be imported as 1st column in
the table, and the 2nd column in datafile will be imported as the 2nd column in
table, etc. If the number of columns in datafile is greater than that of the target
table, the remaining columns in datafile will be ignored. If, on the other hand, the
number of columns in datafile is smaller than that of the target table, the
remaining columns in target table will be inserted with NULL.

DEFAULT VARAIBLE FORMAT DESCRIPTION FILE

It’s optional that users specify the description file for their datafile format. If users do
not specify the description file, a default description format is assumed. The default
format means the following description file is used (On Win32 platform, the

ROW_DELIMITER=”\r\n”):
START_WITH_ROW=1
NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=5
COLUMN_DELIMITER=”\t”
ROW_TERMINATOR=”\n”

 An example for importing a file with variable format description file is as follows:

A datafile exists:
Davolio Nancy,Sales Representative,Ms.
Fuller Andrew,”Vice President, Sales”,Dr.
Leverling Janet,Sales Representative,Ms.
Peacock Margaret,Sales Representative,Mrs.
Buchanan Steven,Sales Manager,Mr.
Suyama Michael,Sales Representative,Mr.
KingRobert,Sales Representative,Mr.

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-31

The description file for this data file may look like this:
START_WITH_ROW=1
NUMBER_OF_ROWS_FOR_EACH_TRANSACTION=5
COLUMN_DELIMITER=”,”
ROW_TERMINATOR=”\n”
DOUBLE_QUOTE
Name 1
Position 2
Gender 3

IMPORT/EXPORT DATA RULES

The following table outlines the rules that must be applied when attempting to import
or export data to or from a file.

DATA TYPE IMPORT/EXPORT FORMAT EXAMPLE

BINARY Use HEX format
To import the binary
number “0x004D2”, use
004D2 in datafile

CHAR Characters are used exclusively
To import the word
“inception”, use
inception in the datafile

VARCHAR See CHAR data type

DATE

The format YYYY/MM/DD will be
used for exporting

To import the date
“2003/07/25”, use
2003/07/25 in the
datafile

TIME Export and import will use the
format HH:MM:SS

To import the time
“14:30:25”, use
14:30:25 in the datafile

TIMESTAMP
The combination of DATE format
and TIME format forms the format
of TIMESTAMP

to import the timestamp
“2003/07/25 14:30:25”,
use 2003/07/25
14:30:25 in data file

DECIMAL Use numeric data representation
To import the number
“36.82”, use 36.82 in
data file

DOUBLE
Use numeric data as described in
DECIMAL or scientific notation of
numbers

To import the number
“13e+12”, use 13e+12 in
datafile

FLOAT See DOUBLE

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-32

DATA TYPE IMPORT/EXPORT FORMAT EXAMPLE

INTEGER Use integer data
To import the integer
“576”, use 576 in
datafile

LONG
VARBINARY

Two formats can be used: embedded
or external file format.
For embedded format, HEX
characters are used.
For external file format, the URL is
provided.
Use description flag
LOB_FORMAT to indicate your
option. For details see description
file specifications.

(1) embedded format:
The format used will be
the same as BINARY.

(2) external file format:
For example, if users
want to import a binary
file whose full path is
“c:\My
Document\GRAPH.GI
F”. The URL provided
will be c:\My
Document\GRAPH.GI
F

LONG
VARCHAR Similar to the case for LONG

VARBINARY, two formats can be
used. The input data will be in
ASCII string instead of HEX string.

(1) embedded format:
Same as CHAR format.
(2) external file format:
Same as LONG
VARBINARY.

FILE

For FILE type, import/export will

adopt the same rule for LONG
VARBINARY.

OID
Same rule as INTEGER

SERIAL
Same rule as INTEGER

SMALLINT
Same rule as INTEGER

NULL data
For variable format, NULL data is
recognized by the fact that there’s
nothing between two consecutive

delimiters.

For fixed format, NULL data is

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-33

DATA TYPE IMPORT/EXPORT FORMAT EXAMPLE

recognized by the fact that there’s all

space characters between columns.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-34

6.8 LOAD
The Load command is a tool provided by dmSQL, it is used to transfer a database
object, already unloaded to a text file, into the database. There are seven options: load

database, load table, load schema, load data, load project, load module, and load
procedure. Only load the file that is unloaded in the same option. For example, load a
database from the text file that is unloaded with database option.

When loading a text file, set the number of commands to automatically commit the
transaction. The default number is 1000. The size of n will affect whether the
transaction succeeds or not and the speed of loading. The Journal will fill easily with a

large n value and could cause the transaction to fail. A small n value will increase the
commit times and slow down the speed of loading.

If there are errors occurring during the loading procedure, an error messages will be

recorded in a log file, which the system will use to undo executed commands. The log
file is stored in the same directory as the external text file being loaded and does not
stop the loading procedure.

LOAD

Proc 1 Procedure

Table
Schema

DB 1 Database

Module
Project

From
Data

Load file_name

Figure 6-8 LOAD syntax

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-35

LOAD DB [DATABASE]
Use the command to transfer the contents of a database to a new database. First,
unload the database to transfer to an external text file, and then use the “load db”
command to load the contents of the database from the text file. Before loading a

database, create a new one. The name of the new database can be different from the
old one. Only a DBA or a SYSADM may execute this command.

The utility will work in Journal mode if the loaddb is set in safe mode. The load
utility will rollback to the last committed command if any error occur during loading,

the error messages will return to screen, and write to the log file of the load utility.

When using the set loaddb in fast mode, the rule for loading the utility in DBMaker
versions earlier than 3.6, will make the whole load procedure work under the no
Journal mode. Setting loaddb in fast mode will speed up the load utility, but it will

make the database shut down in no Journal mode if any error occurs.

For example, suppose that the load file has tablespace creation but it is not specified in
the dmconfig.ini file. If loaddb is set to use the safe option, the following error
message, “ERROR(8002): [DBMaker] keyword entry is required for configuration

file”, will be reported and then the load command will rollback. If loaddb is set to use
the fast option, then the following error message occurs, “ERROR(30017),
[DBMaker] errors occurred on no-Journal mode, shut down database”. The default

option is “set loaddb safe”.

 Example

The following set option for loaddb has been added to versions above DBMaker 3.6.
Set loaddb [safe | fast]

LOAD TABLE

The option permits loading the contents of a table, including schema and data, from a

text file. When loading a table from a text file, make sure that the table name is
unique.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-36

LOAD SCHEMA

The option allows users to load the schema, not including the data, from a table
contained in a text file. When loading a table schema from a text file, ensure that the

table name is unique.

LOAD DATA

A corresponding table must exist when loading data from an external text file. In

versions earlier than 3.6 when the errors occur during the LOAD DATA procedure, it
will rollback to the last committed command.

 If loaddata skip error, is set then the following error messages will be skipped during

the loading of data:

ERROR(401)unique key violation

ERROR(410)referential constraint violation: value does not exist in parent

key

ERROR(6521)table or view does not exist

ERROR(6002)syntax error

ERROR(6015)incomplete SQL statement input

The error will be skipped and the load utility will resume execution of subsequent
commands. The above errors are the most common errors to occur during loading of

data. When the load data stop or stop on error is set, the whole load command will
rollback if errors occur. The default value for this option is set loaddata skip [error]. All
the error messages occurred during the loading of data will be written into the log file.

 Example

DBMaker 3.6 and later versions support the following options.
Set loaddata skip [error] | stop [on error]

LOAD MODULE

The option allows a user to load a module from an external text file.

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-37

LOAD PROJECT

The option allows a user to load a project from an external text file.

LOAD PROC [PROCEDURE]

The option allows a user to load a stored procedure from an external text file.

 Example 1

The following command loads the database from a file named “empdb”, and commits
it automatically every 100 commands during loading. The system will generate a log
file named “empdb.log” in the same directory.
dmSQL> load db from empdb 100;

 Example 2

The following command will load a table from a file named “empfile”, and it will

commit automatically every 50 commands during loading.
dmSQL> load table from empfile 50;

 Example 3

The following command will permit the loading of data from an external data file
named “datafile” and will commit automatically every 1000 commands using the
default setting.
dmSQL> load data from datafile;

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-38

6.9 SET DUMP PLAN
A dump plan consists of several ON blocks. The query optimizer divides and
optimizes a query into several logical ON blocks. Simple and joined queries usually

only generate one ON block, where as a complex query like a sub-query may generate
more than one ON block which includes a main-block and sub-blocks.

The optimizer will find the best execution method based on the cost for each ON

block. It will divide each ON block into several PL blocks, and each PL block will
represent an operation like a scan, join, etc.

Set dump plan on......turns the dump plan on, accepts queries and executes commands

Set dump plan off......turns the dump plan off, this is the default

Set dump plan only ...turns the dump plan on, accepts queries, but doesn’t execute

 commands

SET DUMP PLAN ONLY

ON

()

OFF

Figure 6-9 SET DUMP PLAN Syntax

 Example
dmSQL> set dump plan on;
dmSQL> select * from t1 order by c1;
dmSQL> set dump plan off;

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-39

6.10 START DATABASE
The START DATABASE command starts a database to allow users to connect. This
command is normally only used with client/server databases. Only a DBA or a

SYSADM may execute the command.

To start a database without specifying a user-name and password in the START
DATABASE command, use the DB_USRID and DB_PASWD keywords in the

dmconfig.ini file. Use the DB_PASWD keyword.

The password is in plain text and can be seen by anyone with the read permission for
the dmconfig.ini file. This keyword is included for convenience only, and may pose a

security risk to the database Use it on an unsecured computer.

database_name.........Name of the database to start

user_nameName of the user starting the database

passwordCurrent password of user_name

START database_name

DATABASE

DB

password
user_name

Figure 6-10 START DATABASE syntax

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-40

 Example

The following starts the Employees database; the user vivian has DBA or SYSADM
privileges.
START DATABASE Employees vivian shuka828

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-41

6.11 TERMINATE DATABASE
The TERMINATE DATABASE command shuts down a database so other users
cannot connect. This command is normally used with client/server databases. Only a

DBA or a SYSADM may execute the command.

TERMINATE

DATABASE

DB

Figure 6-11 TERMINATE DATABASE syntax

 Example

The following terminates the database on an active connection.
TERMINATE DATABASE

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-42

6.12 UNLOAD
Unload is a tool provided by dmSQL used to transfer the contents of a database to an
external text file. After the unload procedure succeeds, dmSQL will produce two text

files. One stores the script, with extension name s0, to establish the database object
and the other stores the BLOB data, with the extension name bn.

There are eight options for the unload command: unload database, unload table,

unload schema, unload data, unload project, unload module, unload procedure, and
unload procedure definition. Only unload the object that you have the select privilege
on. For instance, if you have the select privilege on a table, then you can only unload

the content of this table. Only a DBA or a SYSADM may unload the database.

To Unload tables with names containing wild cards like the escape character “\”, or
double quotes on the name.

From

UNLOAD

PROC 1 Definition 1
Procedure Definition

Module

table_name

Project

Table

DB 1 Database

proc_name

table_name

Data
From owner_name

From Select

project_name
To file_name

Select

owner_name
PROC 1 Procedure

Schema

Figure 6-12 UNLOAD syntax

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-43

UNLOAD DB [DATABASE]

A DBA or a SYSADM may unload the content of a database to an external text file.
This file includes information about security, tablespaces, definitions, indices,

synonyms, data, etc. For each database, dmSQL will generate at least two external
files, one script, and one BLOB data.

empdb is the name of the external text file. By default, dmSQL will create these files

in the current working directory. In the statement below, there are at least two text
files created, empdb.s0 and empdb.b0. If the unloaded BLOB file empdb.b0 exceeds
the maximum size allowed by the operating system, dmSQL will generate empdb.b1,

empdb.b2 through to empdb.bn sequentially up to a maximum number of 99.
dmSQL will always generate one script file emodb.s0, and its maximum size is set to
the operating system limitation.

 Example
dmSQL> unload db to empdb;

UNLOAD TABLE

Unloads tables to an external file and will record the definition, synonyms, indices,
primary key, foreign keys, and data of the table.

Use the wild cards “_” and “%”, which is similar with “?” and “*” in DOS, in the

owner and table name. The wild card “_” represents a character, and “%” represents a
set of characters.

UNLOAD SCHEMA

The usage of this option is very similar with unload table. It can only unload the
definition of a table, and does not unload the data in a table. Uses the same wild cards
as illustrated in the above unload table option.

UNLOAD DATA

This option will unload all data from a table and does not unload the definition of the
table. Unload data uses the same wildcards as the previous two options. Only users

with the SELECT privilege on the unloaded table may execute the unload data
command.

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-44

DBMaker 3.6 and later versions support an additional syntax for unloading data:
dmSQL>unload data from (select statement) to file_name. If the select statement is a

join, the projection columns must be from the same table, the following statement is
executable. DDL commands, delete, insert, or updates are not permitted.

 Example 1

Valid syntax
dmSQL> unload data from (select t1.c1, t1.c2 from t1, t2 where t1.c1= t2.c1) to
f1;

 Example 2

Illegal syntax
dmSQL> unload data from (select t1.c1, t2.c1 from t1, t2 where t1.c1 = t2.c1) to
f1;

 Example 3

Illegal syntax, no aggregate or built-in functions are permitted in the projection
columns.
dmSQL> unload data from (select avg(c1) from t1) to f1;
dmSQL> unload data from (select now() from t1) to f1;

 Example 4

Valid syntax, views and synonyms are permitted.
dmSQL> unload data from (select * from s1 where c1 > 10) to f1;
dmSQL> unload data from (select * from v1 where c1 < 10) to f1;

UNLOAD PROJECT

This option allows a user to unload a project to an external text file.

UNLOAD MODULE

This option allows a user to unload a module to an external file.

UNLOAD [PROC | PROCEDURE]

This option allows a user to unload the stored procedures to an external file.

1dmSQL Commands 6

©Copyright 1995-2004 CASEMaker Inc. 6-45

UNLOAD [PROC DEFINITION | PROCEDURE
DEFINITION]

This option allows a user to unload the definition of the stored procedure to an
external text file.

 Example 1

The following will unload the table “e tab” for the current user; if there are any blanks

in the table name add double quotes.
dmSQL> unload table from “e tab” to empfile;

 Example 2

The following will unload all tables with the names starting with emp for the
SYSADM owner, for example, emptab, empname, … etc.
dmSQL> unload table from SYSADM.emp% to empfile;

 Example 3

The following will unload the schema of all tables with the name ktab.
dmSQL> unload schema from %.ktab to kfile;

 Example 4

The following commands will unload data from a table named abc%.
dmSQL> unload data from abc\% to abcfile;
dmSQL> unload data from “abc%” to abcfile;

 SQL Command and Function Reference1

©Copyright 1995-2004 CASEMaker Inc. 6-46

	1 Introduction
	1.1 Additional Resources
	1.2 Technical Support
	1.3 Document Conventions

	2 SQL Basics
	2.1 Syntax Diagrams
	2.2 Data Types
	BINARY(size)
	CHAR(size)
	DATE
	DECIMAL (NUMERIC)
	DOUBLE
	FILE
	FLOAT
	INTEGER
	LONG VARBINARY (BLOB)
	LONG VARCHAR (CLOB)
	NCHAR(size)
	NCLOB
	NVARCHAR(size)
	OID
	SERIAL(start)
	SMALLINT
	TIME
	TIMESTAMP
	VARCHAR(size)
	Media Types

	2.3 RESERVED WORDS

	3 SQL Commands
	3.1 ABORT BACKUP
	3.2 ADD TO GROUP
	3.3 ALTER DATAFILE
	3.4 ALTER PASSWORD
	3.5 ALTER REPLICATION ADD REPLICATE
	3.6 ALTER/DROP REPLICATION
	3.7 ALTER SCHEDULE
	3.8 ALTER TABLE ADD COLUMN
	Column Definition

	3.9 ALTER TABLE DROP COLUMN
	3.10 ALTER TABLE DROP FOREIGN KEY
	3.11 ALTER TABLE DROP PRIMARY KEY
	3.12 ALTER TABLE FOREIGN KEY
	3.13 ALTER TABLE MODIFY COLUMN
	Column Definitions

	3.14 ALTER TABLE PRIMARY KEY
	3.15 ALTER TABLE RENAME
	3.16 ALTER TABLE SET OPTIONS
	3.17 ALTER TABLESPACE
	3.18 ALTER TABLESPACE DROP DATAFILE
	3.19 ALTER TRIGGER ENABLE
	3.20 ALTER TRIGGER REPLACE
	For Each Row Clause
	For Each Statement Clause

	3.21 BEGIN BACKUP
	3.22 BEGIN WORK
	3.23 CHECK
	3.24 CHECKPOINT
	3.25 CLOSE DATABASE LINK
	3.26 COMMIT WORK
	3.27 CREATE COMMAND
	3.28 CREATE DATABASE LINK
	3.29 CREATE DOMAIN
	3.30 CREATE GROUP
	3.31 CREATE HASH INDEX
	3.32 CREATE INDEX
	3.33 CREATE REPLICATION
	3.34 CREATE SCHEDULE
	3.35 CREATE SCHEMA
	3.36 CREATE SYNONYM
	3.37 CREATE TABLE
	Column Definitions
	Primary Key and Unique Definitions
	Foreign Key Definitions
	Table Options

	3.38 CREATE TABLESPACE
	3.39 CREATE TEXT INDEX
	Signature Text Index
	Inverted File Text Index

	3.40 CREATE TRIGGER
	For Each Row Clause
	For Each Statement Clause

	3.41 CREATE VIEW
	3.42 DELETE
	3.43 DROP COMMAND
	3.44 DROP DATABASE LINK
	3.45 DROP DOMAIN
	3.46 DROP GROUP
	3.47 DROP INDEX
	3.48 DROP REPLICATION
	3.49 DROP SCHEDULE
	3.50 DROP SCHEMA
	3.51 DROP SYNONYM
	3.52 DROP TABLE
	3.53 DROP TABLESPACE
	3.54 DROP TEXT INDEX
	3.55 DROP TRIGGER
	3.56 DROP VIEW
	3.57 END BACKUP
	3.58 EXECUTE COMMAND
	3.59 GRANT (Execute Privileges)
	3.60 GRANT (Object Privileges)
	3.61 GRANT (Security Privileges)
	3.62 INSERT
	3.63 KILL CONNECTION
	3.64 LOAD STATISTICS
	3.65 LOCK TABLE
	3.66 REBUILD INDEX
	3.67 REBUILD TEXT INDEX
	3.68 REMOVE FROM GROUP
	3.69 RESUME SCHEDULE
	3.70 REVOKE (Execute Privileges)
	3.71 REVOKE (Object Privileges)
	3.72 REVOKE (Security Privileges)
	3.73 ROLLBACK
	3.74 SAVEPOINT
	3.75 SELECT
	SELECT WITHOUT FROM
	SELECT Clause
	FROM Clause
	WHERE Clause
	Compound Comparisons
	Join Conditions
	GROUP BY Clause
	HAVING Clause
	ORDER BY Clause
	FOR BROWSE Clause

	3.76 SET CONNECTION OPTIONS
	No Value Options
	ON/OFF Options
	Number Options
	String Options
	Symbol Options
	Transaction Options

	3.77 SUSPEND SCHEDULE
	3.78 SYNCHRONIZE SCHEDULE
	3.79 UNLOAD STATISTICS
	UNLOAD STATISTICS Object List

	3.80 UPDATE
	3.81 UPDATE STATISTICS
	UPDATE STATISTICS Object List

	3.82 UPDATE TABLESPACE STASTICS

	4 Built-in Functions
	4.1 ABS
	4.2 ACOS
	4.3 ADD_DAYS
	4.4 ADD_HOURS
	4.5 ADD_MINS
	4.6 ADD_MONTHS
	4.7 ADD_SECS
	4.8 ADD_YEARS
	4.9 ASCII
	4.10 ASIN
	4.11 ATAN
	4.12 ATAN2
	4.13 ATOF
	4.14 BLOBLEN
	4.15 CEILING
	4.16 CHAR
	4.17 CHAR_LENGTH
	4.18 CHARACTER_LENGTH
	4.19 CHECKMEDIATYPE
	4.20 CONCAT
	4.21 COS
	4.22 COSH
	4.23 COT
	4.24 CURDATE
	4.25 CURRENT_DATE
	4.26 CURRENT_TIME
	4.27 CURRENT_TIMESTAMP
	4.28 CURRENT_USER
	4.29 CURTIME
	4.30 DATABASE
	4.31 DATEPART
	4.32 DAYNAME
	4.33 DAYOFMONTH
	4.34 DAYOFWEEK
	4.35 DAYOFYEAR
	4.36 DAYS_BETWEEN
	4.37 DEGREES
	4.38 DMLIC
	4.39 EXP
	4.40 FILEEXIST
	4.41 FILELEN
	4.42 FILENAME
	4.43 FIX
	4.44 FLOOR
	4.45 FREXPE
	4.46 FREXPM
	4.47 FTOA
	4.48 HIGHLIGHT
	4.49 HITCOUNT
	4.50 HITPOS
	4.51 HMS
	4.52 HOUR
	4.53 HTMLHIGHLIGHT
	4.54 HTMLTITLE
	4.55 HYPOT
	4.56 INSERT
	4.57 INVDATE
	4.58 INVTIME
	4.59 INVTIMESTAMP
	4.60 LAST_DAY
	4.61 LCASE
	4.62 LDEXP
	4.63 LEFT
	4.64 LENGTH
	4.65 LOCATE
	4.66 LOG
	4.67 LOG10
	4.68 LOWER
	4.69 LTRIM
	4.70 MDY
	4.71 MINUTE
	4.72 MOD
	4.73 MODFI
	4.74 MODFM
	4.75 MONTH
	4.76 MONTHNAME
	4.77 NEXT_DAY
	4.78 NOW
	4.79 PI
	4.80 POSITION
	4.81 POW
	4.82 QUARTER
	4.83 RADIANS
	4.84 RAND
	4.85 REPEAT
	4.86 REPLACE
	4.87 RIGHT
	4.88 RND
	4.89 ROUND
	4.90 RTRIM
	4.91 SECOND
	4.92 SECS_BETWEEN
	4.93 SESSION_USER
	4.94 SIGN
	4.95 SIN
	4.96 SINH
	4.97 SPACE
	4.98 SQRT
	4.99 STRTOINT
	4.100 SUBBLOB
	4.101 SUBBLOBTOBIN
	4.102 SUBBLOBTOCHAR
	4.103 SUBSTRING
	4.104 TAN
	4.105 TANH
	4.106 TIMEPART
	4.107 TIMESTAMPADD
	4.108 TIMESTAMPDIFF
	4.109 TO_DATE
	4.110 TRIM
	4.111 UCASE
	4.112 UPPER
	4.113 USER
	4.114 WEEK
	4.115 YEAR

	5 System-Stored Procedures
	5.1 SOADD
	5.2 SOCREATE
	5.3 SODROP
	5.4 SOLOCK
	5.5 SOREAD
	5.6 SOSET
	5.7 SOUNLOCK
	5.8 XMLEXPORT
	Constructing XMLEXPORT Arguments
	Exporting XML Files

	5.9 XMLIMPORT
	Constructing XMLIMPORT Arguments
	Importing XML Files

	6 dmSQL Commands
	6.1 CREATE DATABASE
	6.2 CONNECT
	6.3 DEF TABLE
	6.4 DEF VIEW
	6.5 DISCONNECT
	6.6 EXPORT
	EXPORT COMMAND INTERFACE
	DESCRIPTION FILE

	6.7 IMPORT
	IMPORT COMMAND INTERFACE
	DESCRIPTION FILE

	6.8 LOAD
	6.9 SET DUMP PLAN
	6.10 START DATABASE
	6.11 TERMINATE DATABASE
	6.12 UNLOAD

