
DBMaker
Database Administrator's Guide

CASEMaker Inc./Corporate Headquarters

1680 Civic Center Drive

Santa Clara, CA 95050, U.S.A.

www.casemaker.com

www.casemaker.com/support

©Copyright 1995-2003 by CASEMaker Inc.
Document No. 645049-231031/DBM41-M05262003-DBAG

Publication Date: 2003-05-18

All rights reserved. No part of this manual may be reproduced, stored in a retrieval system, or transmitted in any
form, without the prior written permission of the manufacturer.

For a description of updated functions that do not appear in this manual, read the file named README.TXT
after installing the CASEMaker DBMaker software.

Trademarks
CASEMaker, the CASEMaker logo, and DBMaker are registered trademarks of CASEMaker Inc. Microsoft, MS-
DOS, Windows, and Windows NT are registered trademarks of Microsoft Corp. UNIX is a registered trademark
of The Open Group. ANSI is a registered trademark of American National Standards Institute, Inc.

Other product names mentioned herein may be trademarks of their respective holders and are mentioned only
form information purposes. SQL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

Notices
The software described in this manual is covered by the license agreement supplied with the software.

Contact your dealer for warranty details. Your dealer makes no representations or warranties with respect to the
merchantability or fitness of this computer product for any particular purpose. Your dealer is not responsible for
any damage caused to this computer product by external forces including sudden shock, excess heat, cold, or
humidity, nor for any loss or damage caused by incorrect voltage or incompatible hardware and/or software.

Information in this manual has been carefully checked for reliability; however, no responsibility is assumed for
inaccuracies. This manual is subject to change without notice.

This text is not here.

http://www.casemaker.com/
http://www.casemaker.com/support

 1Contents

©Copyright 1995-2003 CASEMaker Inc. i

Contents

1 Introduction1-1
1.1 Other Sources of Information 1-3
1.2 Technical Support 1-4
1.3 Document Conventions......................... 1-5

2 Overview..2-1
2.1 Features ... 2-1

Multimedia Support ... 2-2
JDBC Support... 2-2
Microsoft Transaction Server (MTS) Support 2-3
Open Interface.. 2-3
Data Integrity .. 2-4
Data Reliability.. 2-4
Storage Management.. 2-5
Security Management... 2-5
Advanced Language Features... 2-6

2.2 Database Modes 2-6
Single-User Mode... 2-7
Multiple-Connection Mode .. 2-7
Client/Server Mode ... 2-7

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. ii

2.3 DBMaker Interface and Tools 2-8
Application Program Interface... 2-8
dmSQL Interactive Query Tool... 2-8
JDBA Tool .. 2-8
JServer Manager.. 2-9
JConfiguration Tool... 2-9
ESQL for C language... 2-9

2.4 Syntax Diagrams................................... 2-9

3 System Architecture 3-1
3.1 The DBMaker Process 3-1
3.2 Database Communication and Control

Area (DCCA) .. 3-2
3.3 Architecture of the Single-User Model . 3-3
3.4 Architecture of the Client/Server Model3-4

Server Program ... 3-6
Client Program.. 3-6
Client Library .. 3-7

4 Basic Database Administration......... 4-1
4.1 Configuration File - dmconfig.ini 4-1

dmconfig.ini Location.. 4-2
dmconfig.ini Format .. 4-3
Some Important dmconfig.ini Keywords....................................... 4-5
Default Values... 4-6
Sample dmconfig.ini file.. 4-6

4.2 Creating a Database 4-7
Naming the Database .. 4-8
Schema Object Name Case Sensitivity ... 4-9
Setting Storage Parameters.. 4-9
Raw Devices .. 4-16
Enabling Client/Server Database .. 4-17

 1Contents

©Copyright 1995-2003 CASEMaker Inc. iii

Default User and Password .. 4-17
Changing the Language Code Order .. 4-17
The Data Communications and Control Area 4-20

4.3 Starting a Database............................ 4-21
Single-User... 4-22
Client/Server... 4-22
Start Mode ... 4-24
Forced Startup .. 4-25
E-mail Error Report System... 4-25

4.4 Connecting to a Database 4-26
Client/Server Database ... 4-26
Connection Time-Out... 4-26
Lock Time-Out... 4-27

4.5 Shutting down a Database.................. 4-27

5 Storage Architecture5-1
5.1 Architecture ... 5-1
5.2 File Types ... 5-3

User Data Files ... 5-3
User BLOB Files .. 5-4
Journal Files... 5-5
Tablespaces.. 5-7

5.3 Managing Tablespaces and Files.......... 5-9
Initial Setting of System Files and Tablespace 5-10
Initial Setting of Default User Files and Tablespace.................. 5-11
Creating Tablespaces ... 5-11
Expanding a Regular Tablespace... 5-13
Adding Files to Tablespaces... 5-14
Adding Pages to Files in Tablespaces ... 5-15
Changing Regular to Autoextend Tablespaces............................ 5-15
Changing Autoextend Tablespaces to Regular Tablespaces 5-16
Shrinking Tablespaces and Files .. 5-17
Dropping Tablespaces... 5-21

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. iv

Getting Information about Tablespaces and Files 5-22
Checking File and Tablespace Consistency 5-22

6 Managing Schema Objects................ 6-1
6.1 Managing Tables................................... 6-2

Creating Tables ... 6-2
Browsing Table Schema .. 6-8
Altering Tables.. 6-8
Locking Tables.. 6-12
Dropping Tables... 6-12

6.2 Managing Views.................................. 6-13
Creating Views .. 6-13
Browsing View Schema... 6-14
Dropping Views..6-14

6.3 Managing Synonyms 6-14
Creating Synonyms...6-15
Dropping Synonyms ..6-15

6.4 Managing Indexes............................... 6-15
Creating Indexes ... 6-17
Dropping Indexes .. 6-18
Rebuilding Indexes... 6-18

6.5 Managing Text Indexes 6-18
Creating Signature Text Indexes .. 6-19
Creating Inverted-File (IVF) Text Indexes 6-20
Creating Text Indexes on Multiple Columns 6-24
Creating Text Indexes on Media Types.. 6-25
Dropping Text Indexes ... 6-27
Rebuilding Text Indexes ... 6-27
Boolean Text Search .. 6-29
Fuzzy Search.. 6-30
Near logic full-text search ... 6-31
Fuzzy/Near Logic Matching Rules ... 6-32

6.6 Managing Data Integrity 6-33

 1Contents

©Copyright 1995-2003 CASEMaker Inc. v

Not Null... 6-33
Unique Indexes... 6-33
Unique Constraints .. 6-33
Check Constraints .. 6-34
Primary Keys... 6-35
Foreign Keys (Referential Integrity).. 6-37

6.7 Managing Serial Numbers................... 6-38
6.8 Managing Domains.............................. 6-40
6.9 Unloading / Loading Objects............... 6-42

Unloading Objects ... 6-42
Loading Objects ... 6-45

6.10 Browsing System Catalogs 6-49
6.11 Calculating the Space Required 6-49

How to Estimate the Size of a Table .. 6-50
6.12 Checking Database Consistency 6-55

Checking Indexes ... 6-56
Checking Tables ... 6-56
Checking Catalogs.. 6-56
Checking Databases ... 6-57

6.13 Updating Statistics for Schema Objects6-57

7 Large Object Management.................7-1
7.1 Managing BLOBs................................... 7-3

Customizing BLOB Space.. 7-3
Generating BLOBs .. 7-7
Updating BLOBs.. 7-8
Predicate Operations on BLOB Columns 7-8

7.2 Managing File Objects 7-9
Customizing the System File Object Path 7-10
Generating File Objects .. 7-12
System File Object Extension Names .. 7-13
Updating File Objects.. 7-14

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. vi

Renaming File Objects .. 7-15
Predicate Operations on File Objects... 7-16
File Object UNC Names... 7-16
File Object Path Default Aliases.. 7-17
FO and Applications.. 7-18

7.3 Journal of Large Objects 7-18
BLOB Journal Logging ... 7-19
File Object Journal Logging ... 7-22

7.4 Large Objects and SELECT INTO
Command.. 7-23
SET DFO DUPMODE.. 7-23
Limitations...7-24

8 Security Management 8-1
8.1 Security Policies................................... 8-1
8.2 Database Authority............................... 8-1

Managing Users .. 8-3
Managing Groups... 8-7

8.3 Object Privileges 8-9
8.4 Security System Catalog 8-14

9 Concurrency Control 9-1
9.1 Transactions... 9-1

Transaction States... 9-1
Managing a Transaction .. 9-2
Using a Savepoint ... 9-3

9.2 Multi-User Environment 9-5
Sessions .. 9-5
The Necessity of Concurrency Control.. 9-5

9.3 Locks .. 9-8
Lock Concept.. 9-8
Lock Granularity... 9-9

 1Contents

©Copyright 1995-2003 CASEMaker Inc. vii

Lock Types .. 9-10
Dealing with Deadlock.. 9-12

10 Triggers ...10-1
10.1 Trigger Components 10-2

Trigger Name.. 10-2
Trigger Action Time .. 10-2
Trigger Event .. 10-3
Trigger Table... 10-3
Trigger Action... 10-3
Trigger Type.. 10-3
REFERENCING Clause.. 10-3

10.2 Trigger Operation 10-4
10.3 Creating Triggers................................ 10-4

Basic Requirements.. 10-5
Security Privileges... 10-5
CREATE TRIGGER Syntax... 10-6
Specifying the Trigger Action Time.. 10-7
FOR EACH ROW / FOR EACH STATEMENT Clause...... 10-8
Using the Referencing Clause .. 10-10
Using the WHEN Condition ... 10-11
Specifying the Trigger Action ..10-13

10.4 Modifying a Trigger........................... 10-14
Replacing a Trigger Action ...10-16

10.5 Dropping a Trigger 10-16
Dropping the Trigger .. 10-17

10.6 Using Triggers 10-17
Stored Procedures in Action Body.. 10-17
Trigger Execution Order... 10-18
Security and Triggers ... 10-19
Cursors and Triggers.. 10-19
Cascading Triggers ... 10-19

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. viii

10.7 Enabling and Disabling Triggers 10-20
10.8 Create Trigger Privileges.................. 10-21

11 Stored Commands 11-1
11.1 Creating Stored Commands 11-1
11.2 Executing a Stored Command 11-2
11.3 Dropping a Stored Command 11-3
11.4 Stored Command Security 11-3

Granting Execute Privilege... 11-4
Revoking Execute Privileges .. 11-4

11.5 Lifecycle of a Stored Command.......... 11-5
11.6 Getting Information for Stored Commands11-5

12 Stored Procedures 12-1
12.1 Creating Stored Procedures 12-1

Create Procedure Syntax ... 12-2
Using Parameters.. 12-3
Return Select Statement .. 12-4
Module Names.. 12-5
Variable Declaration .. 12-5
Code Section ... 12-5
Configuration Settings for Stored Procedures............................. 12-6
Creating a New Stored Procedure from File 12-6

12.2 Executing Stored Procedures............. 12-7
dmSQL... 12-8
ESQL.. 12-9
Executing Nested Stored Procedures ... 12-9
Executing Stored Procedures in ODBC programs12-10
Tracing Stored Procedure Execution..12-11

12.3 Dropping A Stored Procedure 12-11
12.4 Getting Procedure Information......... 12-12

 1Contents

©Copyright 1995-2003 CASEMaker Inc. ix

12.5 Security .. 12-12

13 Coding User-Defined Functions13-1
13.1 UDF Interface 13-1

Example ... 13-2
Including libudf.h ... 13-3
Passing Parameters... 13-3
Allocating Memory Space ... 13-5
Returning Results ... 13-6

13.2 Building UDF Dynamic-Link Library 13-6
DLL in Microsoft Windows Environment.................................. 13-7
UDF so File in UNIX ... 13-8

13.3 Creating, Using, and Dropping UDF 13-9
Creating a UDF .. 13-9
Querying a UDF... 13-9
Dropping a UDF.. 13-9
Example ... 13-9

13.4 UDF BLOB Common Interface........... 13-11
BLOB Common Interface Functions...13-11
Example ... 13-14
Troubleshooting Errors .. 13-16

13.5 UDF related dmconfig.ini keywords.. 13-17
DB_StrSz ... 13-17

14 Database Recovery, Backup, and
Restoration14-1
14.1 Types of Database Failures 14-1

System Failures ... 14-2
Media Failures ... 14-2

14.2 Recovery from Database Failures....... 14-2
Journal Files... 14-3
Checkpoint Events... 14-3

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. x

Recovery Steps.. 14-4
Forcing Database Startup.. 14-5

14.3 Types of Backups 14-6
Full Backups .. 14-6
Incremental Backups.. 14-7
Offline Backups .. 14-8
Online Backups... 14-8
Online Incremental to Current Backups 14-9

14.4 Backup Modes 14-9
NONBACKUP Mode...14-10
BACKUP-DATA Mode ...14-10
BACKUP-DATA-AND-BLOB Mode14-11
Tablespace BLOB Backup Mode ..14-11
Backup File Object Mode ...14-12
Setting the Backup Mode ..14-14

14.5 Offline Full Backups 14-17
14.6 Backup Server 14-18

Starting Backup Server ..14-19
Incremental Backup Filename Format14-20
Backup Directory..14-23
Setting the Old Directory..14-25
Incremental Backup Settings ..14-26
Journal Trigger Value Settings..14-28
Compact Backup Mode Settings..14-30
Full Backup Schedule...14-32
Backup Mode of File Objects ..14-33
Stopping Backup Server ..14-36

14.7 Backup History Files 14-37
Locating the Backup History File ..14-37
Understanding the Backup History File14-37
Using the Backup History File ...14-38
Understanding the File Object Backup History File14-38

 1Contents

©Copyright 1995-2003 CASEMaker Inc. xi

14.8 Recovery Options 14-39
Analyzing Recovery Options.. 14-39
Preparing for Restoration ... 14-39
Performing a Restoration.. 14-40

15 Distributed Databases15-1
15.1 Introduction to Distributed Databases 15-1
15.2 Distributed Database Structure.......... 15-3
15.3 Distributed Database Environment..... 15-5
15.4 Distributed Database Objects 15-9

Remote Database Connections-Using Names 15-10
Remote Database Connections-Using Links............................. 15-10
Database Object Mapping .. 15-13
Closing Links ..15-15
Link System Catalog Tables.. 15-16

15.5 Distributed Transaction Control 15-16
Two-Phase Commit ...15-17
Distributed Transaction Recovery... 15-17
Heuristic End Global Transaction ..15-18

16 Data Replication16-1
16.1 Table Replication 16-1

What is Table Replication? ... 16-1
Differences Between Database and Table Replication.............. 16-2
Two Types of Table Replication ... 16-2
Term Definitions.. 16-3
Creating Table Replication ... 16-4
Table Replication Rules... 16-6
Drop Replication.. 16-7
Alter Replication... 16-7

16.2 Synchronous Table Replication 16-9
Synchronous Table Replication Setup.. 16-9

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. xii

16.3 Asynchronous Table Replication 16-10
Enabling Asynchronous Table Replication16-11
Schedule (Creating and Dropping)..16-13
Creating Asynchronous Table Replication.................................16-14
Error Handling ...16-16
Schedule (Suspending and Resuming) ..16-17
Synchronizing a Replication ...16-18
Altering Schedule..16-19
Heterogeneous Asynchronous Table Replication16-20
Express Asynchronous Table Replication16-21
Express Replication Setup ..16-22

16.4 Database Replication 16-24
Database Replication Basics ...16-24
Database Replication Setup ..16-25
JServer Manager Environment Settings16-35
Database Configuration File...16-36
Database Replication Limitations..16-38

17 Performance Tuning........................ 17-1
17.1 The Tuning Process 17-1
17.2 Monitoring a Database........................ 17-2

The Monitor Tables ... 17-2
Killing Connections ...17-3

17.3 Tuning I/O ... 17-4
Determining Data Partitions .. 17-4
Determining Journal File Partitions ..17-5
Separating Journal Files and Data Files .. 17-5
Using Raw Devices .. 17-5
Pre-Allocating Autoextend Tablespaces....................................... 17-6
I/O and Checkpoint Daemons.. 17-6

17.4 Tuning Memory Allocation 17-7
Tuning an Operating System.. 17-8
Tuning DCCA Memory .. 17-8

 1Contents

©Copyright 1995-2003 CASEMaker Inc. xiii

Tuning Page Buffer Cache.. 17-11
Tuning Journal Buffers.. 17-20
Tuning the System Control Area (SCA)..................................... 17-22
Tuning the Catalog Cache... 17-23

17.5 Tuning Concurrent Processing 17-23
Reducing Lock Contention...17-23
Limiting the Number of Processes ... 17-24

18 Query Optimization18-1
18.1 What is Query Optimization? 18-2
18.2 How Does the Optimizer Operate? 18-3

Input of Optimizer... 18-4
Factors.. 18-5
Join Sequence.. 18-6
Nested Join and Merge Join ... 18-7
Table Scan and Index scan ... 18-7
Sort.. 18-7

18.3 Time Cost of a Query 18-8
CPU Cost... 18-8
I/O Cost .. 18-8
Cost of Table Scan ... 18-9
Cost of Index Scan... 18-9
Cost of Sort ...18-10
Cost of Nested Join ... 18-11
Cost of Merge Join... 18-11

18.4 Statistics .. 18-11
Types of Statistics... 18-11
UPDATE STATISTICS Syntax .. 18-12
Auto Update Statistics Daemon .. 18-14
Load and Unload Statistics ... 18-14

18.5 Accelerating Execution of Query...... 18-15
Data Model.. 18-16
Query Plan... 18-16

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. xiv

Index Check ..18-16
Filter Columns ..18-16
Query Results ..18-17
Temporary Tables ..18-18

18.6 Syntax-Based Query Optimizer 18-18
Forced Index Scans..18-18
Forced Index Scan and “Alias”..18-19
Forced Index Scan and “Synonym”..18-19
Forced Index Scan and “View” ...18-19
Forced Text Index Scans...18-20

18.7 How to Read a Dump Plan 18-20
Table Scan..18-21
Index Scan ...18-22
Equal Join ..18-24

A Keywords in dmconfig.ini.................. A-1
A.1 General Concept A-1
A.2 dmconfig.ini File Format....................... A-2

Section Names ... A-2
Keywords .. A-2
Comments... A-3

A.3 Search Path for dmconfig.ini A-4
A.4 Default Values for Keywords A-4
A.5 Creating dmconfig.ini A-5
A.6 Keyword Reference A-5

DB_AtCmt=<value>... A-5
DB_AtrMd=<value>... A-5
DB_BbFil=<string> .. A-6
DB_BfrSz=<value>... A-6
DB_BkDir=<string> ... A-6
DB_BkFoM=<value> ... A-7
DB_BkFrm=<value> .. A-7

 1Contents

©Copyright 1995-2003 CASEMaker Inc. xv

DB_BkFul=<value>.. A-8
DB_BkItv=<string>.. A-9
DB_BkCmp=<value>... A-9
DB_BkOdr=<string>.. A-9
DB_BkSvr=<value>.. A-10
DB_BkTim=<string>.. A-10
DB_BMode=<value>.. A-10
DB_Brows=<value> ... A-11
DB_CBMod=<value>... A-11
DB_ChTim=<value> .. A-12
DB_CmChe=<value> ... A-12
DB_CTimO=<value>... A-12
DB_DaiFm=<value> .. A-13
DB_DaoFm=<value>... A-14
DB_DbDir=<string>.. A-14
DB_DbFil=<string> ... A-15
DB_DifCo=<value> ... A-16
DB_DtClt=<value>... A-16
DB_ERMRv=<string> ... A-16
DB_ERMSv=<string>.. A-17
DB_EtrPt=<value>... A-17
DB_ExtNp=<value> .. A-17
DB_FBkTm=<string> .. A-18
DB_FBkTv=<string> ... A-18
DB_FoDir=<string>... A-19
DB_ForcS=<value> .. A-19
DB_ForUX=<value>.. A-20
DB_FoSub=<value> ... A-20
DB_FoTyp=<value>... A-21
DB_GcChk=<value>.. A-21
DB_GcMxw=<value> .. A-22
DB_GcWtm=<value> .. A-22
DB_IFMem=<value> ... A-23
DB_IDCap=<value> .. A-23

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. xvi

DB_IOSvr=<value>.. A-24
DB_ITimO=<value> .. A-25
DB_JnFil=<string>..A-25
DB_JnlSz=<value>.. A-25
DB_LbDir=<string> ...A-26
DB_LCode=<value>... A-26
DB_LetPT=<value>.. A-27
DB_LetRP=<value>.. A-27
DB_LTimO=<value> ... A-27
DB_MaxCo=<value>.. A-28
DB_NBufs=<value> ... A-29
DB_NetEc=<value> ... A-30
DB_NJnlB=<value>.. A-30
DB_Order=<string> ...A-30
DB_PasWd=<string>..A-31
DB_PtNum=<value>.. A-31
DB_ResWd=<value> .. A-31
DB_RmPad=<value>.. A-32
DB_RTime=<string>..A-32
DB_ScaSz=<value>... A-33
DB_SMode=<value> .. A-33
DB_SQLSt=<value> ... A-34
DB_SPDir=<string> ...A-35
DB_SPInc=<string>..A-35
DB_SPLog=<string> ..A-36
DB_StrOP=<value>.. A-36
DB_StrSz=<value>.. A-37
DB_StSvr=<value>.. A-37
DB_SvAdr=<string>...A-37
DB_TmiFm=<string>...A-38
DB_TmoFm=<string> ... A-38
DB_TpFil=<string> ..A-39
DB_Turbo=<value>.. A-39
DB_UMode=<value> ... A-39

 1Contents

©Copyright 1995-2003 CASEMaker Inc. xvii

DB_UsrBb=<string> .. A-40
DB_UsrDb=<string>.. A-40
DB_UsrFo=<string>... A-41
DB_UsrId=<string>.. A-41
DD_CTimO=<value> .. A-41
DD_DDBMd=<value> .. A-42
DD_GTItv=<string>.. A-42
DD_GTSVR=<value>.. A-42
DD_LTimO=<value> .. A-43
DM_DifEn=<value> .. A-43
LG_NPFun=<string>... A-44
LG_Path=<string> .. A-44
LG_PTFun=<string>.. A-44
LG_Time=<value>.. A-45
LG_Trace=<value>... A-45
RP_BTime=<value>.. A-46
RP_Clear=<value> .. A-46
RP_LgDir=<string> .. A-46
RP_Iterv=<value> ... A-47
RP_Primy=<string> .. A-47
RP_PtNum=<value> .. A-47
RP_Reset=<value>.. A-48
RP_ReTry=<value>... A-48
RP_SlAdr=<string>... A-49
User-defined filename=<physical filename> <pages> A-49

B System Catalog Reference B-1
B.1 The System Catalog.............................. B-1
B.2 DBMaker System Catalog Tables B-2

SYSAUTHCOL..B-3
SYSAUTHEXE..B-4
SYSAUTHGROUP...B-4
SYSAUTHMEMBER ...B-5
SYSAUTHTABLE ..B-5

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. xviii

SYSAUTHUSER..B-7
SYSCMDINFO..B-7
SYSCOLUMN..B-8
SYSCONINFO ..B-9
SYSDBLINK ..B-9
SYSDOMAIN ... B-10
SYSFILE... B-10
SYSFILEOBJ... B-11
SYSFOREIGNKEY .. B-11
SYSGLBTRANX .. B-12
SYSINDEX.. B-13
SYSINFO ... B-14
SYSLOCK .. B-21
SYSOPENLINK... B-22
SYSPENDTRANX .. B-23
SYSPROCINFO ... B-23
SYSPROCPARAM ... B-23
SYSPROJECT ... B-24
SYSPUBLISH.. B-25
SYSSUBSCRIBE... B-25
SYSSYNONYM.. B-26
SYSTABLE .. B-26
SYSTABLESPACE .. B-28
SYSTEXTINDEX.. B-29
SYSTRIGGER .. B-29
SYSTRPDEST... B-30
SYSTRPJOB .. B-31
SYSTRPPOS.. B-31
SYSTXNINFO.. B-31
SYSUSER ... B-32
SYSUSERFUNC... B-33
SYSVIEWDATA .. B-34
SYSWAIT ... B-34

 1Contents

©Copyright 1995-2003 CASEMaker Inc. xix

C System Limitations C-1
C.1 Naming Limitations C-1
C.2 Storage Limitations C-3
C.3 Processing Limitations C-4

Index ...1

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. xx

1Introduction 1

©1995-2003 CASEMaker Inc. 1-1

1 Introduction

Welcome to the DBMaker Database Administrator’s Guide. DBMaker is a powerful
and flexible SQL Database Management System (DBMS) that supports an interactive

Structured Query Language (SQL), a Microsoft Open Database Connectivity
(ODBC) compatible interface, and Embedded SQL for C (ESQL/C). DBMaker also
supports a Java Database Connectivity (JDBC) compliant interface and DBMaker

COBOL interface (DCI). The unique open architecture and native ODBC interface
give the user freedom to build custom applications using a wide variety of
programming tools, or query a database using existing ODBC, JDBC, or DCI

compliant applications.

DBMaker is easily scalable from personal single-user databases to distributed
enterprise-wide databases. Regardless of the configuration chosen for a database, the

advanced security, integrity, and reliability features of DBMaker ensure the safety of
critical data. Extensive cross-platform support helps leverage existing hardware, and
allows for expansion and upgrading to more powerful hardware as needs grow.

DBMaker provides excellent multimedia-handling capabilities, allowing all types of
multimedia data to be stored, searched, retrieved, and manipulated. Binary Large
Objects (BLOBs) ensure the integrity of multimedia data by taking full advantage of

the advanced security and crash recovery mechanisms included in DBMaker. File
Objects (FOs) allow multimedia data to be managed while maintaining the capability
to edit individual files in a source application.

This book is intended for database administrators who are not familiar with either the
concepts or principles of the DBMaker DBMS or the syntax and grammar of the

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 1-2

DBMaker SQL query language. However, you should have a general working
knowledge of computers, and should be comfortable using the operating system you

are using to run DBMaker. Information on the operating system is beyond the scope
of this manual; consult your operating system documentation if any problems in this
area are encountered.

This book contains general information on the concepts and principles a database
administrator should understand when using the DBMaker DBMS. It gives an
overview of how to use the DBMaker SQL commands necessary to create, maintain,

and optimize a database. To present the information more clearly, examples and
illustrations are provided throughout the manual.

The implementation of a DBMS can greatly affect the performance of database

operations. It requires many decisions to optimize and tune database performance,
such as where to store data, how to access data, whether to have an index, and how to
protect the data. This manual provides background to enable clear understanding of

the effects of the choices database administrators or application developers make. SQL
commands will be used to illustrate most of the functions that DBMaker supports,
and references to other database administration tools are provided.

Most of the concepts, commands, and examples in this book are presented using
dmSQL, the command-line tool provided with DBMaker. In a few cases some
database administration functions can only be performed using one of the other

DBMaker application tools or utilities. For more information on how to use the
application tools and utilities provided with DBMaker, refer to section 1.1 Other
Sources of Information.

1Introduction 1

©1995-2003 CASEMaker Inc. 1-3

1.1 Other Sources of Information

DBMaker provides many other user's guides and reference manuals in addition to this
reference.

For more information on a particular subject, consult one of these books:

 For more information on the SQL language implemented by DBMaker, refer to
the “SQL Command and Function Reference”.

 For more information on the ESQL/C language implemented by DBMaker,

refer to the “ESQL/C Programmer’s Guide”.

 For more information on using dmSQL, refer to the “dmSQL User's Guide”.

 For more information on error and warning messages, refer to the “Error and
Message Reference”.

 For more information on configuring and managing databases using
DBMaker’s J Tools, refer to the “JDBA Tool User’s Guide”, “JServer Manager
User’s Guide”, and “JConfiguration Tool Reference”.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 1-4

1.2 Technical Support

CASEMaker provides thirty days of complimentary email and phone support during
the evaluation period. When software is registered an additional thirty days of support
will be included. Thus, extending the total support period for software to sixty days.

However, CASEMaker will continue to provide email support for any bugs reported
after the complimentary support or registered support has expired (free of charges).

Additional support is available beyond the sixty days for most products and may be

purchased for twenty percent of the retail price of the product. Please contact
sales@casemaker.com for more details and prices.

CASEMaker support contact information for your area (by snail mail, phone, or

email) can be located at: www.casemaker.com/support. It is recommended that the
current database of FAQ’s be searched before contacting CASEMaker support staff.

Please have the following information available when phoning support for a

troubleshooting enquiry or include the information with a snail mail or email enquiry:

 Product name and version number

 Registration number

 Registered customer name and address

 Supplier/distributor where product was purchased

 Platform and computer system configuration

 Specific action(s) performed before error(s) occurred

 Error message and number, if any

 Any additional information deemed pertinent

mailto:sales@casemaker.com
http://www.casemaker.com/support

1Introduction 1

©1995-2003 CASEMaker Inc. 1-5

1.3 Document Conventions

This book uses a standard set of typographical conventions for clarity and ease of use.
The NOTE, Procedure, Example, and CommandLine conventions also have a second
setting used with indentation.

CONVENTION DESCRIPTION
Italics

Italics indicate placeholders for information that must be
supplied, such as user and table names. The word in italics should
not be typed, but is replaced by the actual name. Italics also
introduce new words, and are occasionally used for emphasis in
text.

Boldface

Boldface indicates filenames, database names, table names,
column names, user names, and other database schema objects. It
is also used to emphasize menu commands in procedural steps.

KEYWORDS

All keywords used by the SQL language appear in uppercase when
used in normal paragraph text.

SMALL CAPS

Small capital letters indicate keys on the keyboard. A plus sign (+)
between two key names indicates to hold down the first key while
pressing the second. A comma (,) between two key names
indicates to release the first key before pressing the second key.

NOTE Contains important information.
Â Procedure

Indicates that procedural steps or sequential items will follow.
Many tasks are described using this format to provide a logical
sequence of steps for the user to follow

Â Example

Examples are given to clarify descriptions, and commonly include
text, as it will appear on the screen. Other forms of this
convention include Prototype and Syntax.

CommandLine

Indicates text, as it should appear on a text-delimited screen. This
format is commonly used to show input and output for dmSQL
commands or the content in the dmconfig.ini file

Table 1-1 Document Conventions

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 1-6

1Overview 2

©1995-2003 CASEMaker Inc. 2-1

2 Overview

The physical organization of data across the files that make up a database can become
quite complex. A DBMS, such as DBMaker, isolates a view of the data from the

implementation of the database on a computer. The database is viewed as a collection
of two-dimensional tables that contain data values in rows and columns. These tables
are easy to visualize and flexible for data modeling.

DBMaker provides a number of ways to retrieve the data from tables. The interactive
dmSQL line command tool is useful for daily transaction processing or ad-hoc
queries, and the DBMaker application program interface (API) is ideally suited for

developing applications quickly and easily. DBMaker also comes with easy-to-use
graphical tools that are consistent across platforms.

2.1 Features

As an SQL database management system, DBMaker has all of the features
traditionally found in a relational database management system. DBMaker is also

enhanced with many powerful and advanced features. These enhanced features not
only increase performance, but also provide DBMaker with capabilities not normally
found in traditional database management systems, especially in the area of

multimedia support.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 2-2

Multimedia Support

Powerful multimedia management capabilities built into the database engine allow for
efficient storage and manipulation of large amounts of multimedia data including text,
graphics, audio, video, and animations. These multimedia management capabilities

also provide a great deal of flexibility, allowing multimedia data to be stored in
different ways depending on the needs of the user.

Multimedia features include:

 Binary Large OBjects (BLOBs) and File Objects (FOs).

 Multiple BLOB and FO columns in a table.

 File Objects can be edited with existing multimedia tools.

 Built-in full-text search engine.

Multimedia data can be stored directly in the database as Binary Large Objects
(BLOBs). This data is protected by the full spectrum of security, reliability, and

integrity features provided for conventional data types. In addition, multimedia data
can be stored as file objects, allowing third-party multimedia tools full access to
multimedia data while keeping it under database control.

JDBC Support

DBMaker supports features of JDBC 3.0 as well as Java Transaction API (JTA)
functions. JDBC JTA allows for connections to popular Java AP servers such as BEA
WebLogic .

To learn about implementing JDBC and JDBA, refer to the product documentation.
Information about the JDBC specification is available at:
http://java.sun.com/products/jdbc/.

Information about the JTA specification is available at;
http://java.sun.com/products/jta/.

http://java.sun.com/products/jdbc/
http://java.sun.com/products/jta/

1Overview 2

©1995-2003 CASEMaker Inc. 2-3

Microsoft Transaction Server (MTS) Support

MTS (Microsoft Transaction Server) is an integral part of Windows NT, and is
installed by default as part of the operating system in Windows2000. MTS evolved as
a Transaction Processing system to provide on Windows NT the same kinds of

features available on other platforms like CICS, Tuxedo, etc. These are purely
designed for creating stable environments for data sources.

DBMaker supports MTS so users can perform transactional operations.

The following are required to use DBMaker with MTS:

 DBMaker requires Microsoft Data Access Components (MDAC) version 2.6 or
higher to run with MTS. The latest version of MDAC can be downloaded from

http://www.microsoft.com/data.

 If using MDAC 2.5, add the DM_DifEn = 0 option in the
DM_COMMON_OPTION section of the dmconfig.ini file.

 In the dmconfig.ini file, set DB_DifCo = 1 (default setting) in the database
sections that will run with MTS.

Open Interface

Using the native ODBC 3.0 compatible interface and ANSI SQL-99 support, high-

performance applications can quickly be created. Applications can be built using a
wide variety of popular development tools, including Visual C++, Visual Basic,
Delphi, and AcuBench. DBMaker allows developers and administrators to use the

tools they already have, and does not restrict them to a proprietary development
environment.

Open interface features include:

 ANSI-92 entry-level compliance

 ODBC 3.0 support

 ESQL/C preprocessor

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 2-4

The included ESQL/C preprocessor simplifies the development process for programs
written using a traditional C development environment. A database application can be

written using the power of the high-level Embedded SQL query language, and the
DBMaker preprocessor will automatically translate it to the appropriate ODBC
function calls.

Data Integrity

DBMaker also provides a full range of traditional data integrity features. Primary and
foreign keys ensure data integrity, with full support for referential actions. User-
defined data types, together with domain, column, and table constraints ensure only

valid values can be entered in each field.

Data integrity features include:

 Integrity checking of primary and foreign keys

 Full support for referential actions

 Table and column constraints

 User-defined data types

 Default column values

Data Reliability

Data will always be safe thanks to advanced data protection facilities, such as
automatic crash recovery, database consistency checking, and automatic backups.

These features ensure data consistency and safety in the event of operating system or
disk failures.

Data reliability features include:

 Online transaction processing

 Online full and incremental backup

 Automatic crash recovery

1Overview 2

©1995-2003 CASEMaker Inc. 2-5

 Automatic incremental backup

 Automatic statistic updates

 Database consistency checking

 Multiple journal files

 Optional BLOB backup

Storage Management

Modern storage management facilities provide flexible data storage with simple
management and configuration. There is no practical limit on the number of rows in a
table, or on the number of tables in a database. A table can even be spread over

multiple disks! DBMaker also allows table schema to be altered online, resulting in the
ability to develop applications that can dynamically adjust to user needs.

Storage management features include:

 Autoextend and regular tablespaces

 Raw device support on UNIX

 Maximum database size of 32TB

 No practical limit on the number of tables in a database

 No practical limit on the number of records in a table

 Online table schema redefinition

DBMaker can dynamically extend the storage space of a database, up to the limits of
available disk space. Storage space may also be fixed and manually adjusted. On UNIX
platforms, DBMaker supports raw devices, which allows the file system to be bypassed

and data to be written directly to the raw device for maximum performance.

Security Management

The centralized and multi-user nature of a DBMS requires that some form of security
control be in place, both to prevent unauthorized access and to limit access for

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 2-6

authorized users. User- and group-level authority levels control that accesses a
database. Privilege management on tables or individual columns controls what they

access.

Security management features include:

 User- and group-level security

 Nested groups

 Privilege management on both tables and individual columns

 Privilege management on stored commands and stored procedures

 Network encryption

Advanced Language Features

Advanced language features complement traditional database functions. Easily extend
and customize the capabilities of DBMaker using stored commands, stored

procedures, Triggers, and user-defined functions. Business logic can be written directly
into the database engine, centralizing the logic in the database so it is easier to manage
and maintain.

Advanced language features include:

 Built-in functions

 User-defined functions

 Stored commands

 Stored procedures

 Triggers

2.2 Database Modes

The database administrator may start a database in one of several different database

modes. Each mode provides different options for connecting to and accessing a

1Overview 2

©1995-2003 CASEMaker Inc. 2-7

database. This gives the ability to scale a database from a simple single-user system on
one computer to a large multi-user system distributed across several computers.

The database modes available depend on the platform a database server runs on, and
the connection. DBMaker has three different database modes: single-user, multiple-
connection, and client/server.

Single-User Mode

Single-user mode is only available on the UNIX/Linux platforms. This is a simplified
version of DBMaker for non-sharable databases. The main advantages of this mode
are the smaller application size and faster execution speed for most database

operations, since locks, security, and network support are not required for a single user
database.

A limitation of this mode is that since only one connection can be made to the

database at a time, the database cannot run any of the extra servers or daemons, such
as backup server, replication server, or global transaction server. Another limitation is
that the database must be accessed from the host machine, since the database is not

available over the network.

Multiple-Connection Mode

Multiple-connection mode is only available on the Windows platform. One advantage
of this mode is that multiple connections to a database are available, with the full

range of security and reliability features of DBMaker. All connections must access the
database from the host machine, since there is no network support.

A limitation of this mode is that the database does not support any of the extra servers

or daemons, such as backup server, replication server, or global transaction server.

Client/Server Mode

Client/server mode is available on all platforms. This mode permits multiple
connections to a database from any computer connected to the host computer via a

TCP/IP network, and provides the full range of security, reliability, and concurrency

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 2-8

control features of DBMaker. In addition, data sent across the network can be
encrypted for additional security. This mode supports all of the extra servers and

daemons, such as backup server, replication server, and global transaction server.

2.3 DBMaker Interface and Tools

DBMaker comes complete with an application program interface and several tools and
utilities that can be used to manage a database. These tools range from a command-
line based interactive SQL query tool, to a graphical tool for managing multiple

servers. Novice database users will appreciate the simple management features and
graphical tools that are consistent across platforms.

Application Program Interface

The application program interface (API) is a library of low-level routines that operate

directly on the database engine. The API is used when creating software applications
with a general-purpose programming language such as C++ or Visual Basic. DBMaker
provides an ODBC 3.0 compatible interface, and currently supports all core-level

functions and most extended-level functions.

dmSQL Interactive Query Tool

dmSQL is a character-based, interactive interface that utilizes the full power and
functionality of DBMaker directly. Use dmSQL to manipulate a database, perform

ad-hoc queries, and see the result sets immediately. dmSQL is often the only method
of exploiting the full power of a database without having to create programs using a
conventional programming language.

JDBA Tool

JDBA Tool is a graphical, interactive tool used to maintain and monitor a database.
JDBA Tool hides the complexity of the DBMS and query language behind an
intuitive, easy to understand, and convenient interface. This allows casual users the

1Overview 2

©1995-2003 CASEMaker Inc. 2-9

ability to access the database without having to learn the query language, and it allows
advanced users to quickly manage and manipulate the database without the trouble of

entering formal commands using SQL. JDBA Tool also provides statistical data and
information on who is using a database with its monitoring functions.

JServer Manager

JServer Manager is an intuitive graphical tool used to create, start, stop, backup, and

restore databases. JServer Manager provides one central location for creating and
managing all database servers at once.

JConfiguration Tool

JConfiguration Tool is a graphical tool for managing the configuration parameters for

all databases. It provides a simple and direct method for modifying keywords in the
DBMaker configuration files. Each of the configuration parameters is clearly defined
within the user interface, eliminating the need to cross reference the documentation or

memorize the definitions of keywords.

ESQL for C language

ESQL for C language is a graphical, interactive tool used to edit and preprocess
Embedded SQL/C programs. It provides an easy-to-use interface for managing

multiple ESQL/C programs, edit/preprocess them and examine the warnings/errors
during preprocessing by simply clicking each of the error lines in the output window.

2.4 Syntax Diagrams

Syntax diagrams show the syntax for all SQL commands. These diagrams provide
assistance when constructing a statement on the command line. An example syntax

diagram is shown in Figure 2-1.

To use the syntax diagram, simply follow the line from start to finish. Any element of
the command that cannot be bypassed is required. Any elements that can be bypassed

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 2-10

are command options, and provide additional functionality for the command at the
user’s discretion.

ALTER TABLE table_name PRIMARY KEY
column_name

,
()

Figure 2-1 Syntax of the ALTER TABLE Statement

Any words that appear in italics are placeholders for the actual names used in a

database. The actual names should be substituted for these placeholders. In the above
diagram, replace the <table_name> placeholder with the name of a table in the
database. For example, in the tutorial database, replace the <table_name> placeholder

with Customers to execute this command on the Customers table.

Also, note the direction of the arrows. Sometimes it is possible to have a list of items in
a command, which is shown in the syntax diagram as a circular path. Both column

name fields above can include a list of column names, separated by commas, as
indicated by the circular path of the arrows.

1System Architecture

3 System Architecture

3

©1995-2003 CASEMaker Inc. 3-1

This chapter explains the architecture of the two different models of DBMaker in
detail. We will first look at the DBMaker process and the Database Communication
and Control Area (DCCA), which store all necessary information for each started
database, and then go through the architecture of both models.

3.1 The DBMaker Process

A DBMaker process is a process that handles storage and retrieval of data according to
user commands and other database functions. A DBMaker process consists of several

layers as shown in Figure 3-1.

In this figure, we can see that the user applications communicate with DBMaker
through an Application Program Interface (API). The API will pass user commands

(SQL commands) or function calls to the SQL Engine, which is responsible for
analyzing the SQL commands and translating them into sequences of function calls
that are acceptable to the Database Engine. The SQL Engine passes these calls to the

Database Engine, which executes these function calls to store data in tables or retrieve
data from tables.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 3-2

API

SQL Engine

Application

DB Engine

Figure 3-1: A DBMaker Process

The roles of the SQL Engine and the Database Engine are different. Basically, the

SQL Engine handles SQL parsing and query optimization, while the Database Engine
handles space/buffer management, concurrency control, crash recovery, and so on. All
modules cooperate to maintain data consistency throughout the entire database. Most

performance tuning parameters are related to the Database Engine.

The API and SQL Engines are the same in the single-user and client/server models.
However, the Database Engines in the single-user and client/server models are

different. The single-user model can handle only one user while the client/server
model can handle multiple users.

In the client/server model the application and API are tied together, run on client

machines while the SQL Engine and the Database Engine are tied together, and run
on server machines. In this manner, the API can communicate with the SQL engine
via network protocols.

3.2 Database Communication and
Control Area (DCCA)

When started, DBMaker will first allocate a large block of memory to store database
related information such as buffer pools and various types of control information. This

memory block is called the Database Communication and Control Area (DCCA). It
contains three types of data: page buffers, journal buffers, and the System Control Area
(SCA).

1System Architecture 3

©1995-2003 CASEMaker Inc. 3-3

The DCCA is very important to the operation of DBMaker, especially when run in
client/server mode. In Microsoft Windows and UNIX single-user environments, the

DCCA is allocated from the private heap. In a UNIX client/server environment, the
DCCA must be shared among all DBMaker processes that access the same database,
so it cannot be allocated from the private heap. Instead, a shared memory mechanism,

which is a standard function in UNIX, is used to allocate the DCCA. All DBMaker
processes that run in client/server mode communicate with each other via the DCCA.

The size and the usage of the DCCA are easy to tune in DBMaker. This will affect the

overall performance of DBMaker greatly. The DCCA is described in more detail in
Chapter 17, “Performance Tuning”.

3.3 Architecture of the Single-User
Model

The DBMaker single-user model is a DBMS that supports only one user or
application. It is smaller and faster than other models because it does not need to

handle concurrency control. When one user or application owns a database, the
single-user model of DBMaker is a good choice. Figure 3-2 shows the system
architecture of the DBMaker single-user model.

Since only one user or application can connect to a single-user DBMaker database, the
DCCA is obtained from the private heap and is not sharable. Note that there is no
locking mechanism in the DBMaker single-user model. For the sake of performance,

the DBMaker engine maintains all database data in memory while running, and writes
the modified pages back to disk files, including data files and journal files, at the
proper points in time. The dmconfig.ini file is a text file that defines many parameters

required for DBMaker to configure itself.

 Database Administrator’s Guide1

DCCA (in local memory)

Page Buffers

Journal Buffers

Data Files

Journal Files
System Control

Area

DBMaker
Process

dmConfig.ini

Figure 3-2: System architecture of the DBMaker single-user model

3.4 Architecture of the
Client/Server Model

DBMaker may also run in the client/server model. In this model, there are two
processes involved in an application program, the client application process, and the

database server process. In general, the client process resides in a front-end PC or
workstation and uses API library routines provided by DBMaker to communicate

©1995-2003 CASEMaker Inc. 3-4

1System Architecture 3

©1995-2003 CASEMaker Inc. 3-5

with the server process across a local area network. Note that in a client/server system,
all involved machines including servers and clients can be of different platform types.

In the client/server version of DBMaker, a network management module is necessary
both in the client and server ends. Network managers are responsible for sending data
between the clients and the database servers. The network communications protocol is

important in the client/server model. Currently DBMaker supports only one network
protocol—TCP/IP (Transmission Control Protocol/Internet Protocol). If the
client/server version of DBMaker is run on a system that does not normally support

the TCP/IP protocol, it is necessary to install TCP/IP network software before
running DBMaker. If the client application is run on UNIX, Windows 95, 98, XP,
Windows NT, or Windows 2000, additional TCP/IP software does not need to be

installed since all these operating systems have built-in support for TCP/IP. In
Windows 95, NT, 98, 2000, or XP simply specify TCP/IP as one of the network
protocols and install it on the system. Figure 3-3 shows the system architecture of the

DBMaker client/server model.

On UNIX systems, when a client process connects to a database server, the DBMaker
network server will fork another server process to handle subsequent queries. The

original network server process will continue to wait for connections from other
clients. Windows NT is a multithreaded system. The NT version of the DBMaker
network server (dmserver.exe) is also a multithreaded program.

Therefore, when a client process connects to a server running on NT, the DBMaker
server process will create another thread in its process space to handle the subsequent
queries. The DCCA is allocated from local memory, not shared memory. There is

always only one DBMaker server process for a database in Windows NT. There are
more and more operating systems that support multithreading, DBMaker will use
multithreading over process forking when possible. Current research indicates that

multithreaded programs are more efficient than multi-process programs.

There are three components in the client/server model of DBMaker. These
components are the server program, the client program, and the client library. The

purpose of each of these components follows.

 Database Administrator’s Guide1

Server Program

The name of the DBMaker server program is dmServer. This program includes a
network manager that deals with the network communication, and a database engine
that handles the data access. This program must be started first so that client programs

can connect to the database server.

Client Program

The name of the DBMaker SQL client program is dmsqlc. Use this program to
connect to a database and issue SQL commands for data processing.

©1995-2003 CASEMaker Inc. 3-6

1System Architecture 3

©1995-2003 CASEMaker Inc. 3-7

DCCA (in shared memory)

Journal Files

Client
Processes

server side

client side

Local area network

Client
Processes

Page Buffers

Journal Buffers

Data Files

dmConfig.ini

System Control
Area

DBMaker
Server

Processes

TCP/IP

fork() on connection

machine B

machine A

machine C

Figure 3-3: System architecture of the DBMaker client/server model

Client Library

The name of the DBMaker client library is libdmapic.a in UNIX, or dmapi<version
number>.lib on Microsoft Windows systems. Users who intend to develop their own

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 3-8

client programs must link their programs with the client library. For example,
developers can use various development tools from many vendors to write their front-

end applications. When building the applications, they must link those programs with
the client library so that their custom applications can communicate with the server
program.

1Basic Database Administration

4 Basic Database
Administration

4

©1995-2003 CASEMaker Inc. 4-1

This chapter describes basic database administration, including creating a database,
starting a database, connecting to a database, and shutting down a database. To

perform the operations described in this chapter, database administrators can choose
to use the command-line based dmSQL tool and edit the dmconfig.ini file, or use the
JConfiguration Tool and JServer Manager utility.

The following sections describe configuration parameters and commands that are
essential for basic database administration. The first section outlines the role and
format of the configuration file. Subsequent sections describe the function of specific

settings and how those settings affect database performance after it has been created,
started, and connected to.

4.1 Configuration File -
dmconfig.ini

DBMaker requires many configuration parameters whenever it is run. The DBMaker
engine uses configuration parameters to specify how a database runs. File storage

locations, runtime memory allocation, and network connections are just a few of the
characteristics of a database that are set using configuration parameters. These
parameters are stored as configuration variables in the dmconfig.ini file. A

configuration variable is a keyword set equal to a value (refer to Format later in this

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-2

section). Users can customize the database by setting parameters in the dmconfig.ini
file or the JConfiguration Tool. The JConfiguration Tool simplifies management of

configuration parameters through an easy to use graphical user interface. More
information about JConfiguration Tool may be found in the “JConfiguration Tool
Reference”. Certain parameters (keywords) must be set before database creation, and

others must be set before the database has been started. In addition, certain
configuration parameters should not be changed after database creation or an error
will be returned. The following sections describe how to manage settings by directly

editing the keywords in the configuration file. To reference a complete list of
dmconfig.ini options, see Appendix A at the end of this manual.

dmconfig.ini Location

DBMaker may search three places, for UNIX platforms, for the dmconfig.ini file:

 Current directory

 Directory specified by the DBMAKER environment variable

 The data subdirectory in the home directory for user dbmaker (~dbmaker/data)

DBMaker will search each location sequentially. If the relevant database section is not
found in the dmconfig.ini file of one location, DBMaker will search in the next
location.

However, for Microsoft Windows systems, including Windows 3.1, Windows 95, and
Windows NT, the rule is different. DBMaker will only search for the dmconfig.ini
file in the installed Windows system directory. In a typical Windows installation, this

will be the Windows directory.

When DBMaker requires the value of a configuration parameter for a particular
database, it will scan the above three directories (or the Windows directory on

Microsoft Windows systems) to find a dmconfig.ini which contains a section having
the same section name as the database. Use any text editor to edit this file and add or
modify the parameter values in dmconfig.ini so that DBMaker will use them when it

is running.

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-3

When a database administrator creates a database and no corresponding section can be
found in any dmconfig.ini files, DBMaker will create a new section for the database in

the first dmconfig.ini file found and use default values, or in a new dmconfig.ini file
in the local directory (or the Windows directory on Microsoft Windows systems).

Therefore, when a database administrator starts a database the corresponding section

in dmconfig.ini must be found, or DBMaker will return an error. Although various
sections may be put in different dmconfig.ini files and different dmconfig.ini files put
in different directories, this practice is not recommended. Using one global

dmconfig.ini file will make maintenance easier.

JConfiguration Tool will display all database sections listed in the dmconfig.ini file.
On a UNIX system, JConfiguration tool will display all sections of all dmconfig.ini
files shown in the locations listed above.

dmconfig.ini Format

The dmconfig.ini file is divided into different sections. The first section lists the
definitions of the most commonly used keywords. Subsequent sections begin with a

header name that corresponds to the name of a database. The keywords under each
section define the configuration of that database. Any string following a semi-colon is
considered a comment.

Â Example

A generalized format for a dmconfig.ini file:

[Section_name1]

<key_word1> = <value1>

<key_word2> = <value2> <value3> ; this is a comment

; this is a comment

...

[Section_name2]

<key_word3> = <value4> <value5>

<key_word4> = <value6>

...

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-4

FILE NAME AND SIZE

A database consists of operating system files, and those files are defined in the
dmconfig.ini file using keywords. The <filename> parameter is used in place of the

<value> parameter. The <filename> parameter can be a simple file name like
firstdb.sdb, a relative path like mydb/firstdb.sdb, or a full path like
/disk1/mydb/firstdb.sdb (“/” for UNIX and “\” for Microsoft Windows).

The <np> parameter represents a number of pages. Pages are a unit of disk space
allocated for a given file, and one page is roughly equivalent to four kilobytes.

Â Example

A generalized format for indicating file names and sizes:

[Section_name1]

<key_word1> = <filename>

<key_word2> = <filename> <filename>

<key_word1> = <np>

FILE LOCATIONS

If a database will be accessed by users who may run the DBMaker programs from
different directories, (making the “current directory” different for each user), then all

of the file names in dmconfig.ini should be full paths.

Alternatively, use the DB_DbDir configuration parameter. This keyword indicates the
“home directory” (database directory) of a database:

Â Example 1

The following sets the name of the database directory to db, instead of the default

DB1 as indicated by the section header. Furthermore, other database files are placed in
alternative locations, and on other disks.

 [DB1]

DB_DbDir = /disk1/db

DB_DbFil = mydb1

DB_JnFil = /disk2/usr/DB1.JNL

The resulting physical file names are:

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-5

DB_DbFil -- /disk1/db/mydb1

DB_JnFil -- /disk2/usr/DB1.JNL

DB_BbFil -- /disk1/db/DB1.SBB (using default file name)

Â Example 2

Using the DB_DbFil keyword:

[DB2]

DB_DbFil = mydb2

DB_JnFil = /disk2/usr/DB2.JNL

The resulting physical file names are:

DB_DbFil -- mydb2 (in current directory)

DB_JnFil -- /disk2/usr/DB2.JNL

DB_BbFil -- DB2.SBB (in current directory)

NOTE The rule also applies to user-defined files.

Some Important dmconfig.ini Keywords

The following list introduces some of the most important keywords with a short
description of each. Keywords essential for database creation and startup are given in
subsequent sections of this chapter. A complete list of keywords can be found in

Appendix A. Examples of valid keywords that can appear in dmconfig.ini:

 DB_DbDir=<filename>—specifies the directory that the database files reside in

 DB_DbFil=<filename>—specifies the file name for the system database file as

<filename>

 DB_JnFil=<filename>—specifies the file name for the system journal file as
<filename>

 DB_JnlSz=<np>—specifies the size of the system journal file in <np> (number
of pages)

 <logical_file>=<filename> <np>—specifies that the user-defined file with the

name <logical_file> will be mapped to <filename> with <np> pages. In other
words, <filename> is the physical file name for <logical_file>

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-6

NOTE

 DB_NBufs=<np>—specifies the runtime data buffer size in <np> (number of
pages)

 DB_SvAdr=<IP address> or <host name>—specifies the database server's IP
address or its host name. In a client/server system, this option must be set on the
client side

 DB_PtNum=<port number>—specifies the TCP/IP port number used to
communicate between the database client and database server

 DB_MaxCo=<number>— specifies the the maximum number of connections

that the database can handle.

Each DBMaker database page is 4KB. All pattern matching is case insensitive

except for <logical_file>.

Default Values

Some of the options have default values. Therefore, if a keyword does not appear in
dmconfig.ini, its default value will be used. See Appendix A for a more detailed
description of the keywords and their default values.

Sample dmconfig.ini file

In the following example, two sections are defined in the dmconfig.ini file, one for the
Personnel database and the other for the LIBRARY database.

Â Example

A typical dmconfig.ini file:

[Personnel]

DB_DbFil = /disk1/bin/PERSONNEL.DB

DB_JnFil = /disk1/bin/PERSONNEL.JNL

f1.os = /disk1/bin/PERSONNEL.OS 100

f1.blob = /disk1/bin/PERSONNEL.BLOB 1000

DB_UMode = 1 ; multi-user mode

DB_NBufs = 0 ; auto-configure number of data buffers

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-7

DB_NJnlB = 100 ; number of journal buffers

DB_MaxCo = 100 ; maximum number of connections

DB_JnlSz = 2000 ; size of journal file (pages)

DB_RTime = 0 ; restoration target time

DB_SvAdr = 192.72.116.130 ; server’s IP address

DB_PtNum = 21000 ; and port number

[LIBRARY]

DB_DbFil=/disk3/usr/lib/library.db

DB_JnFil=/disk3/usr/lib/library.jnl

DB_SvAdr = 192.72.116.137

DB_PtNum = 26999

DB_JnlSz = 2000

4.2 Creating a Database

Creating a new database requires some planning. There are a number of configuration
parameters that must be considered before creating a new database, some of which

cannot be changed after the database has been created. Parameters that must be set
during database creation are:

 Database name

 Database security (whether the database has different user authority levels)

 Case sensitivity (determines case sensitivity of certain schema objects within the
database)

 BLOB frame size (the amount of disk space allocated for each BLOB frame)

 Language setting (determines the character set to be used- ASCII, Big5, etc.)

 Language code order (the pattern used to sort character type data)

All other configuration parameters can be changed after the database has been created,
however, it is important to consider other database parameters before database
creation. These parameters include:

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-8

 Tablespace name, location, size, and extensibility

 Number of journal files

 Journal file name, size, and location

 System data and BLOB files names, sizes, and locations

 Default user data and BLOB files names, sizes, and locations

 System temporary file name and location

 User-defined file names, sizes, and locations

 DBMaker log file locations

 Backup directory location

 Table replication log directory location

 Allow for user file objects

 Enable use of raw devices (for UNIX platform only)

 Enable client/server database

 Database IP address and port number (for client/server databases)

 Default user ID and password

 Memory allocation

DBMaker provides an easy to use wizard for creating databases in the JServer Manager

tool. A database administrator can easily create a database by editing the dmconfig.ini
file and using dmSQL. The following subsections outline the process for creating a
database. The subsections also approximately follow the sequence of steps used in the

JServer Manager create database wizard.

Naming the Database

Before naming a database, be aware of the following conventions:

 Database names can be up to 32 characters long

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-9

 Database names can contain any alphanumeric characters, including the
underscore

 Character may be in any position

 Database names are not case-sensitive

 Database names must be unique among all computers that will connect to the

database

Databases may be named from the create database wizard of the JServer Manager, or
using dmSQL.

Â Example

To create a database using dmSQL:

dmSQL> create db <database name>;

dmSQL> terminate db;

dmSQL> quit;

Schema Object Name Case Sensitivity

The case sensitivity of all identifiers in a database can be specified. Under the case
insensitive mode, all identifiers appear in uppercase when defined. Once a database
has been created, this setting cannot be changed. Setting the keyword equal to zero

makes the database case sensitive. The keyword is set equal to one by default, so a
database created without changing this setting will becase insensitive. The following
dmconfig.ini variable specifies database case sensitivity:

DB_IDCap = <value> (default value = 1)

Setting Storage Parameters

There are ten different types of operating system files associated with a single database:
system data and BLOB files, default user data and BLOB files, system journal files, a

system temporary file, user-defined files, DBMaker log files, backup files, and a table
replication log file. When a database is first created, the user may assign names and
locations for each file, or DBMaker can assign default values to them. It is important

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-10

before creating a database to have a good understanding of the general role these files
serve within a database.

Many of the parameters discussed in this section may be modified from the Storage
page of the JConfiguration Tool. To learn more about how to use JConfiguration
Tool to change database parameters see the “JConfiguration Tool Reference”. More

information about managing files is available in section 3.2 File Types.

When creating a database, DBMaker will create the system database file, the journal
file, and the system BLOB file according to the related settings in the dmconfig.ini
file. If no DB_DbFil, DB_JnFil, or DB_BbFil settings are defined, the default setting
will be used.

The default values are:

DB_DbFil -- database name + '.SDB'

DB_JnFil -- database name + '.JNL'

DB_BbFil -- database name + '.SBB'

SPECIFYING THE DATABASE DIRECTORY

The database directory is the default location where files associated with a database are
created and stored. If the defined file is specified with a full path name, DBMaker will

use that name to reference it. If a file name without a full path is used, DBMaker will
search for the database directory. If it is not found, DBMaker will use the file name
and assume it is located in the current directory. The following keyword is used in

dmconfig.ini to specify the database directory:

When creating a new database in Windows, DBMaker assigns a default database
directory of (DBMaker Installation Directory)/bin. You must create a new directory

for the database files to reside in. Multiple databases must not be created in the same
database directory.

DB_DbDir = <pathname> (default: <DBMaker installation directory>/bin/<Database
Name>)

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-11

Â Example

To set the database directory to /disk1/db:

[DB1]

DB_DbDir = /disk1/db

CREATING THE SYSTEM TABLESPACE

A DBMaker database is composed of several logical divisions known as tablespaces.

With tablespaces, the database can be divided into manageable areas. In the logical
view, a tablespace contains one or more tables and indexes. In the physical view, a
tablespace is the physical storage that consists of one or more files. A newly created

database will have two tablespaces, the system tablespace, and the default user
tablespace.

The system tablespace consists of a system data file and a system BLOB file. The system

tablespace is used to record the system catalog for the entire database. The database
administrator may specify the initial location of system data and BLOB files in the
system tablespace.

The system tablespace cannot be dropped (deleted), although other user tablespaces
can be. The initial size of the system database file is 150 pages (600KB). The following
keywords in dmconfig.ini are used to define the system tablespace:

System data file: DB_DbFil = <filename> (default: " <Database Name>.SDB")

System BLOB file: DB_BbFil = <filename> (default: " <Database Name>.SBB")

The <filename> parameter can be a simple file name like firstdb.sdb, a relative path

like mydb/firstdb.sdb, or a full path like /disk1/mydb/firstdb.sdb (“/” for UNIX and
“\” for Microsoft Windows).

Â Example

Entering the following lines into the dmconfig.ini file will result in the system
tablespace files being stored in the /disk1/mydb/ directory.

DB_DbFil = /disk1/mydb/firstdb.sdb

DB_DbFil = /disk1/mydb/firstdb.sbb

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-12

CREATING THE USER DEFAULT TABLESPACE

The default user tablespace initially contains one data file and one BLOB file. User data
is stored in these files. The database administrator may specify the initial size and

location of data and BLOB files in the user default tablespace. Data file size is
specified in pages (1 page = 4K). BLOB file size is specified in frames. Frame size can
be defined by the user and is discussed in “Related Topics:

Specifying the BLOB Frame Size” later in this chapter. By default, the user default
tablespace is autoextend. This means that if the tablespace is full of data, DBMaker
will enlarge the files (and therefore the tablespace) automatically. However, it is more

flexible and efficient to create additional tablespaces to store user tables.

JDBA Tool can help to create new tablespaces and manage existing ones. If data or
BLOB files are added to a tablespace without specifying a full path, the file will be

created in the database directory. The user default tablespace cannot be dropped
(deleted), although other user tablespaces can be. The following keywords in
dmconfig.ini are used to define the default user data and BLOB files:

User data file: DB_UsrDb = <filename> (default: " <Database Name>.DB")

User BLOB file: DB_UsrBb = <filename> (default: " <Database Name>.BB")

The <filename> parameter can be a simple file name like firstdb.sdb, a relative path

like mydb/firstdb.sdb, or a full path like /disk1/mydb/firstdb.sdb (“/” for UNIX and
“\” for Microsoft Windows).

CREATING JOURNAL FILES

Journal files provide a real-time, historical record of all changes made to a database,
and the status of each change. Up to eight journal files can be created. Each journal
file has a fixed size. When all journal files are filled by active transactions (i.e.

transactions are not committed, and their occupied journal blocks cannot be freed),
the current transaction will be aborted because no space is available; this is called
journal full. Make sure that the longest transaction will not use all journal records in

all the journal files. If journal files are created without specifying a full path, then they
will be created in the database directory. Journal files may not be modified after the
database has been started. To reduce the number of journal files, add more journal

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-13

files, or change journal file size, restart the database in new journal mode. More
information about new journal mode is available in section 4.4, “Starting a Database”.

Also, refer to section 5.2, File Types for more information on journal files. The
following keywords in dmconfig.ini are used to define journal file names, locations,
and sizes:

Journal file name(s): DB_JnFil = <filename> (default: "<Database Name>.JNL")

Journal file size (pages) DB_JnlSz = <np> where np=100~524287 pages (default: 1000
pages)

Â Example

The following lines in the dmconfig.ini file tell DBMaker to create two 500 page

journal files on two separate disks in the /mydb directory

DB_JnFil = /disk1/mydb/firstdb1.jnl /disk2/mydb/firstdb2.jnl

DB_JnlSz = <500>

CREATING SYSTEM TEMPORARY FILES

System temporary files are used by DBMaker to store information about the database,
such as sorting results, while the database is active. These files are generated when it is

necessary and deleted when the database is shut down. If temporary files are created
without specifying a full path, then they will be created in the database directory. Up
to eight system temporary files may be specified. Each temporary file may hold up to 2

gigabytes. Temporary files may be located on different disks for improved disk I/O
performance. Users should reserve enough space on disk for an entire temporary file
(2GB), or errors may be returned. System temporary files may be specified either by

using JConfiguration Tool or by editing dmconfig.ini before starting the database.
The following keyword in dmconfig.ini is used to define system temporary file names
and locations:

DB_TpFil = <filename>[<filename>…] (default: "<Database Name>.TMP")

SPECIFYING THE BLOB FRAME SIZE

A BLOB frame is the smallest unit of storage used by BLOB files, which are used to

store large object data such as LONG VARCHAR or LONG VARBINARY. BLOB

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-14

frame size cannot be changed after creating the database. The minimum frame size is
8KB and the maximum frame size is 256KB. Determining the frame size is a trade-off

between disk utilization and performance. If entire BLOBs are frequently retrieved,
adjusting the frame size to contain an entire BLOB will result in better performance
because only one disk access is required. However, there may be large variations in the

size of the BLOB data. If the frame size is large enough to contain the largest BLOB, it
could waste disk space, as other frames that contain smaller BLOBs will contain
unused disk space. Alternatively, if frames are only large enough to contain the

smallest BLOBs, performance will be degraded when fetching larger BLOBS that are
stored in multiple frames. The following keyword in dmconfig.ini is used to specify
BLOB frame size:

DB_BFrSz = <nk>. The < nk > parameter is the frame size in kilobytes. The size of the
system BLOB file is (4 + (number of frames – 1) × nk). Refer to Chapter 7, Large
Object Management for more detailed information.

Â Example

To set the BLOB frame size to 10 KB:

DB_BFrSz = 10

SETTING THE NUMBER OF PAGES TO EXTEND AN AUTOEXTEND
TABLESPACE

When all pages in the data file or BLOB file of an autoextend tablespace are full,

DBMaker will automatically extend the number of pages or frames in the file to allow
the tablespace to grow. This setting tells DBMaker how many pages or frames to add
to the full file in the event that it is filled. If the Database Administrator expects that

the database will grow very quickly, then a higher number should be selected to lessen
the frequency at which the file is appended. This number can be adjusted before
starting a database by using JConfiguration Tool, or by editing the dmconfig.ini file.

The following keyword in dmconfig.ini is used to specify the number of pages/frames
to extend an autoextend tablespace:

DB_ExtNp = <np>, where <np> is the number of pages to extend (default: 20 pages /

frames)

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-15

ENABLING USER FILE OBJECTS

FILE type data can be stored as user file objects or system file objects. User file objects
are external files that are accessed through the machine where the database resides. In

other words, a user file object is only a link to an external file outside the database.
Enabling user file objects allows a FILE type column to link to the external files,
which will be accessed by the database server. It may be disabled and enabled as

needed. Inserted user file objects can be accessed even if the setting is turned off. User
file objects may be enabled through the storage page of the JConfiguration Tool
before starting the database. The keyword value may be modified before starting the

database. Setting the keyword equal to 0 prevents file objects from being inserted.
Setting the keyword equal to 1 allows file objects to be inserted. The following
dmconfig.ini variable toggles file object capability:

DB_UsrFo = <value> (default: 0 / disabled)

CREATING A DIRECTORY FOR SYSTEM FILE OBJECTS

System file objects are created, deleted, and managed by DBMaker. All system file

objects are placed in subdirectories of the system file object directory. Changing the
system file object directory does not change the location where previously inserted
system file objects reside. The system file object name and location may be set from

the storage page of the JConfiguration Tool before starting the database, or during
runtime with JServer Manager or JDBA Tool Run Time settings. The keyword value
may be modified before starting the database. The following dmconfig.ini variable sets

the name and location of system file objects:

DB_FoDir = <pathname> (default: "\<database directory>\fo")

CREATING A DIRECTORY FOR USER-DEFINED FUNCTION DLL
FILES

The database administrator may specify the directory where the dynamic link libraries
(DLL) of user-defined functions (UDF) are placed. UDFs are compiled functions
stored in a dynamic link library (.DLL for Windows operating system, or .so for

UNIX operating system) that the user wants to be able to use in DBMaker. The DLLs
stored in the Directory of User-defined Function DLL files are accessible to DBMaker

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-16

and can be used in SQL statements or ODBC applications. UDFs should be loaded
when the database starts. The following keyword specifies the location of UDF DLL

files:

DB_LbDir = <filename> (default: current working directory)

Raw Devices

The DBMaker physical storage system is very flexible. In a UNIX system, DBMaker

allows users to create a database with UNIX files only, with raw device files only, or
with files from both file systems. In dmconfig.ini, if a file name begins with /dev/,
that file will be treated as a raw device.

I/O operations on raw devices will be faster than on regular UNIX files, so database
administrators are encouraged to use raw devices as database files. To use raw devices
as database files, the system manager must create raw devices before creating any

databases. Please refer to the UNIX system manual for the procedure to create raw
devices.

Furthermore, the file size must exactly match the physical size of the raw device. For

example, a raw device has 100 cylinders on a hard drive. Suppose each cylinder has
1000 blocks and each block is 0.5KB large on that disk.

Therefore the number of pages (<NP>) specified in dmconfig.ini should be:

pages 500,12
4
5.0 blocks 1000 cylinders 100 =××

NOTE

Microsoft Windows and Windows NT do not support raw devices.

Â Example

[RAW1]

DB_DbFil = /dev/rdsk/c2t0d0s2

[RAW2]

DB_DbDir = /dev

FILE1 = rsd2c 1000

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-17

Enabling Client/Server Database

Any database can be started as a single-user database or a multi-user database. Before
creating the database, determine what the primary function of the database is and
which user mode is more suitable. If the database is to be primarily a multi-user

database, configure the database to use an IP address or DNS name that is appropriate
for the network that the DBMaker server will be running on. Also, specify the TCP/IP
port number that the database server will use. The client side database will also use this

information to connect to the database. This setting can be changed any time before
starting the database, but we highly recommend setting these parameters before
database creation to ensure smooth operation. Clients will be unable to connect to an

improperly configured server database. If both settings are disabled, the database will
start in single-user mode. These parameters can be altered from the connections page
of the JConfiguration Tool, or by editing the following dmconfig.ini keywords:

IP address/Server name: DB_SvAdr = <IP_address> or <host name> (default: local
host name or 127.0.0.1)

Port number: DB_PtNum = <port number> (default: 2300, 1024~65535)

Default User and Password

The default user name and password must already exist in the database. These two
keywords are not examined when starting a database, but are checked when
connecting to a database instead.

Â Example

To specify a default user name and password to use when connecting to a database:

DB_UsrId = <user name>

DB_PasWd = <*****>

Changing the Language Code Order

The sort order definition file will affect the result of indexing, sort ordering, predicate,

etc., for CHAR and VARCHAR data. Other data types are not affected.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-18

DBMaker supports different character sets (language codes), such as US-ASCII for
English, BIG5 for traditional Chinese, GBK for simplified Chinese, and JIS for

Japanese. The keyword DB_LCode in dmconfig.ini file specifies which character set
DBMaker will use. For each character set, there may be several sort orders.

In traditional Chinese for example, the sort order may be according to code sequence,

stroke count, or phonetic equivalent. The default sort order for DBMaker is binary
sequence. While creating a new database, the user-defined order definition file
specified by the keyword DB_Order could change the behavior of the sort order. The

language code parameter may also be set from the Create Database page of the
JConfiguration Tool.

SETTING SORT ORDER OF DATABASE

The following example shows how to set the local language and the sort order file
before a new database is created.

Â Example

To set the language type to traditional Chinese, use BIG5:

[MY_DB]

………

DB_LCode =1 ; BIG5 for traditional Chinese

DB_Order = big5_stroke.ord ; order definition file

The keyword DB_Order indicates the user-defined order definition file named
big5_stroke.ord, which should be placed in the shared/codeorder subdirectory of the
DBMaker installation directory. The order definition file is a pure text file, which

affects the sorting result in DBMaker. The keyword is used when the database is
created and then it is recorded in the database and not used. Without this keyword,
while creating the database, the sorting sequence would be in a binary sequence. Once

a definition file has been specified, it must always exist or the database will fail to start.

USER-DEFINED ORDER DEFINITION FILE

The order definition is a user-defined pure text file. The order definition file arranges

the sequence of valid characters. An example of the naming scheme looks like

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-19

codename_ordertype.ord, where codename is the name of language code and ordertype is
the type of ordering e.g. big5_stroke.ord.

Â Example

An order definition file:

 Comment: Write information here.

[BEGIN] // begin to arrange the character sequence

c // ASCII 0x63

0x62 // Character 'b'

a // ASCII 0x61

[SINGLE] // Single-Byte Character Default Order

[DOUBLE] // Double-Byte Character Default Order

0xA440 // one of Chinese characters

0xA441 // one of Chinese characters

0xA442 // one of Chinese characters

All lines before the [BEGIN] keyword are regarded as comments. All words after // or
/* are also comments. After the [BEGIN], each line represents one character and

should occupy the first position of the line followed by at least one space or a new line
of characters. In the above example the character c is less than b and b is less than a.

If the text editor cannot be used to edit some characters, represent them with

hexadecimal. For example, character a can be written as a or its code value 0x61. It is
also very useful for invisible characters.

The creator of the sort order may only be interested in some characters and let others

be sorted by default, i.e. binary. The keywords [SINGLE] and [DOUBLE] can be
used to represent the single character set and double character set, both of which are
not specified in the definition file. If there is not a [SINGLE], the absent single-byte

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-20

characters will come before all characters in the definition file. If the [DOUBLE] is
absent, the absent double-byte characters will come after characters in the definition

file.

DBMaker will ignore all errors found in the definition file. For example, if [BEGIN]
is lost, DBMaker will always use the default sorting order for all characters. If the same

character appears two or more times, only the first one will be processed; other
characters will be ignored. The database administrator should check the sort order
behavior carefully to see if it is correct after creating a database.

In distributed database environments, all databases should use the same sort order
definition file. When copying or moving a database to another machine, do not forget
to copy any existing sort order definition files.

The Data Communications and Control Area

The Data Communications and Control Area (DCCA) is a memory block in which
almost all information and data is placed. For multi-user databases, the DCCA is
allocated from shared memory and is used to do inter-process communications. When

a database starts, it will allocate a DCCA to hold all information about that database.
The DCCA can be divided into three parts—page buffers, journal buffers, and the
system control area.

There are several keywords in dmconfig.ini related to the usage of the DCCA:

 DB_NBufs=<np>—this keyword sets the number of page buffers which
DBMaker will use. The default value is 0 (automatically configure).

 DB_NJnlB=<np>—this keyword sets the number of journal buffers which
DBMaker will use. The default value is 64.

 DB_ScaSz=<np>—this keyword will set the number of pages in the system

control area. The default value is 200.

 DB_MaxCo=<number>— specifies the maximum number of concurrent
transactions that the database can handle. DB_MaxCo is also used for

formatting the journal file when the database is created or started with a new
journal.

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-21

The size of the DCCA can be estimated by adding the size of the page buffers, the
journal buffers, and the system control area. When the specified size of the DCCA is

not large enough, DBMaker will automatically allocate the minimum necessary space
to hold the information required to the DCCA instead of the default size used in the
calculation above.

The size of the DCCA cannot exceed the allowable shared memory size of the system
in a multi-user environment in UNIX, because in such a case the DCCA is allocated
from shared memory. Users can refer to their UNIX manuals for instructions on how

to increase the size of shared memory, which generally requires a rebuild of the kernel.
DBMaker will run more smoothly with more buffers and a larger system control area.

The relationship between the DCCA, page buffers, journal buffers, and the system

control area is explained in more detail in Chapter 17, “Performance Tuning”.

DCCA parameters may also be set from the Cache and Control page of the
JConfiguration Tool. For details, refer to the JConfiguration Tool Reference.

4.3 Starting a Database

The purpose of starting a database is to allocate the required resources from the

operating system, initialize them, and wait for users to connect. The settings of certain
configuration parameters must be considered before starting a database. These
parameters include:

 Database startup mode

 Enable client/server database

 Database IP address and port number (for client/server databases)

 Default user ID and password

 Memory allocation

 Method for reporting errors

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-22

A database may be started using dmSQL or JServer Manager. For more information
on starting a database using dmSQL, refer to the following sections. To find out how

to use JServer Manager to start a database, refer to the “JServer Manager User’s Guide”.

Single-User

A user must start a single-user database every time they want to connect, and
terminate the database when they finish using it.

Â Example :

To start a single-user database using dmSQL:

dmSQL> START DB <database name> <user name> <password>;

.

< do DML here >

.

dmSQL> TERMINATE DB;

NOTE Only users with DBA privilege can start a database. For information about

database privileges, refer to Chapter 9, “Security Management”. If a database is

started in single-user mode, only one user can access the database at a time.

Client/Server

The DBA must start the client/server database on the server machine so that all clients

on remote machines (or on the same machine) can connect to the server database via
the network. Two configuration variables must be set on the server before the database
is started.

Starting a client/server database is a little more complicated than starting a single-user
database. First, we need to know the server machine's IP address. The only ID to
distinguish each machine on a network is the IP address. The dmconfig.ini keyword

DB_SvAdr specifies the server's IP address.

The second item is the port number. The server program will bind to a given port
number, specified by DB_PtNum in dmconfig.ini, to wait for connections. All client

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-23

programs must connect to that port number in order to communicate with the
database server.

Â Example 1

To specify the Server IP address and the Server and Client port numbers:

DB_SvAdr = <server IP address> (on client side)

DB_PtNum = <port number> (on both server and client sides)

Â Example 2

To start a client/server database on the server machine using dmServer:

UNIX> dmserver <database name>

Â Example 3

Enter the user name and password. dmServer will start the database and wait for

clients to connect:

UNIX> dmserver [-f] [-t port_number] [-u username [-p password]]

 database_name

Description of Unix switches:

 f — Runs the server program in foreground mode. dmServer normally runs in
background mode.

 t — Specifies the port number to use. This port number will be used rather
than the port number defined in dmconfig.ini.

 u — Specifies the login user name.

 p — Specifies the password for the given user name.

If a username and password are not specified on the command line, dmServer will
search for the DB_UsrId and DB_PasWd in dmconfig.ini. If not found, dmServer

will prompt users to enter a username and password.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-24

Start Mode

Specify the start mode of a database by using the DB_SMode keyword in
dmconfig.ini. The DB_SMode keyword may have six values, corresponding to six
start-up modes:

 1 — Normal start starts up a system normally. If the database crashed in the last
session, DBMaker will perform crash recovery automatically to bring the
database to a consistent and stable state.

 2 — New Journal. The database should be set to start in new journal mode if
new journal file names and/or locations have been set in the dmconfig.ini file.
New journal file names and locations may also be specified on the Storage page

of the JConfiguration Tool. All old records will be overwritten if the previous
journal file names are kept. This setting must be selected if the user wants to
change the journal file size, add more journal files, or change the journal file

name. It is recommended to do an incremental or full backup before selecting
this option.

 3 — Restore Backup Database uses the backed up database files (including the

journal file) to start the database. DBMaker will use the incremental backup
files to roll over the operations up to the point in time specified by DB_RTime.
If no value is specified or the date specified is later than the time of the last

incremental backup, DB_RTime will revert to its default value. Refer to
Chapter 14 Database Recovery, Backup, and Restoration for more detailed
information on rollover.

 4 — Source for Target Database is used for database replication. Starting up a
system in this mode makes it a primary (source) database. For more information
on database replication, refer to Chapter 16, Data Replication.

 5 — Target of Database Replication is used for database replication. Starting up
a system in this mode makes it a slave database. For more information on
database replication, refer to Chapter 16, Data Replication.

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-25

 6 — Database is Read Only starts up a system normally, but the database is
read-only or only provides read privilege to all users. Starting a primary database

in read-only mode prohibits users from modifying it.

Start mode may also be specified on the Start Database page in JConfiguration Tool
or the Start Database Advanced Settings window in JServer Manager.

Forced Startup

When attempting to start a damaged database, it is possible that an error message will
always be returned. The only solution is to use “Forced Startup” provided by
DBMaker. Set the configuration variable DB_ForcS to one and DBMaker will force

the database to start up. Refer to Chapter 14, Database Recovery, Backup and
Restoration for more detailed information.

E-mail Error Report System

Typically all error messages are stored in the error.log file. Unless the database

administrator consistently checks the error.log file, certain database errors may pass
unnoticed. DBMaker provides an e-mail error report system to ensure that database
administrators are made aware of errors in the system.

The error report system may be activated either by setting two configuration file
keywords, with the JConfiguration Tool, or during database startup with the JServer
Manager. The keywords that govern the behavior of the e-mail report system are

DB_ERMRv and DB_ERMSv. Use DB_ERMRv to specify the recipient addresses
for error report e-mail, and use DB_ERMSv to set the address of an SMTP server to
route e-mail through. For more information on setting the e-mail error report system

with JConfiguration Tool or JServer Manager, refer to the JConfiguration Tool
Reference and the JServer Manger User’s Guide, respectively.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-26

4.4 Connecting to a Database

This section discusses how to connect to a running client/server database. A user must
first connect to a database before performing DML operations. After disconnecting, a
client/server database is still active. Users can continue to make connections until the

database is shut down.

Certain parameters exist for client/server connections, including port number, server
address, connection time-out interval, and lock time-out interval. Connection

parameters are set by changing keyword values in the dmconfig.ini file or by using the
JConfiguration Tool.

A single-user database only allows a single user connection, every time a user is going

to use the database they must start it, they do not need to make a connection. See
“Starting a Database” for more information.

Client/Server Database

The DB_SvAdr and DB_PtNum keywords must be set in the dmconfig.ini file. If the

DB_UsrId and DB_PasWd keywords are defined in dmconfig.ini, the <username>
and <password> options in the CONNECT command can be ignored.

Â Example

To connect to and disconnect from a client/server database with dmsqlc:

dmSQL> CONNECT TO <database name> <username> <password>;

.

< do DML here >

.

dmSQL> DISCONNECT;

dmSQL> QUIT;

Connection Time-Out

In a client/server model database, sometimes a client cannot connect to the server

because the server machine is powered off or the IP address of the server machine is

1Basic Database Administration 4

©1995-2003 CASEMaker Inc. 4-27

wrong. In these cases, users must wait for the connection to be established. To set the
connection time-out value, users can set the DB_CTimO parameter (in seconds). The

default value for this keyword is 5 seconds.

Lock Time-Out

Locks are required for concurrency control between multiple transactions on the same
database objects. For more information on transactions and concurrency control, refer

to Chapter 9, Concurrency Control. When connecting to a database a lock time-out
keyword, DB_LTimO, should be defined in the dmconfig.ini file to indicate how
long (in seconds) a user will wait for a lock that cannot be acquired.

For example, if DB_LTimO=10, DBMaker will return a “lock time-out” error if the
user waits for a lock for more than 10 seconds. DB_LTimO can be set to zero
indicating that user does not want to wait at all. Setting DB_LTimO to -1 will turn

off this feature. In this case, a user will wait for a lock until the lock is released. Each
user can have a DB_LTimO value.

4.5 Shutting down a Database

A database should be shut down after all operations are finished. DBMaker will free all
resources, such as the DCCA, for the operating system. If there are still active

transactions in the database engine, DBMaker will abort them.

However, if there are still active connections to the database engine, DBMaker will
shut down the database without killing the processes for those connections. In this

case, the database administrator should manually kill the processes; otherwise, the
error message "Cannot lock file transaction rollback" will occur when starting the
database the next time.

Therefore, database administrators (DBA users) should ensure that all users are logged
off before shutting down the database. To shut down a database, a DBA has to
connect first and then issue the proper command. Only a DBA has the privilege to

shut down a database.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 4-28

Â Example

To shut down single-user or client/server databases, use dmSQL:

dmSQL> CONNECT TO <database name> <DBA username> <password>;

dmSQL> TERMINATE DB;

dmSQL> QUIT;

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-1

5 Storage Architecture

This chapter introduces the storage architecture of DBMaker. The storage architecture
of DBMaker includes the logical level and the physical level.

The logical level is the view that is presented to users, and organizes data in the
database in a way which is easy to understand. The physical level consists of operating
system files which correspond to information in the tablespaces, but which are

managed by DBMaker and hidden from the user.

This chapter also explains how to control the storage allocation of a database by using
tablespaces and files.

5.1 Architecture

A DBMaker database is composed of one or more logical divisions known as

tablespaces. Tablespaces are the primary logical storage structure in DBMaker. In the
logical view, a tablespace contains one or more tables and indexes (see Figure 5-1). In
the physical view, a tablespace is the logical storage that consists of one or more

operating system files (see Figure 5-2).

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 5-2

Database

Table 2 Table 3

Tablespace 2

Index 2

Table 1

Tablespace 1

Index 1
Journal
Space

Figure 5-1: DBMaker database storage components in the logical view

Database

File 1

File 2

File 3
File 4

Tablespace 1 Tablespace 2

Hard Disk 1 Hard Disk 2

Journal File

Figure 5-2: DBMaker database storage components in the physical view

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-3

5.2 File Types

Ten different operating system file types are used in DBMaker to store different
aspects of a database: system data and system BLOB files, user data and user BLOB
files, system journal files, a system temporary file, user-defined files, DBMaker log

files, backup files, and a table replication log file. The system data file, the system
BLOB file, user data files, and user BLOB files are of primary concern regarding
database storage architecture and tablespaces. Journal files play an important role in

storing records of transactions performed on the database, and are vital to database
backup and recovery.

To increase database performance, DBMaker places data into two different types of

files—data files and Binary Large Object (BLOB) files. BLOB data consists of large
data objects in the form of image, voice, or large text, which cannot be packed into a
page. DBMaker stores the BLOB data in BLOB files and stores the data rows and

index keys in the data files. In order to achieve high performance, DBMaker manages
these two file types in different ways.

User Data Files

Data files are comprised of pages, while BLOB files are comprised of frames. The

maximum size of both data and BLOB files is 2GB. However, there are two major
differences between frames and pages:

 The size of a page is fixed at 4KB, but a user can customize the size of a frame.

 A page can contain more than one tuple, but a frame only contains a single
BLOB data item.

A data page, 4096 bytes, is the smallest unit of storage used by data files. The data

page format is similar regardless of whether the data page stores table or index data. A
data page contains four sections: the page header, row data, free space, and the row
directory.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 5-4

Page Header

Row Data

Free Space

Row Directory

Figure 5-3: Format of a data page

The page header contains general page information for the DBMaker system. The row

data area contains the actual table or index data that is displayed as rows and columns
when looking in a table or index, and the row directory contains information about
the rows in the page. Free space is the available space on that page that has not yet

been used to store data.

User BLOB Files

A BLOB frame is the smallest unit of storage used by BLOB files. The size of the
BLOB frame can only be set to a value other than the default before creating a

database. The minimum frame size is 8KB and the maximum frame size is 256KB. A
BLOB frame contains three sections: the frame header, BLOB data, and free space.
For more information about BLOB files, refer to Chapter 7, Large Object
Management.

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-5

Frame Header

BLOB Data

Free Space

Figure 6-4: Format of a frame.

Like the page header, the frame header contains general frame information for the
DBMaker system. The BLOB data area contains the BLOB data, and each frame can
only contain a single BLOB item. However, BLOB data that is larger than the frame

size can be spread over several frames. Free space is the available space on that page
that has not been used to store BLOB data.

Journal Files

DBMaker's journal is composed of one or several physical journal files. Every journal

file is a fixed-size file, and all journal files are the same size. Journal file size is
determined in pages (4096 bytes per page) via the configuration file. Internally, a
journal file is composed of blocks, where each block is 512 bytes. Every action that

causes a change in the database system will have a journal record to record it. Journal
records are the logical elements in the journal, and several journal records may be
packed into a journal block or a single journal record may span several blocks. A

journal record that is owned by an active transaction cannot be reused.

All journal files form a ring of journal records; journal records are written to sequential
journal blocks from the beginning of the file to the end. If the database has been

configured to have more than one journal file, DBMaker automatically switches to a
new journal file when the current file fills. Otherwise, journal records will be written
over journal blocks at the beginning of the journal file. When all journal files are filled

by active transactions, the current transaction will be aborted because no blocks are
available; this is called journal full.

 Database Administrator’s Guide1

In addition to journal records, a journal file contains some blocks to record the journal
status, called journal status blocks. These are used when recovering or restoring the

database. Recovery and restoration will be described in later sections.

DBMaker maintains journal block buffers in memory to speed up file access. Before
the actual modified data is written to disk, the journal record is written to disk using

the Write-Ahead-Log (WAL) protocol. When the journal buffer is full or a transaction
is committed, the buffer will be flushed to the journal files in accordance with the
WAL protocol.

JOURNAL PARAMETERS IN DMCONFIG.INI

Several journal file parameters can be set to enhance database performance.

 DB_JnFil—Specifies the names of journal files. One to eight journal file names

can be specified. A comma or a space separates every journal file name.

Â Example

The database will have seven journal files specified on different drives to enhance
performance:

DB_JnFil=myDb.jn1, myDb.jn2, myDb.jn3, /disk1/usr/myDb.jn4,

 myDb.jn5, /disk2/usr/myDb.jn6, myDb.jn7

 DB_JnlSz—Specifies the size of a journal file as a multiple of journal pages.
(One journal page is 4096 bytes.) The total journal file size is:

 (number of journal files × journal file size) pages

Decide on a reasonable size for journal files when creating a database. As the previous
section stated, when all journal files are filled, the current transaction might be aborted

because of a full journal. Therefore, a small journal file size may cause a long
transaction to be aborted by the system. If database operations involve long
transactions, choose a larger journal file size or more journal files.

 DB_NJnlB—Specifies the size of a journal buffer as a multiple of journal pages.
(One journal page is 4096 bytes.)

©1995-2003 CASEMaker Inc. 5-6

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-7

NOTE

NOTE

NOTE

RESIZING JOURNAL SPACE

If journal full messages are frequently encountered when a database is running,
enlarging the journal files will improve database performance. In DBMaker 3.0,

previous backups cannot be used to restore a database to a specific point in time after
re-sizing the journal files, however, in versions after 3.0 this is permitted. To protect a
database from disk failure, perform a full backup immediately after resizing the journal

files.

Â To resize a journal file, a DBA needs to perform the following:

1. Estimate the disk space required to handle the largest transactions to determine the
number and size of journal files required.

2. Shut down the database.

3. Update dmconfig.ini and re-specify these two parameters: DB_JnFil, DB_JnlSz.

These settings may also be changed in the advanced settings – storage page

of the JServer Manager start database wizard.

4. Set the start mode to new journal mode in dmconfig.ini: DB_SMode=2

This setting may also be changed in the advanced settings – start database

page of the JServer Manager start database wizard.

5. Restart the database.

6. Reset the start mode back to normal in dmconfig.ini: DB_SMode=2

This setting may also be changed in the start database page of the

JConfiguration Tool.

7. Perform an online full backup if a database is in BACKUP-DATA or BACKUP-
DATA-AND-BLOB mode.

Tablespaces

A DBMaker database is partitioned into smaller logical areas of space known as
tablespaces. Tablespaces are logical areas of storage that allow the database to be
subdivided into manageable areas. Each tablespace contains one or more operating

 Database Administrator’s Guide1

system files. Before starting to use tablespaces and files in DBMaker, be familiar with
the terms below.

TABLESPACE TYPES

Tablespaces can be either fixed in size or automatically extensible. Tablespaces that are
fixed in size are called regular tablespaces, and tablespaces that can have their size

automatically extended are called autoextend tablespaces. DBMaker also has a special
tablespace called the system tablespace.

THE SYSTEM TABLESPACE

All DBMaker databases have at least two tablespaces, one system tablespace
(SYSTABLESPACE), and one default tablespace (DEFTABLESPACE). DBMaker
generates a system tablespace to record the system catalog table whenever a database is

created. The system catalog tables store information about the entire database.

THE DEFAULT TABLESPACE

The default tablespace stores user tables when users do not specify which tablespace to

be allocated. However, creating additional tablespaces for user table storage is more
flexible and efficient.

REGULAR TABLESPACES

A regular tablespace has a fixed size and contains one or more data files. If a file in a
regular tablespace is too small to hold all of the data intended for it, it can be enlarged
manually. The maximum number of files that can be contained in a regular tablespace

is 32767. The total number of pages in all files in a tablespace must not exceed 2GB.

AUTOEXTEND TABLESPACES

Autoextend tablespaces automatically grow as required. Files in an autoextend

tablespace will expand automatically; DBMaker expands them by the reverse order of
insertion. That means the last data file added will be the first one to expand if normal
data space is required.

©1995-2003 CASEMaker Inc. 5-8

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-9

Any autoextend tablespace can be changed to a regular tablespace to keep the
tablespace from expanding, and vice versa, a regular tablespace can be changed to an

autoextend tablespace if the space is exhausted. Alternatively, new files can be added or
existing files enlarged to expand a regular tablespace. Raw device files can only be used
with regular tablespaces, and cannot be used with autoextend tablespaces.

DBMaker automatically creates an autoextend tablespace called the system tablespace
when creating a database. When creating any other tablespaces, regular tablespaces will
be used by default. To prevent the default tablespace from growing without a limit,

change it to a regular tablespace.

The dmconfig.ini file registers the number of pages for each data file. The number of
pages in a data file is the initial size of a file belonging to an autoextend tablespace,

and is the actual size of a file belonging to a regular tablespace.

5.3 Managing Tablespaces and
Files

There are numerous things to consider when managing tablespaces and files for a
database. For example, the size and type of new tablespaces must be determined at the
time of database creation, additional tablespaces can later be created, autoextend

tablespaces changed to regular tablespaces and vice-versa, data files added to
tablespaces, the size of files in tablespaces set and altered, and data files and tablespaces
dropped when they are no longer required.

Either the JDBA Tool or a combination of dmSQL commands and modifications to
the dmconfig.ini file can be used to manage tablespaces. The JDBA Tool provides an
intuitive user interface for all tablespace management routines. For more information

on how to use the JDBA Tool to manage tablespaces, refer to the “JDBA Tool User’s
Guide”.

Each DBMaker database has at least one tablespace called the system tablespace.

When a database is created, DBMaker generates five files: a system data file, a user
data file, a system BLOB file, a user BLOB file, and a journal file. The system data
file, system BLOB file, and journal file are placed in the system tablespace. These three

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 5-10

files are used to record the system catalog tables for the entire database. The user data
file and the user BLOB file are placed in the default user tablespace.

User tables are stored in the default user tablespace unless additional tablespaces are
created. Creating additional tablespaces to store user tables is more flexible and
efficient.

Initial Setting of System Files and Tablespace

DBMaker generates the system tablespace and the three system files (the system data
file, the system BLOB file, and the journal file) when creating a new database. These
files are used to keep a record of the database schema and transactions. DBMaker

concatenates the database name with the file extensions .SDB, .SBB, and .JNL to
name the system data, BLOB, and journal files respectively. If the system data, BLOB,
and journal file sizes are not specified, they will be created with default sizes of 600KB,

20KB, and 4000KB respectively. To use different names for the system files, specify
them in the dmconfig.ini file, or through the storage page of the JConfiguration Tool.

Â Example

To specify the names of the system files in the dmconfig.ini file:

[MY_DB] ;database name

DB_DbDir = /disk1/usr ;database directory

DB_DbFil = datafile.sdb ;data file

DB_BbFil = blobfile.sbb ;BLOB file

DB_JnFil = jrnlfile.jnl ;journal file

If these values are in the dmconfig.ini file at the time the CREATE DB command is
committed, then DBMaker will create the three system files as before, but this time it

will use the names provided above instead of the default names. In this case, the
system data file is named datafile.sdb, the system BLOB file is named blobfile.sbb,
and the journal file is named jrnlfile.jnl.

The system tablespace is created as autoextend by default; therefore, size of the system
tablespace is just an initial size, not a limitation. To limit the disk space used by the

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-11

system tablespace, change the system tablespace to a regular tablespace by using the
ALTER TABLESPACE command.

Once all of the space in a regular system tablespace is exhausted, the only way to
enlarge it are to add files to the regular system tablespace, enlarge the system files by
adding pages, or change the tablespace type to autoextend.

Initial Setting of Default User Files and Tablespace

DBMaker generates the default user tablespace and the two files (the user data file, the
user BLOB file) when creating a new database. These files are used to store user data.
DBMaker concatenates the database name with the file extensions .DB and .BB to

name the user data and BLOB files respectively. Unless their size is specified in
advance, the user data and user BLOB files will be created with default sizes of 600KB
and 20KB, respectively. To use different names for the default user files, specify them

in the dmconfig.ini file, or in the storage page of the JConfiguration Tool.

Â Example

In order to specify the names of the default user files in the dmconfig.ini file:

[MY_DB] ;database name

DB_UsrDb = /disk1/usr/f1.db 200 ;data file

DB_UsrBb = /disk1/usr/f1.bb 20 ;blob file

If a database is created with these values in the dmconfig.ini file, then DBMaker will
create the two files using the names provided above instead of the default names. In

this case, the default data file will be named f1.db with a size of 200 pages and the
default BLOB file will be named f1.bb with a size of 20 frames.

The default tablespace is initially created as an autoextend tablespace, so its initial size

is not a limitation.

Creating Tablespaces

Additional tablespaces can be created to contain other data and BLOB files. A
tablespace may be created using dmSQL or the JDBA Tool. Details on creating

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 5-12

tablespaces with dmSQL can be found in the “SQL Command and Function Reference”.
Details on how to create tablespaces with JDBA Tool can be found in the “JDBA Tool
User’s Guide”.

A tablespace must contain at least one data file, but additional files in the tablespace
can be either data files or BLOB files. DBMaker creates a new file as a data file by

default; the file type must be specified as BLOB to create a BLOB file.

Before creating a new tablespace, specify the size and filenames of the data files
associated with the tablespace in the dmconfig.ini file.

Â Example 1

The following entries are required in dmconfig.ini to specify three files named f1, f2,
and f3 with operating system filenames and page sizes:

[MY_DB] ;database name

f1 = /disk1/usr/f1.dat 1000 ;a data file with 1000 pages

f2 = /disk2/usr/f2.dat 500 ;a data file with 500 pages

f3 = /disk1/usr/f3.blb 1000 ;a blob file with 1000 pages

To create a regular tablespace ts1 with two data files and one BLOB file, with the data

files placed on different disks:

dmSQL> CREATE TABLESPACE ts1 DATAFILE f1, f2, f3 TYPE=BLOB;

Â Example 2

To create an autoextend tablespace with one data file and one BLOB file. The initial
size of the data file is 500 pages, and the initial size of the BLOB file is 20 pages. If the

data file or BLOB file is filled, it will expand automatically:

[MY_DB] ;database name

f4 = /usr/f4.dat 500 ;a data file with initial 500 pages

f5 = /usr/f5.blb 20 ;a blob file with initial 20 pages

To create a new tablespace that uses these files:

dmSQL> CREATE AUTOEXTEND TABLESPACE ts2 DATAFILE f4 TYPE=DATA, f5
TYPE=BLOB;

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-13

RAW DEVICE FILES

On UNIX systems, if the prefix of the physical file name is /dev/, DBMaker will
regard it as a raw device file. A raw device file supports faster access than a normal file.

Thus, raw device files will improve database performance. Create a raw device file on a
disk before associating this file with a tablespace. Only regular tablespaces may contain
raw device files.

Â Example

To specify a raw device file, f2 with the operating system filename /dev/rawf2 with

5000 pages, add the following to dmconfig.ini:

[MY_DB] ;database name

f2 = /dev/rawf2 5000 ;a raw device file with 5000 pages

To create a regular tablespace, ts3, containing the above raw device file:

dmSQL> CREATE TABLESPACE ts3 DATAFILE f2;

Expanding a Regular Tablespace

There are three ways to expand a regular tablespace:

 Add new files to a regular tablespace.

 Add pages to existing files in a regular tablespace.

 Set autoextend ON.

All of these functions may be performed by using the JDBA Tool or by using a
combination of SQL commands and modifications to the dmconfig.ini file. Following
is an example of how to expand a regular tablespace by editing the dmconfig.ini file

and using SQL commands.

Â Example

Before issuing a command, give DBMaker the name of the physical file that
corresponds to the logical file named file_blob by adding a statement to the
dmconfig.ini file in the section for that database. In this case, file_blob is the logical

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 5-14

name that will be used in the database, and file.blb is the physical file name that is
used by the operating system:

file_blob = file.blb 120

To add a new BLOB file named file_blob to a regular tablespace with 120 frames to
the tablespace named app_ts:

dmSQL> ALTER TABLESPACE app_ts ADD DATAFILE file_blob TYPE = BLOB;

To add 100 pages to an existing data file named file_data in a regular tablespace
named app_ts:

dmSQL> ALTER DATAFILE file_data ADD 100 PAGES

After altering the size of the file by adding the extra pages, DBMaker will update the
number of pages for the file in the dmconfig.ini file to reflect the new value.

Adding Files to Tablespaces

Enlarge the size of a regular tablespace, and consequently the database, by creating and
adding new files to it. To increase the space available to insert or update data rows,
add data files into a regular tablespace. To increase the space available to store BLOB

data, add BLOB files. Files may be added to a tablespace by using the JDBA Tool or
by modifying the dmconfig.ini file and entering commands at the dmSQL prompt.
The following is a guideline for adding files by modifying the dmconfig.ini file and

entering commands at the dmSQL prompt

Be sure to first add lines to the dmconfig.ini file that specify the size and filenames of
new files when adding data files to a tablespace. Also, specify the file type as BLOB

when adding BLOB files, otherwise DBMaker will create a data file by default.

Â Example 1

To specify in the dmconfig.ini file a data file named f7 with 3000 pages, where the
operating system filename is /disk1/usr/f7.dat:

[MY_DB] ;database name

f7 = /disk1/usr/f7.dat 3000 ;a data file with 3000 pages

To add the data file f7 into the ts1tablespace:

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-15

dmSQL> ALTER TABLESPACE ts1 ADD DATAFILE f7;

Â Example 2

To specify in dmconfig.ini a BLOB file named f8 with 5000 pages; the operating
system file name is /disk1/usr/f8.blb:

[MY_DB] ;database name

f8 = /disk1/usr/f8.blb 5000 ;a blob file with 5000 pages

To add this BLOB file to tablespace ts1:

dmSQL> ALTER TABLESPACE ts1 ADD DATAFILE f8 TYPE=BLOB;

The file type must be stated or it will be added as a data file by default.

Adding Pages to Files in Tablespaces

In addition to adding files to a regular tablespace to enlarge a database, a database can

be enlarged by increasing the size of existing files in a regular tablespace. File size can
be increased in autoextend tablespaces by adding pages, which pre-allocates disk space
for improved performance. When the size of a file is changed, DBMaker automatically

updates the entry for the file in dmconfig.ini to reflect the increased number of pages.

File size may be altered using the JDBA Tool or by entering the ALTER DATAFILE
command at the dmSQL prompt. The following is a guideline for altering file size by

entering commands at the dmSQL prompt

Â Example

To alter the size and extend file f1 by adding 100 pages, (the file f1 must already exist
and be associated with a tablespace):

dmSQL> ALTER DATAFILE f1 ADD 100 PAGES;

Changing Regular to Autoextend Tablespaces

A database administrator may want to alter a tablespace from regular to autoextend
when:

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 5-16

 A database administrator wants to add more data to a regular tablespace, but the
tablespace has already grown to fill all files belonging to this tablespace and the

disk still has space.

 The database administrator does not want to restrict the amount of space a
tablespace will occupy.

After creating a regular tablespace, the database administrator can change it to an
autoextend tablespace by using JDBA Tool or the ALTER TABLESPACE command
at the dmSQL command prompt.

Â Example

To change the regular tablespace ts1 to an autoextend tablespace:

dmSQL> ALTER TABLESPACE ts1 SET AUTOEXTEND ON;

Changing Autoextend Tablespaces to Regular
Tablespaces

A database administrator may want to alter a tablespace from autoextend to regular

when:

 The database administrator wants to add more data to an autoextend tablespace,
but the tablespace has already grown to fill all available space on the disk. The

database administrator can convert this to a regular tablespace and add
additional files on another disk to the tablespace.

 The database administrator wants to restrict the amount of space a tablespace

will occupy. An autoextend tablespace can grow to fill all available space on a
disk.

 After altering an autoextend tablespace to a regular tablespace, the database

administrator can add files to that tablespace to increase its size.

After creating an autoextend tablespace, the database administrator can change it to a
regular tablespace by using JDBA Tool or the ALTER TABLESPACE command at

the dmSQL command prompt.

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-17

Â Example

To change the autoextend tablespace, ts1, to a regular tablespace:

dmSQL> ALTER TABLESPACE ts1 SET AUTOEXTEND OFF;

Shrinking Tablespaces and Files

Tablespaces may be reduced in size if there is a need to allocate disk space for other
uses. Two dmSQL commands can be used to reduce tablespace size, the SHRINK
DATAFILE command, and the SHRINK TABLESPACE command. The SHRINK

DATAFILE command works on a user-specified file, while the SHRINK
TABLESPACE command works on all files in the user-specified tablespace. These
operations may be carried out by using the or by using the JDBA Tool. The following

sections outline how to use commands at the dmSQL command prompt to reduce
tablespace size.

TRUNCATEONLY OPTION

The SHRINK command with the TRUNCATEONLY option removes contiguous
free pages at the end of any data file that it is executed on. It does not compress the
file; if there are free pages between used pages, they will remain in the file. The
database administrator may choose to truncate all tailing free pages (without WITH n

FREE PAGES option), or truncate free pages while still allowing a given number of
free pages to remain (WITH n FREE PAGES option). Following are examples of both

options.

Without WITH n FREE PAGES Option

The SHRINK command with the TRUNCATEONLY option (without WITH n

FREE PAGES option) only truncates contiguous free pages at the end of a file.

For example, tablespace ts1 contains file1 and file2. The following diagrams, where

gray blocks represent used pages and white blocks represent free pages, represent the
page status of file1 and file2.

file1

file2

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 5-18

The free pages at the end of both files may be removed by executing the SHRINK
TABLESPACE command on the entire tablespace, or by executing the SHRINK
DATAFILE command on both files. The TRUNCATEONLY option must be

specified. The following examples demonstrate.

Â Example 1

dmSQL> SHRINK TABLESPACE ts1 TRUNCATEONLY;

Â Example 2

dmSQL> SHRINK DATAFILE file1 TRUNCATEONLY;

dmSQL> SHRINK DATAFILE file2 TRUNCATEONLY;

After truncating, the pages at the end of both files have been removed. A graphical

representation of the page status of both files follows:

Result

Although all pages of file2 are free, DBMaker reserves at least two pages (one is a PE

page and one is a data page).

WITH n FREE PAGES Option

The WITH n FREE PAGES option specifies the total number of tailing free pages

(not including the PE page) to remain in the file after it has been truncated.

Using the previous example of file1 and file2, execute one of the following.

Â Example 1

dmSQL> SHRINK TABLESPACE ts1 TRUNCATEONLY WITH 3 FREE PAGES;

 file1

 file2

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-19

Â Example 2

dmSQL> SHRINK DATAFILE file1 TRUNCATEONLY WITH 3 FREE PAGES;

dmSQL> SHRINK DATAFILE file2 TRUNCATEONLY WITH 3 FREE PAGES;

Result:

T
h
e

 SHRINK TABLESPACE command and the WITH FREE PAGES option apply
individually to each file in a tablespace. In the above case, there are three free pages
reserved for each file in the same tablespace.

It is not possible to inadvertently add pages to a file by specifying more free tailing
pages than the file currently has. For example, if there are 50 free pages in a file,
specifying the option WITH 80 FREE PAGES option causes nothing to happen.

After the SHRINK command, there are still 50 free pages and it does not enlarge the
file size by adding 30 (80 - 50) free pages.

The SHRINK command should be executed with autocommit ON. The

TRUNCATEONLY option cannot be rolled back. Users cannot roll back this
command, even through crash-recovery.

COMPRESSONLY OPTION

Only the SHRINK TABLESPACE command supports the COMPRESSONLY
option. It compresses each file in the tablespace. It does not compress records on the
same page because the smallest unit used for compression is a page. It moves the used

pages in tail of the file to free front pages. After using the command, all free pages are
placed at the end of the file and all used pages at the front.

Result 1:

file1

file2

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 5-20

File1 has four used pages that are not adjacent.

Â Example

To make it contiguous:

dmSQL> SHRINK TABLESPACE ts1 COMPRESSONLY;

Result 2:

The SHRINK command must be executed with autocommit ON. The
COMPRESSONLY option can be rolled back. If the database crashes, the operation
of COMPRESSONLY will be all done or all failure after crash-recovery.

There are some conflicts between the SHRINK command with the
COMPRESSONLY option and using backup. DBMaker does not allow these two
commands to be executed at the same time.

LIMITATIONS TO SHRINKING AND COMPRESSING TABLESPACES

The general limitations for these commands are:

 The SHRINK command can be used on data and BLOB files but not on a

journal file.

 Only a user with DBA authority can execute the SHRINK command.

 The SHRINK command requires autocommit ON.

 The SHRINK command was added in DBMaker 3.7; early versions of
DBMaker do not recognize this command. Therefore, once a DBA executes the
SHRINK command and does the incremental backup with it, the earlier version

of DBMaker cannot restore the journal backup file.

 The TRUNCATEONLY option cannot be rolled back.

file1

file1

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-21

 The COMPRESSONLY option cannot compress the SYSTABLESPACE
tablespace.

 The COMPRESSONLY option does not check if user tables have an OID
column or not. An OID column is used to reference a record elsewhere in the
database. After using COMPRESSONLY, an OID column may no longer point

to the correct record if the referenced record is in the compressed tablespace or
file. It does not modify OID columns in user tables.

 The COMPRESSONLY option and backup command cannot be executed at

the same time.

Dropping Tablespaces

If a tablespace is empty or contains information that is no longer required, a database
administrator can drop it from the database. Any tablespace in a DBMaker database,

except the system tablespace, can be dropped. To drop a tablespace, first drop all
tables in the tablespace or ensure it is already empty of tables. For more information
on how to drop tables from a tablespace, refer to Chapter 6, Managing Schema Objects.

Dropping a tablespace will automatically drop all the files associated with it, but will
not remove them from the file system of the operating system. Those files will still
exist in the file system and can only be removed using operating system commands to

recover the disk space they occupy. The data stored in the physical files corresponding
to a tablespace is not recoverable once the physical files have been removed from the
file system. Be careful when removing files associated with tablespaces or valuable data

may be lost.

Tablespaces may be dropped using JDBA Tool or by using the DROP TABLESPACE
command at the dmSQL command prompt.

Â Example

To drop the tablespace ts2 and all files associated with it:

dmSQL> DROP TABLESPACE ts2;

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 5-22

Getting Information about Tablespaces and Files

Using JDBA Tool, it is straightforward to view the structure of tablespaces and files
within a given tablespace. Tablespaces are displayed as part of the logical tree structure
of all database objects. Selecting the tablespaces node on the tree will expand the tree

to display all tablespaces in the database. Selecting a tablespace from the tree will
display all files in the tablespace as well as details about the files, such as size, physical
location, data type, or whether the tablespace is extensible.

Alternatively, use dmSQL to select all columns of the system table SYSTABLESPACE
for information on tablespaces, or SYSFILE for information on user BLOB and data
files.

Â Example 1

To obtain information on tablespaces, such as tablespace names, whether they are

regular or autoextend tablespaces, the number of files associated with tablespaces, and
the number of total pages, browse the system table SYSTABLESPACE in the system
catalog:

dmSQL> SELECT * from SYSTABLESPACE;

Â Example 2

To obtain information about files in a similar manner by browsing the system table
SYSFILE to get information about file names, file types, database internal file
identification, which tablespace files are associated with and how many pages each file

contains:

dmSQL> SELECT * from SYSFILE;

For more information about the system catalog tables SYSTABLESPACE and

SYSFILE, refer to “Appendix B”.

Checking File and Tablespace Consistency

DBMaker supports six commands to check the consistency of different parts of a
database. These commands are time consuming when the database is large and they

will take locks, and should only be used when necessary. File and tablespace

1Storage Architecture 5

©1995-2003 CASEMaker Inc. 5-23

consistency may be checked using one of these commands. The CHECK FILE
command will check if a file is corrupted or if a tablespace contains the correct tables.

CHECKING FILES

DBMaker allows the contents of every page or frame in a data file to be checked. Any
corruption found when checking files is usually caused by disk errors.

Â Example

To check consistency for the FILE1 data file:

dmSQL> CHECK FILE FILE1;

CHECKING TABLESPACES

DBMaker allows files and tables associated with a tablespace to be checked. When

checking files and tables, DBMaker uses the same methods as the check file and check
table commands, and returns the same results as if these commands were executed
directly.

Â Example

To check tablespace consistency for the TS1 tablespace:

dmSQL> CHECK TABLESPACE TS1;

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 5-24

1Managing Schema Objects

6 Managing Schema
Objects

6

©1995-2003 CASEMaker Inc. 6-1

This chapter discusses the management of different types of schema objects in
DBMaker, including tables, views, synonyms, indexes, serial numbers, data integrity,

and domains.

The chapter includes topics on browsing the system catalogs to get information about
schema objects, and how to estimate the disk storage space required for tables and

indexes.

Schema object management may be carried out by using dmSQL commands or
through the JDBA Tool. The JDBA Tool contains an intuitive graphical interface,

provides easy-to-use wizards for most database management tasks, and displays the
logical structure of the database in an unambiguous format. Using JDBA Tool will aid
first time users of DBMaker in understanding the relationship between schema

objects. Experienced users will find the logical display aids in the creation and
management of database schema. The following sections show examples of how to
manage database schema objects though dmSQL. For more information on using

JDBA Tool to manage schema objects, refer to the “JDBA Tool User’s Guide”.

 Database Administrator’s Guide1

6.1 Managing Tables

Tables are the logical unit of storage used by DBMaker to store data. A table consists
of several columns and rows. A column is sometimes referred to as a field or attribute,
and a row can be referred to as a record or tuple.

In DBMaker, each table is identified by a unique owner name and table name.

For example, if two users called Jeff and Kevin each create a table named friend, then
the table names Jeff.friend and Kevin.friend denote the two different tables.

In the JDBA Tool, all tables in a database can be viewed by expanding the tables node
on the logical tree. Selecting a table displays that table’s schema.

Creating Tables

Every table is defined with a table name and a set of columns. The number of columns

in a table can range from 1 to 252.

Each column has:

 A column name and a data type (or a domain, which is described in section 6.8,

Managing Domains)

 A length (the length might be predetermined by the data type, such as
INTEGER), a precision and scale (for columns of the DECIMAL data type

only) or a starting number (for columns of SERIAL data type only)

DBMaker supports a large number of data types that can be used to define columns.
There are numerical types (SMALLINT, INTEGER, FLOAT, DOUBLE,

DECIMAL and SERIAL), binary types (BINARY, VARBINARY, CHAR, and
VARCHAR), BLOB types (LONG VARCHAR, LONG VARBINARY and FILE),
and time types (DATE, TIME and TIMESTAMP). See the “SQL Command and
Function Reference“ for more information about data types.

When creating a table, provide the table name, column definitions, and the name of
the associated tablespace. A table will be placed in the system tablespace by default if it

is not associated with another tablespace. Tables may be created using the JDBA Tool

©1995-2003 CASEMaker Inc. 6-2

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-3

Create Table wizard or using the dmSQL command prompt. For information on
creating a table with JDBA Tool, refer to the “JDBA Tool User’s Guide”. The following

is an example of how to create a table using dmSQL. Details on syntax and usage of
the SQL command CREATE TABLE can be found in the “SQL Command and
Function Reference“.

Â Example

To create the employee table in tablespace ts1:

dmSQL> CREATE TABLE employee (nation CHAR(20),

 ID INTEGER,

 name CHAR(30),

 joinDate DATE,

 height FLOAT,

 degree VARCHAR(200),

 picture LONG VARCHAR) IN ts1;

DBMaker provides many useful features that can be applied when creating tables:

 Defining a default value for a column.

 Specifying that a column is not nullable.

 Specifying the primary key or the foreign key for the table.

 Specifying the LOCK MODE, FILLFACTOR, or NOCACHE options to

improve database efficiency.

 Specifying the table as temporary.

 Specifying the table to automatically update statistics.

DEFAULT VALUES FOR COLUMNS

A column in a table can be assigned a default value so that when a new row is inserted
and a value for the column is omitted, the default value will be automatically supplied.

Default values for each column in a table may be specified. If a default value is not
defined for a column, the default value for the column is set to NULL.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-4

Legal default values can be constants or built-in functions. For more information
about built-in functions, refer to the “SQL Command and Function Reference”. The

following example shows how to specify the default value of a column as a built in
function using dmSQL.

Â Example

To specify the default value of the column nation, in the table employee as a
constant—‘R.O.C.’ and the default value of the column joinDate as the value of the

built-in function curdate():

dmSQL> CREATE TABLE employee (nation CHAR(20) DEFAULT ‘R.O.C’,

 ID INTEGER,

 name CHAR(30),

 joinDate DATE DEFAULT CURDATE(),

 height FLOAT,

 degree VARCHAR(200),

 picture LONG VARCHAR) IN ts1;

NOT NULL

Rules for columns or tables may be specified. These rules are called integrity
constraints. One example is the NOT NULL integrity constraint defined on a column
in a table. It enforces the rule that the column cannot contain a null value.

For example, the employee table might always need an ID and a name for a new
employee.

Â Example

To create an ID and name for new employees on the employee table:

dmSQL> CREATE TABLE employee (nation CHAR(20) DEFAULT ‘R.O.C’,

 ID INTEGER NOT NULL,

 name CHAR(30) NOT NULL,

 joinDate DATE DEFAULT CURDATE(),

 height FLOAT,

 degree VARCHAR(200)) IN ts1;

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-5

PRIMARY KEY AND FOREIGN KEYS

The table owner can specify the primary key or foreign key with the CREATE
TABLE command. Refer to section 6.6, Managing Data Integrity for information on

primary and foreign keys.

LOCK MODE

The lock mode of a table identifies the type of lock that DBMaker automatically places

on objects when accessing the database. DBMaker supports three lock mode levels:
TABLE, PAGE, and ROW. The PAGE lock mode is used by default if the lock mode
is not specified when a table is created. If the lock mode is set to a higher level (such as

TABLE), the level of concurrency on database accesses will be lower, but the required
lock resources (shared memory) will also be smaller. If the lock mode is set to a lower
level (such as ROW), the level of concurrency on database accesses will be higher, but

the required lock resources (shared memory) will be larger. In other words, if a user
inserts or modifies rows in a table with the lock mode set to TABLE, no one else will
be able to access the table. The reason for this is that an exclusive lock is taken on the

entire table. For more information about lock modes, see section 9.3, “Locks”.

Â Example

To specify the lock mode on a table:

dmSQL> CREATE TABLE employee (nation CHAR(20) DEFAULT ‘R.O.C’,

 ID INTEGER NOT NULL,

 name CHAR(30) NOT NULL,

 joinDate DATE DEFAULT CURDATE(),

 height FLOAT,

 degree VARCHAR(200)) IN ts1

 LOCK MODE ROW;

FILLFACTOR

The FILLFACTOR feature optimizes the utilization of space for data pages by
reserving space for the expansion of existing records. It specifies the percentage of a
page that can be filled before stopping new records from being inserted. Using this

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-6

method records can be accessed more efficiently by avoiding the need to retrieve
information for one record from multiple pages.

Â Example

To set the FILLFACTOR of the employee table to be 80%:

dmSQL> CREATE TABLE employee (nation CHAR(20) DEFAULT ‘R.O.C’,

 ID INTEGER NOT NULL,

 name CHAR(30) NOT NULL,

 joinDate DATE DEFAULT CURDATE(),

 height FLOAT,

 degree VARCHAR(200)) IN ts1

 LOCK MODE ROW

 FILLFACTOR 80;

In this case, new rows cannot be inserted into the data page after the used space is

larger than 80%. The legal values for the FILLFACTOR can be from 50 to 100, and
the default value is 100.

NOCACHE

The NOCACHE feature is useful when accessing large tables with a table scan.
Although DBMaker uses page buffers in shared memory to cache retrieved data and
avoid frequent disk I/O, table scans on large tables can still cause frequent disk I/O

activity. This happens during a table scan on a table with a larger number of data
pages than the number of page buffers, which causes all page buffers to be exhausted.

Once the NOCACHE option is specified when creating a table, DBMaker only uses

one page buffer to cache the data retrieved from a table during a table scan. This
prevents the page buffers from being exhausted by only one large table scan.

Â Example

To specify the NOCACHE option:

dmSQL> CREATE TABLE employee (nation CHAR(20) DEFAULT ‘R.O.C’,

 ID INTEGER NOT NULL,

 name CHAR(30) NOT NULL,

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-7

 joinDate DATE DEFAULT CURDATE(),

 height FLOAT,

 degree VARCHAR(200)) IN ts1

 LOCK MODE ROW

 FILLFACTOR 80

 NOCACHE;

TEMPORARY TABLES

A temporary table may be created for storing data. Temporary tables only exist during a

single session, and DBMaker will automatically drop the temporary table when the
user that created it is disconnected from the database. Temporary tables support fast
data operations and can be used only by the creator. Operations that are executed

improperly on a temporary table will result in incorrect data on the table. Client users
may also create a local temporary table using the CREATE LOCAL TEMPORARY
TABLE syntax.

Â Example 1

To create a temporary table named student:

dmSQL> CREATE TEMPORARY TABLE student (name CHAR(25) NOT NULL,

 birthday DATE,

 score INTEGER);

Â Example 2

To create a local temporary table named student:

dmSQL> CREATE LOCAL TEMPORARY TABLE student (name CHAR(25) NOT NULL,

 birthday DATE,

 score INTEGER);

AUTO UPDATE STATISTICS

The statistics value is very important if a table is read frequently. DBMaker can
automatically update the statistics of a table periodically if a user has specified the

update statistics time interval when creating it.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-8

Â Example

To create a table and specify to automatically update its statistics every 7 days:

dmSQL> CREATE TABLE student (name CHAR(25) NOT NULL,

 birthday DATE,

 score INTEGER)

 SET UPDATE STATISTICS EVERY 7 DAYS;

Statistics are only updated after the database has been started. Updating statistics also
requires processor resources and will affect database performance. Selecting an interval
and a time that does not interfere with peak table usage will prevent degradation of

performance while still providing updated statistics.

Browsing Table Schema

The schema of a table may be queried by using dmSQL or the JDBA Tool. JDBA
Tool provides a graphical representation of table schema and allows table schema to be

modified without entering any SQL commands. It is also possible to use the dmSQL
command DEF TABLE to directly query a table’s schema.

Â Example

To view the schema for table supportqueries:

dmSQL> DEF TABLE SUPPORTQUERIES;

create table SYSADM.SUPPORTQUERIES (

 LOGINID CHAR(20) default null ,

 REQUEST LONG VARCHAR default null ,

 REQUESTTIME TIMESTAMP default null ,

 ATTACHMENT LONG VARBINARY default null)

 in DEFTABLESPACE lock mode page fillfactor 100 ;

create text index REQUEST on SYSADM.SUPPORTQUERIES (REQUEST) text
block size 500 basic bit length 1024 extended bit length 1024 cluster
width 4096 ;\

Altering Tables

After a table is created in DBMaker, a user with modify permission can alter it by:

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-9

 Adding/dropping columns

 Modifying column definitions

 Changing the FILLFACTOR value

 Turning on/off the NOCACHE option

The schema of a table may be altered using dmSQL commands or with JDBA Tool.

ADDING/DROPPING COLUMNS

A user with modify permission can add/drop one or multiple columns in a table
whether the column is empty or not. Adding a new column to an empty table is the

same as expanding the table schema and placing the new column in the last position.
A user with modify permission can also add a new column before or after any existing
column in a table.

When adding a new column to a table, DBMaker not only expands the table schema
but also fills all rows in the new column with NULL values by default. If a user with
modify permission wants to add a column with the NOT NULL integrity constraint

to a table, give a specified value for the existing records on the column (a default value,
as mentioned in “Default Values for Columns”). For detailed SQL syntax, refer to the
“SQL Command and Function Reference”.

Â Example 1

To add a column named photo to the employee table:

dmSQL> ALTER TABLE employee ADD COLUMN photo LONG VARCHAR;

Â Example 2

To add a column named city after the existing column name to the employee table
and set the default value to ‘Taipei’:

dmSQL> ALTER TABLE employee ADD COLUMN city CHAR(20) default ‘Taipei’
AFTER name;

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-10

Â Example 3

If the employee table is not empty and a user wants to add a non-null column to it,
the GIVE keyword can be used to specify a value for the existing records on the newly

added column. To add a non-null column named HireDate to the employee table:

dmSQL> ALTER TABLE employee ADD COLUMN (HireDate NOT NULL give ‘2000-02-
20’;

Â Example 4

To drop a column named photo from the employee table:

dmSQL> ALTER TABLE employee DROP COLUMN photo;

MODIFYING COLUMN DEFINITION

The definition of every existing column in a table can be altered, such as column

name, data type, column order, default value, column constraint, etc. Before
modifying the data type of one column, make sure that the new data type is
compatible with the original one, or the modifying operation will fail due to data

incapability. For example, a CHAR type data column cannot be modified to a DATE
type data column.

Â Example 1

To modify the column named photo in the employee table:

dmSQL> ALTER TABLE employee MODIFY photo NAME TO emp_photo;

Â Example 2

To modify the data type for a column named height in the employee table:

dmSQL> ALTER TABLE employee MODIFY height TYPE TO decimal(10,2);

Â Example 3

To modify the column order for a column named height, place it before the HireDate
column:

dmSQL> ALTER TABLE employee MODIFY height BEFORE HireDate;

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-11

Â Example 4

To modify the default value for a column named nation:

dmSQL> ALTER TABLE employee MODIFY nation DEFAULT TO ‘Taiwan’;

Â Example 5

To modify the constraint for a column named height:

dmSQL> ALTER TABLE employee MODIFY height CONSTRAINT TO CHECK value <
250;

CHANGING THE LOCK MODE

To gain a higher level of concurrency on simultaneous connections to a database, set
the lock mode to a lower level (such as a ROW lock). However, doing this causes
DBMaker to expend more resources; deciding which lock mode to use on a table

always involves a trade-off. For more information about lock modes, see section 9.3,
“Locks”.

Â Example

To change the lock mode for the employee table:

dmSQL> ALTER TABLE employee SET LOCK MODE ROW;

CHANGING THE FILLFACTOR VALUE

FILLFACTOR may be specified during table creation or later modified. For more
information on the FILLFACTOR option, refer to the subsection “FILLFACTOR” in

“Creating Tables”.

Â Example

To change the FILLFACTOR value for a table:

dmSQL> ALTER TABLE employee SET FILLFACTOR 90;

TURNING NOCACHE ON/OFF

The ON/OFF option can be used at any time for NOCACHE. For more information
on the NOCACHE option refer to the subsection NOCACHE in section 6.1,
Managing Tables.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-12

Â Example

To turn the NOCACHE option for a the employee table OFF:

dmSQL> ALTER TABLE employee SET NOCACHE OFF;

Locking Tables

Although DBMaker automatically handles the lock mechanism whenever a database is
accessed, a table may be manually locked for subsequent SELECT or UPDATE
statements. Locking a table while a user is viewing or modifying it will prevent updates

by other people.

DBMaker supports some options for locking tables, such as shared locks for viewing
data or exclusive locks for modifying data, and the WAIT or NO WAIT option which

is used when obtaining a lock. For more information about these features, see the
“SQL Command and Function Reference”. To learn about table locks, concurrency
control, and transaction handling, refer to Chapter 9, Concurrency Control.

Â Example

To lock the employee table for later selections and not wait if it cannot get the table

lock right away:

dmSQL> LOCK TABLE employee IN SHARE MODE NO WAIT;

Dropping Tables

A user can drop a table when the table is not being used any more. When a table is

dropped, all data and indexes for this table are dropped, and pages allocated by the
dropped table are released.

Â Example

To drop the employee table:

dmSQL> DROP TABLE employee;

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-13

6.2 Managing Views

DBMaker provides an ability to define a virtual table called a view, which is based on
existing tables and is stored as a definition with a user-defined view name. The view
definition is stored persistently in the database, but the actual data is not physically

stored there. Rather, the data is stored in the original base tables the views were
derived from. A view is defined by a query that references one or more tables or other
views.

Views are a very helpful mechanism in a database. For example, complex queries can
be defined once and used repeatedly without having to be re-written. Furthermore,
views can be used to enhance the security of a database by restricting access to a

predetermined set of rows and/or columns in a table.

A user cannot determine from a view which rows of tables to update, since a view is
derived from queries on tables. Due to this limitation, views can only be queried.

Users can update views, but cannot insert into or delete from views.

Creating Views

Views may be created with dmSQL or the JDBA Tool. A view is defined by a name
together with a query that references tables or other views. The query that defines a

view cannot contain the ORDER BY clause or UNION operator.

A user can specify a list of column names for a view. If the user does not specify the
column names, the view will inherit the column names of the underlying tables.

For example, to allow other users to see only two columns from the employee table,
create a view with the SQL command shown below. Users can then view only two
columns, (name and ID), from the employee table through the view empView.

Â Example

Use CREATE VIEW to create the view empView from the employee table:

dmSQL> CREATE VIEW empView (empName, empId) AS

 SELECT name, ID FROM employee;

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-14

Browsing View Schema

The construction of a view may be queried by using dmSQL or the JDBA Tool. Use
the dmSQL command DEF VIEW to directly query a table’s schema.

Â Example

To view the construction for view USER_DATA:

dmSQL> DEF VIEW USER_DATA; create view SYSADM.USER_DATA as select
USERDATA.FIRSTNAME, USERDATA.LASTNAME, USERDATA.ADDRESS1,
USERDATA.CITY1, USERDATA.COUNTRY1, USERSTATUS.USERSTATUS,
SUPPORTQUERIES.REQUESTTIME from SYSADM.USERDATA, SYSADM.USERSTATUS,
SYSADM.SUPPORTQUERIES ;

Dropping Views

A view can be dropped when it is no longer required. When a view is dropped, only
the definition stored in the system catalog is removed. The base tables that the view

was derived from are unaffected.

Â Example

To drop the view empView use the DROP VIEW command:

dmSQL> DROP VIEW empView;

6.3 Managing Synonyms

A synonym is an alias for any table or view. Since a synonym is simply an alias, it
requires no storage other than a definition in the system catalog.

Synonyms are useful for simplifying a fully qualified table or view name. DBMaker
normally identifies tables and views with fully qualified names that are composites of
the owner and object names. By using a synonym, anyone can access a table or view

using the corresponding synonym without having to make use of the fully qualified
name. Because a synonym has no owner name, each synonym in the database must be
unique so DBMaker can identify them. Synonyms may be created or dropped with

dmSQL or the JDBA Tool

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-15

Creating Synonyms

Â Example

To create a synonym employee for the table TOM.employee:

dmSQL> CREATE SYNONYM employee FOR TOM.employee;

Assume that the owner of the table employee is TOM. This command creates the
alias employee for the table TOM.employee. All database users can directly reference

the table TOM.employee through the synonym employee.

Dropping Synonyms

A synonym that is no longer required can be dropped. When a synonym is dropped,
only its definition is removed from the system catalog.

Â Example

To drop the employee synonym:

dmSQL> DROP SYNONYM employee;

6.4 Managing Indexes

An index provides support for fast random access to a row. Building indexes for a table
speeds up searching. For example, when a user executes the query SELECT NAME
FROM EMPLOYEE WHERE id=306004, it is possible to retrieve the data in a much

shorter time if there is an index created for the ID column.

An index can be composed of more than one column, up to a maximum of 16.
Although a table can have up to 252 columns, only the first 127 can be used in an

index.

An index can be unique or non-unique. In a unique index, no more than one row can
have the same key value, with the exception that any number of rows may have NULL

values. If a user creates a unique index on a table, DBMaker will check whether all
existing keys are distinct or not. If there are duplicate keys, DBMaker will return an

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-16

error message. After creating a unique index on a table, if a user inserts a row in the
table and DBMaker will ensure that there are no existing rows with the same key as

the new row.

When creating an index, the sort order of each index column can be specified as
ascending or descending. For example, suppose there are five keys in a table with the

values 1, 3, 9, 2, and 6. In ascending order, the sequence of keys in the index is 1, 2,
3, 6, and 9, and in descending order, the sequence of keys in the index is 9, 6, 3, 2,
and 1.

When a user implements a query, the index order will occasionally affect the order of
the data output.

Â Example

If the following query is executed:

dmSQL>select name, age from friend_table where age > 20

Using an index with a descending order on the column age, the output will appear as
follows:

 name age

---------------- ----------------

Jeff 49

Kevin 40

Jerry 38

Hughes 30

Cathy 22

A user can specify the fill factor for tables when creating an index. The fill factor
denotes how dense the keys will be in the index pages. The legal fill factor values are in
the range from 1% to 100%, and the default is 100%. If a user updates data often

after creating the index, the user can set a loose fill factor in the index, for example
60%. If the user never updates the data in this table, then the fill factor can be left at
the default value of 100%.

A user may also specify to create an index on a separate tablespace. This can result in
improved disk I/O for searches that use the index if multiple disks are used.

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-17

Before creating indexes on a table, it is recommended to load all data first, especially if
there is a large amount of data for that table. If a user creates an index before loading

the data into a table, the indexes will be updated each time the user loads a new row.
It is far more efficient to create an index after loading a large amount of data than to
create an index before loading the data.

Creating Indexes

Indexes may be created using the Create Index wizard of the JDBA Tool, or the
dmSQL CREATE INDEX command. To create an index on a table, specify the index
name and index columns. Specify the sort order of each column as ascending or

descending. The default sort order is ascending.

Â Example 1

To create an index, idx1, on the column ID for the table salary in descending order
use the DESC option:

dmSQL> CREATE INDEX idx1 ON salary (ID DESC);

Â Example 2

To create a unique index, idx2, on the column ID for the table salary use the

UNIQUE option:

dmSQL> CREATE UNIQUE INDEX idx2 ON salary (ID);

Â Example 3

To create an index with a specified fill factor use the FILLFACTOR option:

dmSQL> CREATE INDEX idx3 ON salary(name, age DESC) FILLFACTOR 60;

Â Example 4

To create an index on tablespace ts1:

dmSQL> CREATE INDEX idx4 ON salary(name, age DESC) IN ts1 FILLFACTOR 60;

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-18

Dropping Indexes

Indexes may be dropped using the JDBA Tool, or the dmSQL DROP INDEX
statement. If the index is a primary key and is referred to by other tables it cannot be
dropped. For information on primary keys, refer to the section Managing Data
Integrity.

Â Example

To drop the index idx1 from the table salary:

dmSQL> DROP INDEX idx1 FROM salary;

Rebuilding Indexes

Indexes may be rebuilt using JDBA Tool, or the dmSQL REBUILD INDEX

statement. In general, the index will need to be rebuilt if it becomes fragmented,
which reduces its efficiency. Rebuilding an index will drop the old index and then
create a new one.

Â Example

To rebuild the index idx1 for the table salary:

dmSQL> REBUILD INDEX idx1 FOR salary;

6.5 Managing Text Indexes

A text index is a mechanism that provides fast access to rows in a table that contains
one or more words or phrases in columns. Text indexes contain a representation of all
the text found in the columns they are based on, but the data is encoded and

structured to make retrieval much faster than directly from the table. Once a user
creates a text index for a table, its operation is transparent. The DBMS uses the index
to improve full-text query performance whenever possible.

DBMaker provides two text indexing methods: signature and inverted file (IVF).

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-19

Text indexes can be built on all character type columns, including CHAR,
VARCHAR, LONG VARCHAR, LONG VARBINARY, and FILE data types. A

table can have many text indexes and a text index can be built using multiple columns.
A user may create text indexes by using either the JDBA Tool or the CREATE
[SIGNATURE | IVF] TEXT INDEX dmSQL command.

Â Example

To use a text index in the data column automatically (without specifying it):

dmSQL> SELECT id FROM book WHERE data MATCH 'compute';

The string operators for DBMaker include MATCH, CONTAIN, CONTAINS, and
LIKE. Only the MATCH and CONTAINS operators can be applied to a text index

search.

DBMaker provides two different types of text index: signature and inverted-file.
Signature text indexes are more efficient for small amount of data. Inverted-file text

indexes usually consume more storage space but their response for queries is faster for
large amounts of data

Creating Signature Text Indexes

DBMaker creates signature text indexes if no text index method is specified in the

command. A user may create text indexes by using either the JDBA Tool, the
CREATE TEXT INDEX dmSQL command, or the CREATE SIGNATURE TEXT
INDEX command.

Â Example

To create a signature text index, ix_data, on the data column for the table book:

dmSQL> CREATE SIGNATURE TEXT INDEX ix_data ON book(data);

SIGNATURE TEXT INDEX PARAMETERS

DBMaker provides two parameters for conveniently configuring performance and

storage size of signature text indexes

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-20

 Total text size (MB) — the estimated total size of all source documents,in
megabytes (MB). The range is 1 ~ 200 and the default is 32. Please note the real

total text size is not limited to 200 megabytes; if the size is larger than 200, set
to 200. However, we strongly recommend using IVF text index to index very
large amount of data for significantly better query performance.

 Scale — the expected index size-to-total text size ratio. If a user sets total text
size to 20(MB) and expects the text index to use 10MB of storage, then he
should set scale to 50 (50%). The larger scale, the better search performance.

The range is 10 ~ 200 and the default value is 40 (40%)

Â Example

To create a text index, ix_data on the column data of the table book that contains
about 40 megabytes of data, and we wish the text index uses about 20 megabytes of
storage space:

dmSQL> CREATE SIGNATURE TEXT INDEX ix_data ON book(data)

 TOTAL TEXT SIZE 40 MB

 SCALE 50;;

A user can use the default setting as text index parameters. To get higher text index
performance or to reduce the text index size, change the text index parameters. Set the
parameters and monitor the text index performance, and then re-adjust the

parameters.

Creating Inverted-File (IVF) Text Indexes

A user can create inverted-file text indexes by using the CREATE IVF TEXT INDEX
command.

The creation of inverted-file text indexes has a high memory resource requirement.
DBMaker uses a simple rule to decide the maximum memory usage for creating text
indexes. If DBMaker cannot detect free memory or free memory resources less than

128MB, then the maximum memory usage will be 64MB. Otherwise, it will be half of
the free memory resource. Users can specify the approximate upper bound of memory

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-21

usage manually through dmconfig.ini by setting the keyword entry DB_IFMem equal
to the number of megabytes (MB) desired.

Â Example

To create an inverted-file text index, ix_data, on the data column for the table book:

dmSQL> CREATE IVF TEXT INDEX ix_data ON book(data);

INVERTED-FILE TEXT INDEX PARAMETERS

There are two parameters for use in the creating IVF text index command:

Storage path — the logical working directory where the inverted-files will reside in.
Users should define the logical directory in the dmconfig.ini file. The default is the
value of DB_DbDir, the database’s home directory. The detail storage management

and naming convention of inverted-file index will be described in the next section.

Total text size (MB) — the approximate total size of documents will be indexed in
the future. The unit of size is mega-byte (MB). Based on the size, DBMaker will

decide how many partitions will be made. It may range between 1 MB to 10000 MB ,
and the default value is 500 MB.

Â Example

To create an inverted-file text index, ix_data in the path \IVFDIR on the column data
of the table book that contains about 400 megabytes of data:

First, add a logical path in the database’s dmconfig.ini section.

MYPATH1 = \IVFDIR

Use the following command.

dmSQL> CREATE IVF TEXT INDEX ix_data ON book(data)

 2> STORAGE PATH MYPATH1

 3> TOTAL TEXT SIZE 400 MB;

Â Example

To specify 100MB memory usage for creating inverted-file text-index in

dmconfing.ini:

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-22

DB_IFMEM = 100

STORAGE OVERVIEW

In addition to the working directory specified by the Storage path parameter,
DBMaker will generate sub-directories in the working directory to manage different
inverted-file indexes. Each inverted-file index has a unique time version, so DBMaker

can use this property to generate a unique sub-directory to store index files. How to
name the sub-directory is described later. This is also a limitation: these sub-directories
and inverted-files cannot be rolled back when a user drops an inverted-file index.

 Specified
Working
Directory

y

Director
y

Director
y

IVF OID1

Director
y IVF

Index
Files

IVF OID2 IVF OID3

IVF
Index
Files

IVF
Index
Files

For example, if \DBMaker4.1 is a specified working directory, and we create an IVF
under this working directory with the index name IVF1, and the time version is
1024476670, then a sub-directory IVF1.1024476670 is created. All inverted-files will

reside in this sub-directory. There are three kinds of inverted-file with different terms:
Single-Byte term, Uni-Gram term and Bi-Gram term, and each inverted-file has
several partitions determined by text size.

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-23

The following is the conceptual structure of IVF index files with four partitions.

Main Index

Doc
Index
File of
Part. 1

Doc
Index
File of
Part. 2

Doc
Index
File of
Part. 3

Doc
Index
File of
Part. 4

Inverted-File Structure with Four Partitions

Doc Index

Choosing between signature and inverted-file depends on the following factors:

1. Index size – the size of a signature index will not exceed the ratio set by the Scale

parameter, which is 40% of total data size by default. The avarage size of inverted-file
indexes is about 1.5 times of the data size, but could grow to 2 or even 3 times,
depending on the property of data.

2. Response time for queries – on a modern personal computer with sufficient
memory and processing power, users can expect sub-second response time from
inverted-file indexes even if querying on gigabytes of data. Signature indexes will take

longer to respond, especially when dealing with larger quantities of data.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-24

3. Integration with database – unlike signature indexes which are stored as BLOB
objects, inverted-file indexes are stored as external files, so, for example, users cannot

roll back a drop inverted-file index operation.

Try both types of text index to find which one suits the data’s characteristics best. As a
rule of thumb, for less than 100 megabytes of data, signature indexes respond to

queries reasonably fast and usually take less storage space.

Creating Text Indexes on Multiple Columns

A text index can be built using multiple columns. Use CONTAINS and the
concatenation operator (||) to perform multi-column text queries. Users can query on

all columns of the index or just part of them. That is, the column list in a match query
must be “contained” in the column list of a text index to use the text index. Users are
also allowed to use the multi-column query systax even if no text index is created on

the column list, but no text index will be used.

Searching on multiple columns is logically equivalent to merging all columns’ data
then searching.

Â Example 1

To create an inverted-file text index ix on columns author, subject and content of the

table document:

dmSQL> CREATE IVF TEXT INDEX ix ON document(author,subject,content);

dmSQL> SELECT author FORM document WHERE

 2> CONTAINS(author || subject || content, 'reagan');

Â Example 2

To query on partial column lists:

dmSQL> SELECT author FORM document WHERE

2> CONTAINS(author || content, 'reagan');

dmSQL> SELECT author FORM document WHERE CONTAINS(subject, 'reagan');

dmSQL> SELECT author FORM document WHERE subject MATCH 'reagan';

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-25

Â Example 3

In this example, the column subject is included in the text index ix but abstract is not,
so this query will not use any text index.

dmSQL> SELECT author FORM document WHERE

2> CONTAINS(subject || abstract, 'reagan'); // no text index used

Â Example 4

This example illustrates the behavior of query on multiple columns.

dmSQL> CREATE TABLE t1 (c1 char(20), c2 char (20), c3 serial);

dmSQL> INSERT INTO t1 VALUES('apple orange', 'banana grape');

dmSQL> INSERT INTO t1 VALUES('grape orange', null);

dmSQL> CREATE TEXT INDEX ix on t1 (c1, c2);

dmSQL> SELECT c3 FROM t1 WHERE CONTAINS (c1 || c2, 'apple');

 C3

===========

 1

 1 rows selected

dmSQL> SELECT c3 FROM t1 WHERE CONTAINS (c1 || c2, 'orange & grape');

 C3

===========

 1

 2

 2 rows selected

Creating Text Indexes on Media Types

DBMaker's large object columns can register the media type. For example, a LONG

VARBINARY column can know its content is a Microsoft Word file, so that
DBMaker can invoke proper functions to perform a full-text search on a Microsoft
Word document. Table 6-1 summarizes the different media types available and

associated SQL commands.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-26

MEDIA TYPE DATA TYPE FILE TYPE

Microsoft Word , MsWordType MsWordFileType

HTML HtmlType HtmlFileType

XML XmlType XmlFileType

Table 6-1: Media types and corresponding SQL commands

Internally, MsWordType is treated as a LONG VARBINARY object, HtmlType and
XmlType are LONG VARCHAR objects, and MsWordFileType, HtmlFileType and

XmlFileType are FILE objects.

FULL-TEXT SEARCH ON MEDIA-TYPE COLUMNS

A user can use MATCH and CONTAINS to perform full-text search on media-type

columns just as on regular text columns.

Â Example

Create a table with a MS Word type column, insert some data, and search.

dmSQL> create table minutes(id int, doc MsWordFileType)

dmSQL> insert into minutes values(1, 'c:\meeting\20020403-1.doc');

dmSQL> select id from minutes where doc match 'Jeff';

 id

===========

 1

 1 rows selected

A user can also create text indexes on media-type columns.

Â Example

Create a signature text index on the column doc of the table minutes and search.

dmSQL> create text index ix_m on minutes(doc);

dmSQL> select id from minutes where doc match 'Jeff';

 id

===========

 1

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-27

 1 rows selected

CHECK COLUMN DATA’S MEDIA TYPE

It is possible that a media-type column contains data of different types. DBMaker will
not verify the content during inserting or updating data to media-type columns; it is
possible to insert a PowerPoint file to a MsWordFileType column. Altering column

type to media type will change the existing data's attribute. For example, for a LONG
VARBINARY column, if we alter its type to MsWordType, then the columns’ data of
all existing records will be considered as MsWordType thereafter, even if some of

them are PowerPoint documents. If a column has data other than the designated
media type, DBMaker will return a conversion error while doing match operations or
creating text indexes. DBMaker provides a built-in function CHECKMEDIATYPE

to check if a column’s data match the column’s media type. If types match, the
function returns 1, otherwise returns 0.

Â Example

To check where a column’s data match the column’s media type:

dmSQL> insert into minutes values(2, 'c:\meeting\20020403-1.ppt');

dmSQL> SELECT CHECKMEDIATYPE(doc) FROM minutes;

 CHECKMEDIATYPE(DOC)

========================

 1

 0

 2 rows selected

Dropping Text Indexes

Text indexes may be dropped using the JDBA Tool or the dmSQL DROP TEXT
INDEX statement.

Â Example

To drop the ix text index from the table book:

dmSQL> DROP TEXT INDEX ix FROM book;

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-28

Rebuilding Text Indexes

Unlike indexes, the text index will not simultaneously reflect table content if new
records are inserted or old records are updated. Therefore, they need to be rebuilt
manually. Data updated after the most recent rebuild will not be found during a text

index search.

Â Example

dmSQL> CREATE TABLE song (id int, name varchar(20));

dmSQL> INSERT INTO song VALUES(1,'Endless Love');

1 rows inserted

dmSQL> CREATE TEXT INDEX ix_name ON song(name);

dmSQL> INSERT INTO song VALUES(2,'Love Story');

1 rows inserted

dmSQL> SELECT * FROM song WHERE name MATCH 'love';

 id name

=========== ====================

 1 Endless Love

 1 rows selected

There should be two records to match the search pattern, but only one is retrieved.

INCREMENTALLY REBUILD TEXT INDEXES

The REBUILD TEXT INDEX command rebuilds the updated data incrementally.
The REBUILD TEXT INDEX command will collect all new and updated records,

build new signature vectors, and append the new vectors to the tail of the text index.
When only a few records have been changed, the REBUILD TEXT INDEX
<index_name> INCREMENTAL command is the most rapid way to rebuild. The

INCREMENTAL keyword is optional.

Â Example

To rebuild a text index incrementally and display the results:

dmSQL> REBUILD TEXT INDEX ix_name FOR song;

dmSQL> SELECT * FROM song WHERE name MATCH 'love';

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-29

 id name

=========== ====================

 1 Endless Love

 2 Love Story

 2 rows selected

FULLY REBUILD TEXT INDEXES

If a large number of documents are deleted or updated, use the REBUILD TEXT
INDEX <index_name> FULL command to fully rebuild a text index with its original

type (signature or inverted file) and parameters.

Â Example 1

To fully rebuild the ix_name text index for the table song:

dmSQL> REBUILD TEXT INDEX ix_name FOR song;

To reset the creating text index parameters of a text index or use a different type of

text index, it must be dropped and re-created.

Â Example 2

To rebuild the ix_name signature text index for the table song as an inverted-file
index:

dmSQL> DROP TEXT INDEX ix_name FROM song;

dmSQL> CREATE IVF TEXT INDEX ix_name ON song(name);

Â Example 3

To fully rebuild the ix_name signature text index for the table song with a new total
text size.

dmSQL> DROP TEXT INDEX ix_name FROM song;

dmSQL> CREATE TEXT INDEX ix_name FROM song(name) TOTAL TEXT SIZE 60 MB;

Boolean Text Search

Not only can the MATCH operator search a simple text pattern, but also complex

Boolean operations.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-30

A user can specify the following Boolean characters in a search pattern:

‘&’ – AND

‘|’ – OR

‘-’ – EXCLUDE

‘(‘ – Left bracket

‘)’ – Right bracket

The precedence of Boolean characters is: bracket > EXCLUDE = AND > OR. When a
MATCH pattern contains Boolean characters, all the other characters between

Boolean characters are processed as simple search patterns. For example, if the
MATCH pattern is “coffee | tea | apple juice”, then the search pattern includes
“coffee”, “tea” and “apple juice”.

Â Example 1

To search for documents that contain the words ‘love’ and ‘friend’:

dmSQL> SELECT * FROM song WHERE name MATCH 'love & friend';

Â Example 2

The following searches the documents that contain ‘love’ or ‘friend’ and does not
include ‘endless love’.

dmSQL> SELECT * FROM song WHERE name MATCH '(love | friend) - endless
love';

Â Example 3

SQL syntax Boolean operators, such as AND and OR, can be used to get the same
results as the MATCH pattern’s Boolean operators. However, it has lower
performance since only the last part of the search pattern uses the text index. For

example, the following SQL command will only apply the text index scan when
searching for the string ‘friend’, and will use a standard non-indexed search for the
string ‘love’:

dmSQL> SELECT * FROM song WHERE name MATCH 'love’ AND name MATCH
‘friend’;

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-31

Fuzzy Search

Sometimes users would like to search imprecise patterns. If only exact phrases are
allowed, the query ‘William Clinton’ will not find ‘William Jeffery Clinton’ and vice
versa. A Boolean expression like ‘William & Clinton’ may return many irrelevant

results. DBMaker provides a fuzzy search feature that allows users to perform
imprecise queries without receiving too many irrelevant results.

A phrase led by a ‘?’ (Question mark) will be evaluated as a fuzzy expression, e.g.

'?intel pentium'. Words used for a search in a fuzzy expression can be separated by up
to four words in the target text. For example, '?intel pentium' will find
'Intel will release its 1GHz Pentium III processor', and '?amd

k7 athlon''AMD has renamed its K7 processor as Athlon'.

A number of words in the query may be missing from the result set. For example
'?William Jeffery Clinton' can find 'William Clinton' and 'William

J Clinton', but the first word of the query must appear; the query '?William
Clinton' will not find 'Bill Clinton'.

Fuzzy expressions can be combined with other text Boolean operations.

Â Example

DmSQL> SELECT content FROM doc WHERE content MATCH '?intel pentium
& ?amd k6'

DmSQL> SELECT title FROM doc WHERE title MATCH ‘al gore | ?george bush’

The phrase in a fuzzy expression cannot contain any other operators. Thus the

expression '?intel pentium & amd k6' will be evaluated as '(?intel
pentium) & (amd k6)', and '?(intel & pentium)' will cause an error.

Near logic full-text search

A fuzzy match allows users to perform inexact queries without receiving many

irrelevant returns. A near match search is similar to a fuzzy search, but more exact. It
ensures that all words in the query string appear in the text. A phrase led by a '~'(tilde
mark) will be evaluated as a near expression. For example, ‘?amd sales 1ghz
athlon’ will find ‘AMD announced quarterly sales of its 1ghz

 Database Administrator’s Guide1

Athlon chip’, but not, ‘AMD announced quarterly sales of its
Athlon chip’.

Near match search expressions can be combined with other text Boolean operations.

Â Example

DmSQL> SELECT content FROM doc WHERE content MATCH '~intel pentium &
~amd k6'

DmSQL> SELECT title FROM doc WHERE title MATCH ‘al gore | ~george bush’

Fuzzy/Near Logic Matching Rules

The following four rules apply to the matching of a query string to the result string.

1. The first word of the query must appear, e.g. the query '?William Clinton'
will not find 'Bill Clinton'.

2. Words can be separated by a preset number of words (“proximity”), e.g. '?intel
pentium' will find 'Intel will release its 1GHz Pentium III
processor', and '?amd k7 athlon''AMD has renamed its K7

processor as Athlon'. Currently the number of additional words in the
matched result set between words in the query string can be no greater than 4.

3. A number of words in the query may be missing from the result set, e.g.

'?William Jeffery Clinton' can find 'William Clinton' and 'William
J Clinton'. The maximum allowed number of missing words is determined by the
formula:

max_miss = num_words - round(num_words * threshold).

The current threshold is 0.75.

4. All words in the query must appear in the original order, e.g. '?amd 1ghz k7

athlon' will find 'AMD will announce 1GHz Athlon', but not 'AMD
Athlon, formerly known as K7'.

A phrase led by a ‘~’(tilde mark) will be evaluated as a near expression, e.g. '~intel
pentium'. Near search is a special case of fuzzy search that meets the rules 1, 2 and
4 above but does not allow for missed words.

©1995-2003 CASEMaker Inc. 6-32

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-33

6.6 Managing Data Integrity

Applying constraints, or rules, to ensure the data meets certain criteria, can ensure the
integrity of data. For example, verifying that an input value for a particular data item
is within the correct range of values, e.g. a new employee’s age must be between 16

and 90, is an example of data integrity.

In general, the different types of data integrity applicable to tables include those
described in the following subsections.

Not Null

By default, all columns in a table allow NULL values. NOT NULL indicates that
NULL values are not permissible in a column defined with the NOT NULL keyword.

Unique Indexes

Unique indexes, mentioned in section 6.4, “Managing Indexes”, can be used to ensure

no two rows of a table have duplicate values, except NULL values, in a specified
column or set of columns.

Unique Constraints

A UNIQUE constraint may be set on a column, a set of columns, or an entire table.

The UNIQUE constraint ensures that every row in a column has a different value. No
row may have the same value in the column or columns that a UNIQUE constraint is
placed on.

Â Example

To create a table with the UNIQUE constraint on column Name:

dmSQL> CREATE TABLE student (Name CHAR(50) CONSTRAINT u UNIQUE,

 mathematics SMALLINT);

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-34

Check Constraints

A CHECK constraint on a column or set of columns requires that a specified
condition be true for every row of the table. If an INSERT or UPDATE statement is
issued and the condition of the CHECK constraint is evaluated as false, the statement

will fail.

In general, a CHECK constraint can be defined on a column (column constraint) or
set of columns (table constraint).

COLUMN CONSTRAINTS

A column constraint is defined on a specific column and does not affect the other
columns of the same table. When inserting a new row or updating an existing row,

each column constraint is evaluated.

TABLE CONSTRAINTS

A table constraint is defined on a set of columns. When inserting a new row or

updating an existing row, the table constraint is evaluated after, all column constraints
are evaluated as true. Only after the table constraint is also evaluated as true will the
statement be processed.

Â Example 1

To create a table with column and table constraints:

dmSQL> CREATE TABLE student (mathematics SMALLINT

 CHECK VALUE >= 0 AND VALUE <= 100,

 chemistry SMALLINT

 CHECK VALUE >= 0 AND VALUE <= 100,

 CHECK mathematics + chemistry <= 200);

Â Example 2

To create a table with column and table constraints using standard SQL99 syntax:

dmSQL> CREATE TABLE student (mathematics SMALLINT

 CONSTRAINT CHECK >= 0 AND <= 100,

 chemistry SMALLINT

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-35

 CONSTRAINT CHECK >= 0 AND <= 100,

 CONSTRAINT CHECK mathematics + chemistry <=
200);

The keyword VALUE is used to represent the value of the column in column
constraints, but the columns names are used to represent the values of the columns in

a table constraint.

Primary Keys

A table can have one primary key, which includes a column or a group of columns
with unique values to identify each row. A primary key is similar to a unique index

except that its columns cannot contain NULL values. When a user creates a primary
key, DBMaker will create a unique index called PrimaryKey on the table. After
creating a table, primary keys may modified or added as long as all columns to be in

the primary key contain unique, non-null values. A primary key may be added to a
table or modified by using the ALTER TABLE statement. Furthermore, a primary key
added to a table or modified in this fashion may be stored on a different tablespace

from the table.

CREATING PRIMARY KEYS

Â Example 1

To create a table with its primary key on the ID column:

dmSQL> CREATE TABLE employee (

 ID INTEGER PRIMARY KEY,

 name CHAR(30),

 nation CHAR(20)

);

Â Example 2

To create a table with a compound primary key on the ID and name columns on
tablespace ts1:

dmSQL> CREATE TABLE employee (

 ID INTEGER,

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-36

 name CHAR(30),

 nation CHAR(20),

 PRIMARY KEY (ID, name)

);

Â Example 3

To add a primary key to the employee table:

dmSQL> ALTER TABLE employee PRIMARY KEY (ID , name);

Â Example 4

To add a primary key PK1 to the employee table in tablespace TS1 using SQL99

standard syntax:

dmSQL> ALTER TABLE employee ADD CONSTRAINT PK1 PRIMARY KEY (ID , name)
IN TS1;

Â Example 5

To create a table with its primary key on the ID column using SQL99 standard

syntax:

dmSQL> CREATE TABLE employee (

 ID INTEGER CONSTRAINT pk1 PRIMARY KEY,

 name CHAR(30),

 nation CHAR(20)

);

DROPPING PRIMARY KEYS

A user can drop a primary key when it is no longer necessary. Before dropping the
primary key, all foreign keys that refer to that primary key should be dropped.

Â Example

To drop the primary key for the employee table:

dmSQL> ALTER TABLE employee DROP PRIMARY KEY;

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-37

Foreign Keys (Referential Integrity)

A column in a table containing the same values as the primary key from another table
is known as a foreign key. A foreign key denotes the relationship between the two
tables. A user can create a foreign key on a column or a group of columns in a table,

and use it to reference a column or group of columns from another table. The
referenced columns should be a primary key or a unique index, and cannot contain
NULL values.

Referenced columns must already contain the key values being inserted into a new row
for the foreign key table. If they are not present, the user will not be allowed to insert
the row. In addition, all key values in the foreign key table must be deleted before

deleting the key values in the referenced table.

A user can create or drop a primary key or foreign key whenever it is necessary.
DBMaker will check the uniqueness of a primary key when it is created. DBMaker

will also check whether all the key values already exist in the referenced table when a
foreign key is created.

CREATING FOREIGN KEYS

A foreign key is used to refer to another table by specifying the referencing and
referenced columns. Both the referencing and referenced columns should be mapped
to each other; their schema should be the same. The mapping columns should be the

same type and length. The referenced columns (specified by the primary key or unique
index) should be NOT NULL, but the referencing columns (specified by the foreign
key) can be NOT NULL or NULL. If the referenced column(s) are not specified, the

primary key on the referenced table is regarded as the referenced column(s). Foreign
keys may be created using the JDBA Tool Create foreign key wizard or the dmSQL
FOREIGN KEY option.

Â Example 1

To create a foreign key f1 for the salary table, referencing the employee table with a

compound primary key for its ID and name columns:

dmSQL> ALTER TABLE salary FOREIGN KEY f1(ID, name) REFERENCES employee;

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-38

Â Example 2

Alternatively, specify the foreign key while creating the salary table:

dmSQL> CREATE TABLE salary (

 ID INT,

 name CHAR(30),

 money INT,

 FOREIGN KEY f1 (ID, name) REFERENCES employee

);

Â Example 3

Using SQL99 standard syntax, specify foreign key fk1 while creating table t1:

dmSQL> CREATE TABLE t1 (

 c1 int,

 c2 int CONSTRAINT fk1 REFERENCES t2 (c1) ON DELETE SET NULL);

If a primary key exists for the employee table, a foreign key can be made for another

table to refer to it without specifying the referenced columns.

DROPPING FOREIGN KEYS

If the relationship defined by a foreign key is not necessary, drop it using the JDBA

Tool or the dmSQL DROP FOREIGN KEY command.

Â Example 1

To drop a foreign key from the salary table:

dmSQL> ALTER TABLE salary DROP FOREIGN KEY f1;

6.7 Managing Serial Numbers

DBMaker provides a feature to automatically generate serial numbers. This feature is
especially useful in multi-user environments for generating and returning unique

sequential numbers without the overhead of disk I/O or transaction locking.

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-39

Serial numbers are signed 32-bit integers in DBMaker. A table can only have one
column containing the SERIAL data type for generating serial numbers.

A user can specify the starting number for the SERIAL type column in any table when
creating a table. If the starting number for a SERIAL type column is not specified, it is
set to 1.

To trigger DBMaker to generate a serial number, insert a new row and supply a
NULL value for the serial column. If a user inserts a new row and supplies an integer
value instead of a NULL value, DBMaker will not generate a serial number. If the

supplied integer value is greater than the last serial number generated, DBMaker will
reset the sequence of generated serial numbers to start with the supplied integer value.
SERIAL type columns cannot be defined with default values or constraints.

CREATING SERIAL COLUMNS

A SERIAL type column may be created using the JDBA Tool or dmSQL. A serial
column must be defined with the SERIAL type keyword and an optional starting

number.

Â Example

To create a SERIAL type data column ID for the employee table and specify its
starting number as 1001:

dmSQL> CREATE TABLE employee (nation CHAR(20) DEFAULT ‘R.O.C’,

 ID SERIAL(1001),

 name CHAR(30) NOT NULL,

 joinDate DATE DEFAULT CURDATE(),

 height FLOAT,

 degree VARCHAR(200)) IN ts1;

GENERATING SERIAL NUMBERS

DBMaker automatically generates serial numbers when a NULL is inserted into the
SERIAL type column.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-40

Â Example

To insert a new row into the employee table and generate a serial number for the
column ID:

dmSQL> INSERT INTO employee VALUES

 (‘U.S.A’, NULL, ‘Jeff’, , 6.6, ‘Director’, NULL);

RETRIEVING SERIAL NUMBERS

DBMaker keeps the last generated serial number in the LAST_SERIAL column of the
system table SYSCONINFO for each connection. After inserting a record containing
a serial number, the serial number can be retrieved from LAST_SERIAL.

Â Example

To get the serial number that has just been generated for the inserted record:

dmSQL> select LAST_SERIAL from SYSCONINFO;

LAST_SERIAL

===========

 200

 1 rows selected

RESETTING SERIAL NUMBERS

A user can reset the counter for a serial column. This allows a new sequence to be
started in a serial column without having to modify the table.

Â Example

To alter the serial counter value for the employee table from its current value to 3000:

dmSQL> ALTER TABLE employee SET SERIAL 3000;

6.8 Managing Domains

A domain is a type of integrity constraint used when defining a column. Domains

specify the data type for the column, and may specify a default value or a value
constraint. When a column is defined using a domain, it inherits the properties of the

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-41

domain, (data type, default value, and value constraint), without requiring the user to
specify them.

Specifying the default value and value constraint using domains achieves the same
result as specifying them in a standard column definition. If a user specifies a default
value for a column, it will override the default value specified in a domain.

Any value constraints specified in the column definition will be used in addition to the
value constraints specified in the domain. If a user defines a column using a domain
and specifies additional value constraints, the additional value constraints must not

conflict with those defined in the domain.

DBMaker does not check for conflicting value constraints, so it may be possible to
define value constraints that would not allow the user to enter any values at all. All

data types supported by DBMaker except the SERIAL type can be used in domains.

CREATING DOMAINS

A domain is defined by a domain name, an optional default value, and an optional

constraint. For example, a user might want to ensure that all columns dealing with
some form of titles, (movie, CD, or videotape), have a data type of VARCHAR, are
no more than 35 characters in length, and do not permit insertion of NULL values.

Domains may be created using the JDBA Tool or the dmSQL CREATE DOMAIN
statement.

Â Example 1

The keyword VALUE is used to represent the value of the column defined on the
domain. To create a specific domain that is used in the subsequent CREATE TABLE

statements:

dmSQL> CREATE DOMAIN title_type VARCHAR(35) CHECK VALUE IS NOT NULL;

Â Example 2

To define columns as in the CREATE TABLE statement:

dmSQL> CREATE TABLE movie_tit les (title
title_type, ..., ...)

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-42

DROPPING DOMAINS

A domain can be dropped only when there are no columns referenced on it. Domains
may be dropped using the JDBA Tool or the dmSQL DROP DOMAIN statement.

Â Example

To use the DROP DOMAIN statement:

dmSQL> DROP DOMAIN title_type;

6.9 Unloading / Loading Objects

Sometimes the user may need to save database data to an external text file. DBMaker
provides the UNLOAD and LOAD commands just for this purpose. Objects that are
unloaded from the database are not removed from the database; they are simply saved

as one or more external text files. When an object is loaded onto a database, the
schema of that object is also recreated.

Unloading Objects

Unload is a tool provided by dmSQL used to transfer the contents of a database to an

external text file. After the unload procedure succeeds, dmSQL will produce two text
files. One stores the script, with extension name .s0, to establish the database object
and the other stores the BLOB data, with the extension name .bn.

There are eight options for the unload command: unload database, unload table,
unload schema, unload data, unload project, unload module, unload procedure, and
unload procedure definition. Unloading an object requires that the user have SELECT

privilege on the object in question. For instance, if a user has SELECT privilege on a
table, then only that user can unload the content of this table. Only a user with DBA
or SYSADM authority may unload the database.

UNLOAD [DB | DATABASE]

A user with DBA or SYSADM authority may unload the content of a database to an
external text file. This file includes information about security, tablespaces, definitions,

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-43

indices, synonyms, data, etc. For each database, dmSQL will generate at least two
external files, one script, and one BLOB data.

Â Example

dmSQL> unload db to empdb;

The name of the external text file is empdb. By default, dmSQL will create these files
in the current working directory. In the above statement, there are at least two text
files created, empdb.s0 and empdb.b0. If the unloaded BLOB file empdb.b0 exceeds

the maximum size allowed by the operating system, dmSQL will sequentially generate
files empdb.b1, empdb.b2, …, empdb.bn, up to a maximum number of 99. dmSQL
will always generate one script file emodb.s0, with a maximum size limited by the

operating system.

UNLOAD TABLE

The UNLOAD TABLE command unloads tables to an external file and will record

the definition, synonyms, indices, primary key, foreign keys, and data of the table. Use
the wild cards “_” and “%”, which correspond to “?” and “*” in DOS in the owner
and table name. The wild card “_” represents a character, and “%” represents a set of

characters.

UNLOAD SCHEMA

The usage of this option is very similar to unload table. It can only unload the

definition of a table; it cannot unload the data in a table. It uses the same wild cards as
the UNLOAD TABLE option.

UNLOAD DATA

This option will unload all data from a table. It will not unload the definition of the
table. UNLOAD DATA uses the same wildcards as the previous two options. Only
users with the SELECT privilege on the unloaded table may execute the UNLOAD

DATA command.

DBMaker 3.6 and later versions support an additional syntax for unloading data:

dm SQL>unload data from (select statement) to file_name.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-44

If the select statement is a join, the projection columns must be from the same table,
the following statement is executable. DDL commands, delete, insert, or updates are

not permitted.

Â Example 1

Valid syntax:

dmSQL> unload data from (select t1.c1, t1.c2 from t1, t2 where t1.c1=
t2.c1) to f1;

Â Example 2

Illegal syntax:

dmSQL> unload data from (select t1.c1, t2.c1 from t1, t2 where t1.c1 =
t2.c1) to f1;

No aggregate or built-in functions are permitted in the projection columns.

Â Example 3

Illegal syntax:

dmSQL> unload data from (select avg(c1) from t1) to f1;

dmSQL> unload data from (select now() from t1) to f1;

Views and synonyms are permitted.

Â Example 4

Valid syntax:

dmSQL> unload data from (select * from s1 where c1 > 10) to f1;

dmSQL> unload data from (select * from v1 where c1 < 10) to f1;

UNLOAD PROJECT

This option allows a user to unload an ESQL/C project to an external text file.

UNLOAD MODULE

This option allows a user to unload a module to an external file.

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-45

UNLOAD [PROC | PROCEDURE]

This option allows a user to unload the stored procedures to an external file.

UNLOAD [PROC DEFINITION | PROCEDURE
DEFINITION]

This option allows a user to unload the definition of the stored procedure to an
external text file.

Â Example 1

The following will unload the table e tab for the current user; if there are any blanks
in the table name add double quotes:

dmSQL> unload table from “e tab” to empfile;

Â Example 2

The following will unload all tables with the names starting with emp for the
SYSADM owner, for example, emptab, empname, … etc:

dmSQL> unload table from SYSADM.emp% to empfile;

Â Example 3

The following will unload the schema of all tables with the name ktab:

dmSQL> unload schema from %.ktab to kfile;

Unload the table with names containing wild cards. Use the escape character “\”, or
double quotes on the name.

Â Example 4

The following commands will unload data from a table named abc%:

dmSQL> unload data from abc\% to abcfile;

dmSQL> unload data from “abc%” to abcfile;

Loading Objects

The LOAD command is a tool provided by dmSQL, and is used to transfer a database

object that has already been unloaded to a text file, into the database. There are seven

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-46

options: load database, load table, load schema, load data, load project, load module,
and load procedure. A file must be unloaded and loaded with the same option. For

example, load a database from a text file that was unloaded with the database option.
When loading a text file, set the number of commands <n> to automatically commit
the transaction. The default number is 1000. The size of <n> will affect whether the

transaction succeeds or not and the loading speed. The journal will fill easily with a
large <n> value and could cause the transaction to fail. A small <n> value will increase
the number of transactions committed and slow down the loading speed. If there are

errors occurring during the loading procedure, an error messages will be recorded in a
log file, which the system will use to undo executed commands. The log file is stored
in the same directory as the external text file being loaded and does not stop the

loading procedure.

LOAD [DB | DATABASE]

Use the LOAD [DB | DATABASE] command to transfer the contents of a database

to a new database. First, unload the database to transfer to an external text file, and
then use the LOAD DB command to load the contents of the database from the text
file. Before loading a database, create a new one. The name of the new database can be

different from the old one. Only a DBA or a SYSADM may execute this command.

Â Example

The following set option for LOAD DB has been added to versions above DBMaker
3.6:

Set LOAD DB [safe | fast]

The database will run in normal mode if LOAD DB is set to SAFE. The load utility
will rollback to the last committed command if any error occur during loading, the
error messages will return to screen, and write to the log file of the load utility. When

using the set LOAD DB in fast mode, the rule for loading the utility in DBMaker
versions earlier than 3.6, will make the whole load procedure work under the no
journal mode. Setting LOAD DB in fast mode will speed up the load utility, but it

will make the database shut down in no journal mode if any error occurs. For
example, suppose that the load file has tablespace creation but it is not specified in the
dmconfig.ini file. If LOAD DB is set to use the safe option, the following error

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-47

NOTE

message, “ERROR(8002): [DBMaker] keyword entry is required for configuration
file”, will be reported and then the load command will rollback. If LOAD DB is set to

use the fast option, then the following error message occurs, “ERROR(30017),
[DBMaker] errors occurred in no-journal mode, shut down database”.

The default option is SET LOADDB SAFE”.

LOAD TABLE

This option permits loading the contents of a table, including schema and data, from
a text file. When loading a table from a text file, make sure that the table name is

unique.

LOAD SCHEMA

This option allows users to load the schema, not including the data, from a table

contained in a text file. When loading a table schema from a text file, ensure that the
table name is unique.

LOAD DATA

A corresponding table must exist when loading data from an external text file. In
versions earlier than 3.6 when the errors occur during the LOAD DATA procedure, it
will rollback to the last committed command.

Â Example

DBMaker 3.6 and later versions support the following options:

Set load data skip [error] | stop [on error]

If LOAD DATA SKIP ERROR is set then the following error messages will be
skipped during the loading of data:

ERROR(401) unique key violation.

ERROR(410) referential constraint violation: value does not exist in parent key.

ERROR(6521) table or view does not exist.

ERROR(6002) syntax error.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-48

ERROR(6015) incomplete SQL statement input.

The errors will be skipped and the load utility will resume execution of subsequent

commands. The above errors are the most common errors to occur during loading of
data. When LOAD DATA STOP or STOP ON ERROR is set, the whole LOAD
command will be rolled back if an error occurs. The default value for this option is

LOAD DATA SKIP ERROR. All the error messages that occur during the loading of
data will be written into the log file.

LOAD MODULE

This option allows a user to load a module from an external text file.

LOAD PROJECT

This option allows a user to load an ESQL/C project from an external text file.

LOAD [PROC | PROCEDURE]

This option allows a user to load a stored procedure from an external text file.

Â Example 1

The following command loads the database from a file named empdb, and commits it
automatically every 100 commands during loading. The system will generate a log file

named empdb log in the same directory:

dmSQL> load db from empdb 100;

Â Example 2

The following command will load a table from a file named empfile, and it will
commit automatically every 50 commands during loading:

dmSQL> load table from empfile 50;

Â Example 3

The following command will permit the loading of data from an external data file
named datafile and will commit automatically every 1000 commands using the
default setting:

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-49

dmSQL> load data from datafile;

6.10 Browsing System Catalogs

DBMaker keeps detailed information on all schema objects in the system catalog tables.
For more information on system catalog tables, see “Appendix B”.

SCHEMA OBJECT INFORMATION SYSTEM CATALOG TABLE NAME

Tables SYSTABLE

Columns SYSCOLUMN

Views SYSVIEWDATA

Synonyms SYSSYNONYM

Indexes SYSINDEX

Domains SYSDOMAIN

Serial numbers SYSCONINFO

Table constraints SYSTABLE

Column constraints SYSCOLUMN

Domain constraints SYSDOMAIN

Table 6-2: Schema information in the System Catalog tables

6.11 Calculating the Space Required

As stated in previous sections, only tables and indexes occupy physical disk space. To

manage disk space, estimate the size of each object and decide which tablespace each
object will belong to before creating them. In the estimation phase, the database
administrator must have a clear picture of how to construct tablespaces using tables

and how much hardware will be required to support the database in the future.

Generally, tables that are split between several tablespaces will get higher performance
than tables in a single large tablespace. Conversely, many small tablespaces are harder

to manage.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-50

How to Estimate the Size of a Table

The following formulas show how to estimate the size of a table and the size of an
index:

table size = row size × number of rows × 1.05

index size = key size × number of rows × 1.20

These two formulas are used to estimate the size needed for a tablespace by adding the
size of all tables and indexes in it. In the above formulas, 1.05 and 1.20 are estimates

of the resource overhead used to calculate the system resources required. The row size
and key size contain the internal record header size. The following subsections show
how to calculate the size of a row and a key.

ROW SIZE

The storage size of a row, excluding BLOB data, cannot exceed 3996 bytes and
consists of the space required for data storage and an internal record header.

The size of an internal record header is equal to:

internal record header size = (no. of columns + 1) × 2

Each data type has space requirements:

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-51

TYPE COLUMN LENGTH

BINARY(n) n

CHAR(n) n

SMALLINT 2

INTEGER 4

FLOAT 4

SERIAL 4

DOUBLE 8

DECIMAL(p,s) [(p+1)/2]+2

TIME 4

DATE 4

TIMESTAMP 12

OID 8

VARCHAR(n) 0.n

FILE 20

LONG VARBINARY 20+X

LONG VARCHAR 20+X

 Table 6-4: Data Types and sizes

NOTE The size of a VARCHAR type column depends on the size of the actual data, but

cannot exceed the maximum size defined. A BLOB type column (LONG

VARCHAR or LONG VARBINARY) will occupy at least 20 bytes in the data file

and the actual data will be stored in the BLOB file or a data file. For more detailed

information, refer to Chapter 7, “Large Object Management”. If the value in a

column is NULL, it does not occupy any space.

Â Example

To create a table with five columns defined:

dmSQL> CREATE TABLE employee (ID INTEGER NOT NULL,

 name CHAR(30) NOT NULL,

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-52

 height FLOAT,

 degree VARCHAR(200),

 picture LONG VARCHAR);

After issuing this command, insert rows into the table and calculate the size of the
record:

(3001, "Jeff Yang", 175.5, "Stanford PhD.", [pic1]) where pic1 is an image.

DATA ITEM TYPE SIZE

ID integer 4 bytes

name char 30 bytes

height float 4 bytes

degree varchar 13 bytes

picture long varchar 20 bytes

row header — 12 bytes

 Total 83 bytes

= (4 + 30 + 4 + 13 + 20) + (5 + 1) × 2

= 83 bytes

(3002, "George Wang", 180.0, "NCTU Ms.", NULL)

DATA ITEM TYPE SIZE

ID integer 4 bytes

name char 30 bytes

height float 4 bytes

degree varchar 8 bytes

picture long varchar 0 bytes

row header — 12 bytes

 Total 58 bytes

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-53

= (4 + 30 + 4 + 8 + 0) + (5 + 1) × 2

= 58 bytes

DBMaker will verify that the row size does not exceed 3996 bytes when inserting or
updating rows. When creating a table, DBMaker also verifies that the smallest possible
row size does not exceed 3996 bytes.

The smallest row size in the above example can be calculated as follows:

minimum row size = (4 + 30 + 0 + 0 + 0) + (5 + 1) × 2

= 46 bytes

The minimum row size does not exceed 3996 bytes, so DBMaker will allow this table
to be created.

KEY SIZE

Key storage size is made up of the space required for data storage in the index columns
and an internal record header. It also requires an extra eight bytes for an internal row
identifier. The internal row identifier also requires one byte in the record header.

The size of the internal record header is equal to:

Internal record header size = (no. of columns + 1 + 1) × 2

For example, if an index is created on a single column with the SMALLINT type, the
size of each key will be:

key size = 2 + 8 + (1 + 1 + 2) × 8

= 26 bytes

In this case, two bytes are used by the data in the key column, eight bytes are used for
the internal row ID for each key, and six bytes are used for the record header.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-54

ESTIMATING THE SIZE OF TABLESPACES AND TABLES

The following example demonstrates how to estimate the size of a tablespace and its
tables. Assume there is a tablespace that contains three tables A, B, and C, and one

index D created for table A. Columns in table A are defined as INTEGER, and
CHAR(10). Columns in table B are defined as SMALLINT, CHAR(10), FLOAT,
and VARCHAR(200). Columns in table C are defined as SMALLINT, INTEGER,

and LONG VARCHAR. Index D is created on the first column in table A. Table A,
table B and table C consist of 1500, 3000, and 250 rows respectively.

The row and key sizes for this database can be calculated as shown below. Suppose the

average length of the VARCHAR column in table B is 80 bytes, and the size of each
BLOB column in the data file in table C is 20 bytes:

In table A: row size = (4 + 4 + 10) + 8

= 26 bytes

In table B:

row size = (2 + 10 + 4 + 80) + 10

= 106 bytes

In table C: row size = (2 + 4 + 20) + 8

= 34 bytes

If the average size of each BLOB item in table C is 9000 bytes, then specify the BLOB
frame size to be 11KB. See Chapter 7, “Large Object Management” for more

information about BLOB data.

Index D: keysize = 4 + 4 + 8

=16 bytes

The table sizes for this database can be calculated as shown below. Note that the size
of table A also includes the size of index D.

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-55

Table A: table size = (26 1500 1.05) + (16 1500 1.2)

= 40950 + 24000 bytes

= 10 + 6 pages

= 16 pages

Table B: table size = 106 3000 1.05

= 333900 bytes

= 82 pages

Table C: table size = 34 250 1.05

= 34 250 1.05 bytes

= 3 pages

In the BLOB file, the size of table C is 250 frames (every row needs a frame).

After examining the above figures, create a tablespace with at least one data file
(16+82+3=101 pages) and one BLOB file (250 frames with a frame size of 11KB) to

store the above tables and index.

Estimate the size of a tablespace when creating it to avoid the trouble of adding or
enlarging files later.

6.12 Checking Database
Consistency

DBMaker includes several commands that a user with DBA privilege can use to check

the consistency of a database. Examples of database consistency include an index that
has a key but does not exist in the table, or a key that exists in a foreign table but does
not exist in the parent table. DBMaker supports six commands to check different

levels of consistency. These commands are time consuming when the database is large
and they will take locks, administrators should only use them when necessary.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-56

Checking Indexes

DBMaker allows a user with privilege on the index in question to check an index and
its relationship to a table. It checks if the index structure (B-tree) is correct, if the data
is in order, and if the index keys exactly match the data records, etc.

If an index seems to have a problem, use this command to verify that a problem exists.
If DBMaker finds inconsistencies in the index, drop and rebuild the index to fix it.

Â Example

To check the index consistency for the index IDX1 in the TBL1 table:

dmSQL> CHECK INDEX TBL1.IDX1;

Checking Tables

DBMaker allows a user to check all records, indexes, and BLOB data associated with a
table and the relationship between foreign and parent tables, given that the user has
privilege on those objects. If there is any inconsistency in a table, unload all records in

the table, drop the table, recreate it, and then reinsert all records.

Â Example

To check consistency for the TBL1 table:

dmSQL> CHECK TABLE TBL1;

Checking Catalogs

DBMaker allows a user with DBA privilege to check the consistency of system tables.

If the system catalogs have errors, the database may be seriously corrupted.

Â Example

To check the consistency of the system catalogs:

dmSQL> CHECK CATALOG;

1Managing Schema Objects 6

©1995-2003 CASEMaker Inc. 6-57

Checking Databases

DBMaker also allows a user with DBA privilege to check the whole database including
the system catalogs and all tablespaces.

Â Example

To check the consistency of an entire database:

dmSQL> CHECK DB;

If corruption exists and the database has been backed up, use the most recent backup
to restore it. For more information, refer to Chapter 14, Database Recovery, Backup,
and Restoration.

When the database has no backup and an index is corrupted, drop and recreate the
affected indexes. If any other type of corruption has occurred, immediately backup the
database including all data and journal files. Then try to shut down and restart the

database, then run the CHECK commands again. After DBMaker automatically
recovers from a crash, some types of corruption may be fixed. If any inconsistency still
exists, contact a CASEMaker technical support representative to help fix the

remaining problems with the database.

6.13 Updating Statistics for Schema
Objects

Outdated statistics values for schema objects (tables, indexes, columns) may cause the
DBMaker optimizer to use an inefficient plan for an SQL statement. If users have
inserted large amounts of data into the database after the last time the database

administrator updated the statistics values, update the values again.

Â Example 1

To update the statistics values for all schema objects:

dmSQL> update statistics;

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 6-58

If a database is extremely large, it will take a lot of time to update statistical values for
all of the schema objects. An alternative method is to update statistics on specific

schema objects that have been modified since the last update, and set the sampling
rate.

Â Example 2

To update statistics for tables:

dmSQL> update statistics table1, table2, user1.table3;

Â Example 3

To update statistics for index idx1 on table1:

dmSQL> update statistics table1 (index (idx1));

Â Example 4

To update statistics for column col1 on table1:

dmSQL> update statistics table1 (column (col1));

Â Example 5

To update statistics for column col1 and index idx1 on table1:

dmSQL> update statistics table1 (column (col1) index (idx1));

Â Example 6

To update statistics for tablespace ts1:

dmSQL> update tablespace statistics ts1;

Please refer to Chapter 17, Performance Tuning for more information about updating
statistics and the SQL optimizer.

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-1

7 Large Object
Management

A Large Object (LO) is any variable length data object, such as document text, images,
sound, or video. DBMaker has a great deal of flexibility when dealing with large

objects and provides an excellent mechanism for unstructured data.

DBMaker does not limit the number of LOs that can be in a table, and there is no
aggregate size limit on LO columns. This means the capacity of each LO column can

be up to 2GB. DBMaker can use extensions to the SQL language to directly access
Large Objects, eliminating the need for users to learn any special syntax. All access to
LO columns is transparent in SQL statements, which makes using large objects easy to

learn. Furthermore, users can input or output LO data to and from a file using SQL
commands or the ODBC interface.

If the same LO data is contained in many tuples, DBMaker will store only a single LO

and share it between the tuples instead of duplicating a copy for each tuple. This can
decrease disk utilization dramatically. However, from the user’s view there is always a
dedicated LO item for each tuple. For example, if one user updates a shared LO in

one tuple, the other tuples that share that LO are not influenced and users still see the
unchanged LO data. The LO that was updated will be stored as a new LO in the
database.

An LO is always written to disk as a single unit. However, users can read all or part of
an LO. The SELECT, UPDATE, INSERT and DELETE statements are permitted
with LOs. LO items can only be used in Boolean expressions if users would like to test

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-2

them for NULL values. DBMaker also provides the MATCH function for use with
LOs to perform searches with pattern matching. The MATCH function is similar to

the LIKE function except it only works on LO columns and does not permit the use
of wildcard characters.

DBMaker does not permit the operation of arithmetic or string expressions on LO

items, nor can the LO items be used in any of the following ways:

 With aggregate functions

 With the IN, ANY, EXIST or LIKE predicates

 With the GROUP BY clause

 With the ORDER BY clause

There are two kinds of LOs: Binary Large OBjects (BLOBs), which are stored in

database files, and File Objects (FOs), which are stored as external files on a host file
system.

Large Object
(LO)

File Object
(FO)

Binary Large
Object
(BLOB)

stored as an external file stored inside database files

Figure 7-1: Large Objects supported by DBMaker

A BLOB, stored in database files, can only be accessed through DBMaker and insists

on the data integrity provided by DBMaker, such as transaction controls, logging and
recovery. A BLOB can only be shared between tuples in the same table. However, a
FO can be shared between tables in a database. In addition, when the data needs to be

shared by the other non-database applications, using FOs will be more flexible.

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-3

7.1 Managing BLOBs

There are two types of BLOB items, LONG VARCHAR (or CLOB) and LONG
VARBINARY. Data of the LONG VARCHAR type can consist of any kind of text
data such as memos, long text, HTML source files, or program source files. Data of

the LONG VARBINARY type can be any kind of binary data such as images, sound,
spreadsheets, program modules, etc.

A BLOB may be stored in a data file or a BLOB file, depending on its size. Although

the format of a data file is fixed, the format of BLOB files in the database should be
customized to obtain better performance and disk utilization.

The choice of BLOB logging is optional because it occupies a large amount of the

journal space and can pull down performance. To save logging space and improve
performance, the BLOB journal may be turned off. However, if BLOB logging is
turned off, DBMaker will not ensure that the BLOB contents will be correct after the

database has been restored from a backup. If the BLOB journal is turned on, make
sure the journal file has enough space to accommodate the BLOB data.

Customizing BLOB Space

DBMaker automatically decides where to store BLOB data. If the size of a LONG

VARCHAR or LONG VARBINARY column is small and the total length of a tuple
does not exceed the limitation for the maximum tuple size, DBMaker will put the
BLOB data in a column together with the other data in the database. This increases

efficiency because the BLOB data is also fetched when DBMaker fetches a tuple.

When the total length of a data tuple exceeds the limitation of the maximum tuple
size, DBMaker will store the BLOB data separately. In this situation, getting the

BLOB data (called an indirect BLOB) requires two disk operations, one to fetch the
data tuple, and one to fetch the BLOB data.

According to its size, an indirect BLOB may be stored in a DATA file or in a BLOB

file in the same tablespace as the table. The data in an indirect BLOB column is stored
in a data file when its size is equal to or less than 3950 bytes. Otherwise, it is stored in
a BLOB file.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-4

F
i
g
u
r
e

7
-

Figure 7-7-2: DBMaker accesses BLOB data through DCCA

Data files contain pages, and BLOB files contain frames. There are two major
differences between pages and frames:

 The size of a page is fixed at 4KB, but a user can customize the size of a frame.

 A page can contain more than one tuple, but a frame can only contain a single
BLOB.

The frame size of a BLOB file can be customized before database creation to increase
performance and disk utilization. To customize the frame size, specify the value in
kilobytes of the DB_BFRSZ configuration keyword in dmconfig.ini. The default

value of DB_BFRSZ is 16. Refer to Section 4.2, Creating a Database for more
information on configuration parameters that must be set before database creation.

Â Example

To specify the BLOB frame size by adding a line to the dmconfig.ini file:

DB_BFRSZ = 10 ; BLOB frame size = 10K bytes

The valid range of DB_BFRSZ is 8 to 256, except in the Microsoft Windows 3.1
environment where the frame size is fixed at 8KB.

The frame size of all BLOB files in a database is the same. Once a database is created,

the BLOB frame size cannot be changed from its initial setting. DBMaker will keep

data files
BLOB files

Database Communication
and Control Area

(DCCA)

DBMaker
Process

MYDB.SDB

MYDB.DB

MYDB2.DB
MYDB.BB

small/large BLOB

small BLOB large BLOB

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-5

this value in the database system information table. When the database is restarted,
DBMaker will get the original value from the system information page and ignore the

DB_BFRSZ keyword in dmconfig.ini.

Â Example

To query the SYSINFO system table for the frame size:

dmSQL> SELECT INFO, VALUE FROM SYSINFO WHERE INFO = ‘FRAME_SIZE’;

 INFO VALUE

================================ ================================

FRAME_SIZE 16384

1 rows selected

Determining the frame size is a trade-off between disk utilization and performance. If

entire BLOBs are frequently retrieved, adjusting the frame size to contain the entire
BLOB will result in better performance because only one disk access is required.
However, there may be large variations in the size of the BLOB data. If the frame size

is set large enough to contain the largest BLOB, it may waste disk space, as other
frames that contain smaller BLOBs will contain unused disk space.

Alternatively, the frame size is only large enough to contain the smallest BLOBs,

performance will be degraded when fetching larger BLOBs that are stored in multiple
frames.

Each frame contains a header to record frame information. If the frame size is 8KB,

for example, the space occupied by the BLOB will be less than 8192 bytes. About
1.8KB is reserved to store information (such as where other frames are) for each
BLOB item, so the usable space in the first frame of a BLOB is much less than the size

of the entire frame. Thus, if the actual size of a BLOB is 8192 bytes, it will occupy
two frames: the first 6.2KB of the BLOB are stored in the first frame and the
remaining bytes of the BLOB are stored in the second frame.

A group contains 252 frames. The first frame of the group is a 4-KB directory page.
The remaining 251 frames are for data, and their size is determined by DB_BFRSZ.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-6

Figure 7-3: the structure of a BLOB file

Users can calculate the size of a BLOB file according to the total number of frames,
directory pages and data frames.

The following formula shows how to calculate the size of a BLOB in KB:

Number of directory pages = total frames/252

BLOB frames = total frames – number of directory pages

BLOB file size = number of directory pages x 4 KB + BLOB frames x DB_BFRSZ

For example, if the BLOB frame size is 16-KB, the size of a BLOB file with five
frames is:

1 x directory page + 4 x data frames

= 1 x 4KB + 4 x 16KB

= 68 KB

DB_BbFil specifies the system BLOB file name in the system tablespace,

SYSTABLESPACE. Users cannot specify the size of the system BLOB file. The
default file name for the system BLOB file is the database name concatenated with
'.SBB'。

Frame 1 Frame 2 Frame 253
Frame
252 Frame

Frame Header

BLOB Data

Free Space

Frame size determineded by
DB_BFRSZ while creating the
database

waste space

space for BLOB data

DB_BFR4KB

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-7

DB_UsrBb specifies the default user BLOB file name in the default tablespace,
DEFTABLESPACE, and its size.

For more details on adding new BLOB files to an existing user tablespace, refer to the
subsection Adding Files to Tablespaces in Section 5.3.

Generating BLOBs

A BLOB column is the same as other columns except that its data type is LONG

VARCHAR or LONG VARBINARY.

Â Example

To create two BLOB columns named note and photo:

dmSQL> CREATE TABLE employee (id INTEGER, note LONG VARCHAR, photo LONG
VARBINARY);

Insert BLOB data from the aa.txt file and an image file img001.jpg:

dmSQL> INSERT INTO employee VALUES(1, 'aa.txt', 'img001.jpg');

Alternatively, insert BLOB data from the ab.txt file and image file img001.gif using
host variables:

dmSQL> INSERT INTO employee VALUES(2,?,?);

dmSQL/Val> &ab.txt, &img001.gif(2,4);

dmSQL/Val> END;

The resulting LONG VARBINARY column is represented in hexadecimal format.
The following results will be returned when browsing the table:

dmSQL> SELECT * FROM employee;

 id note photo

===== =========== =================

 1 <!-- TWO ST 474946383961b705d

 2 <script lan ffd8ffe000104a464

DBMaker also supports fetching BLOB data into a user-specified file. For more

information on how to insert and fetch BLOB data, refer to the “JDBA Tool User’s
Guide” and the “ODBC Programmer’s Guide”.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-8

Updating BLOBs

A BLOB item is always written to disk as a whole. Thus, when updating a BLOB
column, DBMaker will drop the original BLOB item and then insert the new data as a
new BLOB item.

Â Example

To update contents for a BLOB column, using the UPDATE command:

dmSQL> UPDATE employee SET note = 'Hello !' WHERE id > 0;

dmSQL> SELECT * FROM employee;

 id note photo

===== =========== =================

 1 Hello ! 31323334353637

 2 Hello ! 33343536

From the user’s viewpoint, there must be a BLOB for each tuple. However, to save
disk space, DBMaker only creates a single copy of the BLOB data shared by all tuples
with an ID greater than zero. DBMaker maintains an internal counter to record how

many tuples reference a BLOB. When updating a BLOB column for a tuple that links
to the shared BLOB, DBMaker will generate a new BLOB item and decrease the
counter of the shared BLOB by a value of one. This prevents any changes made to the

BLOB column from influencing other tuples. In DBMaker, this is known as loose
coupling. This makes disk utilization more efficient, but a BLOB item can only be
shared by tuples that are in the same table. If a BLOB is not linked with tuples,

DBMaker will automatically drop it.

Predicate Operations on BLOB Columns

BLOB objects can only be used in CONTAIN, MATCH or Boolean expressions
when testing for NULL values.

Â Example 1

To fetch all data from the “employee” table from the NOT NULL “note” column:

dmSQL> SELECT * FROM employee WHERE note IS NOT NULL;

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-9

DBMaker provides pattern matching for BLOBs. The CONTAIN and MATCH
function is similar to the LIKE function except that wildcard characters are not

supported. The difference between CONTAIN and MATCH is that the former is a
partial word match and the latter is a full word match. For example, 'This is a
character.' CONTAIN 'char' and 'This is a character.' MATCH 'character', but 'This

is a character.' NOT MATCH 'char'.

Â Example 2

To find all employees from the “notes” column containing 'Database Administrator':

dmSQL> SELECT * FROM employee WHERE note MATCH 'Database Administrator';

7.2 Managing File Objects

Each file object (FO) column references external files. Using FOs is beneficial when the
data is also used by other applications, since the file can be accessed directly. Most

current multimedia tools can only process multimedia data when it is stored as a
complete file of the required type. Multimedia data that is stored in BLOB or data
files must be fetched from DBMaker by the user and redirected to a file that can be

processed by the appropriate tool. However, if BLOB data is stored as an FO a user
can simply get the file name from DBMaker and pass the name to the appropriate
multimedia tool.

There are two kinds of FOs: system and user. System file objects are created when a
user inserts data on the client side and DBMaker passes it through and stores it in an
external file specified by the configuration parameter DB_FoDir. System FOs are

created by DBMaker and can be recognized by their default .FOB file name extension.
User file objects are external files that are simply linked to a column. A user file object
may be a file on any device that is accessible by DBMaker through the server’s

operating system.

The major difference between system and user file objects is that DBMaker generates a
system FO automatically. This means a system FO will be deleted when no column

references it. Therefore, with system FOs, users can leave storage management to
DBMaker. Another advantage to using system FOs is that data is duplicated to the

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-10

server side, so users can manage data from the server. DBMaker’s backup and
restoration features also protect system FOs.

A user FO will not be deleted when there are no more references to it. The major
advantage to user FOs is that DBMaker can link a column to an existing file directly.
It does not need to duplicate data, such as a file on a CD-ROM. This conserves disk

space and makes it easier to share a file among several records. However, if a file is
deleted outside of DBMaker, all columns linking to this file may become invalid. A
file linked as a user FO must open its read permission.

User FO files must be accessible from the database. They can be scattered in many
directories on the server side. Instead of specifying a USER FO directory, users need
to set the DB_UsrFO keyword to 1 in dmconfig.ini to enable the use of USER file

objects. USER FOs are disabled by default.

Users can get the file name and file size of a FO by using the built-in functions,
filename() and filelen().

Customizing the System File Object Path

DBMaker generates a series of file object subdirectories for storing system file objects.
These subdirectories are located in the file object directory, which is specified by the
DB_FoDir keyword in the dmconfig.ini file. When a file object subdirectory is filled

to a threshold value by file objects, a new subdirectory is created. The threshold value
is specified by the DB_FoSub keyword in the dmconfig.ini file, and may have a value
from 100 to 10,000.

File object names take the form ZZxxxxxx.ext where xxxxxx is a six digit base-36 serial
number, and ext is the file extension of the object. The file extension of the object
depends on the SET EXTNAME command. Refer to System File Object Extension
Names for more information.

Subdirectories follow a naming convention based on the name of the first file object in
the subdirectory. It takes the form SUBxxxxxx where xxxxxx is the six-digit base 36

number of the first file object to be inserted into the directory.

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-11

Although an FO directory can be shared by more than one database to simplify FO
management, it is not recommended because it becomes inconvenient when backing

up a database. The file object path may be changed before database startup by
modifying the configuration parameter, or during runtime.

SETTING THE FO PATH OFFLINE

Users should specify where to put system FOs by setting the value of DB_FoDir in
dmconfig.ini. The value of DB_FoDir is the full path of an existing directory.
DBMaker must own the write-permission on that directory.

Â Example 1

To create system FOs in the /disk1/usr/fo directory, add the following line to the

dmconfig.ini file:

DB_FoDir = /disk1/usr/fo

Â Example 2

To set DB_USRFO = 1 and enable user objects:

DB_USRFO = 1 ; enable USER file objects

SETTING THE FO PATH ONLINE

DBMaker provides a system procedure for users to modify the system file object
directory while the database is running. This operation changes the setting of the

following 3 items to the new value:

 Run-time FO directory — after the change is made, all new system file objects
will be stored in the new FO directory.

 DB_FoDir — the next time the database is restarted, it will use the new FO
directory.

 $DB_FODIR alias. —the default FO alias, which corresponds to the setting of

the DB_FoDir keyword in dmconfig.ini.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-12

Â Example

To change the FO directory to a new directory, e.g. /home/DBMaker/mydb/fo,
execute the following command:

dmSQL> call SETSYSTEMOPTION(‘fodir’, ‘/home/DBMaker/mydb/fo’);

In addition to being able to change the file object directory, users may query the
system to return the current settings for the FO directory path.

Â Example

The following command returns the current FO directory setting:

dmSQL> call GETSYSTEMOPTION(‘fodir’, ?);

OPTION_VALUE: /home/DBMaker/mydb/fo

Generating File Objects

Several steps are required to generate file objects within DBMaker. First a FILE type

column must be created on a table. Either system or user file objects may be inserted
into an FO type column. To create a FO column, set the column type to FILE when
creating the table.

Â Example 1

To create a table named “person” with a file object column called “photo”:

dmSQL> CREATE TABLE person (name CHAR(10), photo FILE);

Â Example 2

If the FO to be input is on the on the server, DBMaker will link the FO column to
the existing file and generate a user FO. If the FO is on the client side, DBMaker will
create a system FO by copying the file from the client side to the FO directory on the

server side. To insert FO data:

dmSQL> INSERT INTO person VALUES (‘cathy’,’/disk1/image/cathy.bmp’)

 2>; // stored as a USER FO

dmSQL> INSERT INTO person VALUES (‘jeff’,?);

dmSQL/Val> &jeff.gif; // stored as a SYSTEM FO

dmSQL/Val> END;

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-13

Â Example 3

There are three varieties of fetching methods for a FO column: content, file name, and
file size. To fetch an FO file named cathy.bmp:

dmSQL> SELECT photo, FILENAME(photo), FILELEN(photo) FROM person ;

 photo filename(photo) filelen(photo)

========= ========================= ==============

012034451 /disk1/image/cathy.bmp 21100

349045821 /disk1/usr/fo/ZZ000000.FOB 12034

For more information about manipulation on FO columns, refer to the “JDBA Tool
User’s Guide” and the “ODBC Programmer’s Guide”.

System File Object Extension Names

Users can set the system file object extension name using the SET EXTNAME
command.

Â Example 1

To set the system file object <extension_name>:

SET EXTNAME TO <extension_name>;

There are two types of <extension_name>:

 A character string not over 7 characters in length, such as 'bmp', 'avi', 'jpg', etc.

 Using the SOURCE option, the extension name will be set equal that of the
client’s source file.

Â Example 2

To use the SET EXTNAME command:

dmSQL> CREATE TABLE t1 (c1 INT, f1 FILE);

dmSQL> INSERT INTO t1 (c1, f1) VALUES (?, ?);

dmSQL/Val> 1, &readme.txt; //extension name : '.FOB'

1 rows inserted1

dmSQL/Val> SET EXTNAME TO doc

dmSQL/Val> 2, &readme.txt; //extension name : '.doc'

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-14

1 rows inserted

dmSQL/Val> SET EXTNAME TO SOURCE;

dmSQL/Val> 3, &readme.txt; //extension name : '.txt'

dmSQL/Val> END;

dmSQL> SELECT FILENAME(f1) FROM t1;

 c1 filename(f1)

==================
===

 1 /usr1/fo/ZZ000001.FOB

 2 /usr1/fo/ZZ000002.doc

 3 /usr1/fo/ZZ000003.txt

3 rows selected

Updating File Objects

To update the contents of a FO column, use the SQL UPDATE command.
DBMaker will replace the FO column with a new file.

As with inserting FOs, an FO column may be updated for a new SYSTEM FO or
linked to a USER FO.

Â Example 3

To link the photo column to /disk2/image/common.bmp:

dmSQL> UPDATE person SET photo = '/disk2/image/common.bmp' WHERE name =
‘cathy’;

Alternatively, a user can input new data from a file on the client side. For more
information, refer to the “JDBA Tool User’s Guide” ‘and the “ODBC Programmer’s
Guide”.

If the results of the UPDATE operation contain more than one tuple, only one file
will be created. This file will be shared among the tuples to save disk space. DBMaker

will maintain an internal counter to record how many tuples reference the file. In
addition, if a user modifies the contents of the file through an external application
program all tuples will recognize the modification.

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-15

When no tuples retain links to a system FO after UPDATE or DELETE operations,
DBMaker will automatically delete the file after that transaction is committed.

However, DBMaker never removes any USER FO even though there are no tuples
referencing it, since DBMaker did not generate the file.

Renaming File Objects

Sometimes users need to change the positions or names of FOs because of full disks or

a reorganization of the disk layout. DBMaker permits users to use the MOVE FILE
OBJECT statement to change the name or path of the FO. Before using the MOVE
FILE OBJECT command, use the operating system to move the files to the new

location; DBMaker will make sure the new files exist before allowing the move.

Â Example 1

To get the names of the files that will be moved using filename():

dmSQL> MOVE FILE OBJECT '/disk1/usr/fo/ZZ000000.FOB' TO
'/disk3/pub/photo1.bmp';

DBMaker also permits users to move FOs from one directory to another. Note that
DBMaker permits using only one * character for the specified file name in the source
directory, but does not allow using any * character in the destination directory.

DBMaker does not support recursively-moving files. To move all of the files, not
including subdirectories, from one directory to another, specify the former directory
by adding the ‘/’ or ‘/*’ characters at the end of the directory.

Â Example 2

Let there be four files in /disk1/usr/fo named ABC1.FOB, ABC2.FOB, ABC3.FOB,

ABC4.FOB. To move ABC1.FOB, ABC2.FOB, ABC3.FOB, ABC4.FOB from
/disk1/usr/fo to /disk3/pub file objects use:

dmSQL> MOVE FILE OBJECT '/disk1/usr/fo/ ' TO '/disk3/pub/ ';

dmSQL> MOVE FILE OBJECT '/disk1/usr/fo/* ' TO '/disk3/pub/ ';

dmSQL> MOVE FILE OBJECT '/disk1/usr/fo/*.FOB ' TO '/disk3/pub/ ';

dmSQL> MOVE FILE OBJECT '/disk1/usr/fo/A* ' TO '/disk3/pub/ ';

To move ABC1.FOB from /disk1/usr/fo to /disk3/pub:

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-16

dmSQL> MOVE FILE OBJECT '/disk1/usr/fo/*1.FOB ' TO '/disk3/pub/ ';

dmSQL> MOVE FILE OBJECT '/disk1/usr/fo/A*1.FOB ' TO '/disk3/pub/ ';

Predicate Operations on File Objects

As with BLOBs, users can test FOs for NULL values and use the CONTAIN and
MATCH functions to perform pattern searches. Furthermore, the FO item can be
used in arithmetic expressions with the FILELEN() built-in function, in Boolean

expressions with the FILEEXIST () built-in function, and in string expressions with
the FILENAME() built-in function.

In the event that a file has been removed or renamed from within the operating

system, use the FILEEXIST() built-in-function to test which files exist. A value of 0
indicates that the referenced FO file does not exist, 1 indicates that it still exists, and
NULL indicates that the tuple is a NULL value.

Â Example 1

To select tuples with the .gif extension from the column photo:

dmSQL> SELECT * FROM person WHERE FILENAME(photo) LIKE '%.gif';

Â Example 2

To fetch tuples with a size greater than 100KB from the column photo:

dmSQL> SELECT * FROM person WHERE FILELEN(photo) > 102400;

Â Example 3

To fetch all tuples for files that exist:

dmSQL> SELECT * FROM person WHERE FILEEXIST(photo) 1;

File Object UNC Names

Universal Naming Convention (UNC) filenames can be used for the file object path
and directory names in Microsoft Windows environments. This makes it easy to
specify the path and directory names when a DBMaker server is running on a

Microsoft Windows platform. Directories on machines other than the machine
hosting the server can also be specified.

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-17

Â Example 1

To retrieve all system FOs created in the \\NTMACHINE\E\FO directory when used
in the dmconfig.ini file:

DB_FoDir = \\NTMACHINE\E\FO

Â Example 2

To show how file objects work with UNC names:

dmSQL> CREATE TABLE t1 (c1 INT, c2 FILE);

dmSQL> INSERT INTO t1 VALUES (?, ?);

dmSQL/Val> 1, '\\NTMACHINE\D\DB\memo1.txt';

1 rows inserted

dmSQL/Val> 2, &c:\temp\memo2.txt;

1 rows inserted

dmSQL/Val> END;

dmSQL> SELECT c1, FILENAME(c2) FROM t1;

 c1 FILENAME(c2)

========= ===

 1 \\NTMACHINE\D\DB\memo1.txt

 2 \\NTMACHINE\E\FO\ZZ000001.txt

2 rows selected

File Object Path Default Aliases

DBMaker 3.73 supports two alias names for the file object path: $DB_DbDir and
$DB_FoDir. The file object path alias provides an alias name to represent the real file

object path. Users may insert/update/delete file objects through the alias path name.
File objects can be moved more easily to another directory path.

The two alias names are set using the keywords DB_DbDir and DB_FoDir. in the

dmConfig.ini file for $DB_DbDir and $DB_FoDir, respectively.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-18

Â Example 1

The file object path alias is set to the path specified by the DB_FoDir keyword in
dmconfig.ini:

…

DB_FoDir = “/usr1/tmp/employeedata/FO”

Â Example 2

To use the file object path alias to insert values into the FILE type column photo:

dmSQL> create table t1 (c1 INT ,photo FILE);

dmSQL> insert into t1 values (2, ‘$DB_FoDir/photo471.jpg’)

In the above example, file photo471.jpg could also have been inserted using the full
file object path ‘/usr1/tmp/employeedata/FO/photo471.jpg’.

FO and Applications

FILE type data is only supported by DBMaker, and is not defined by ODBC.
Development tools, such as Inprise/Borland Delphi or Microsoft Visual Basic will not
recognize FILE type data as valid. The configuration parameter DB_FoTyp may be

used to specify which type of data FILE type data will be mapped to. To allow these
tools to access data of FILE type, DBMaker should be set to internally map FILE type
data to LONG VARBINARY by setting DB_FoTyp to 1. There is no mapping if

DB_FoTyp is 0, and tools will fail to recognize FILE type data.

Â Example

To set the database to map FILE type data to LONG VARBINARY:

DB_FoTyp = 1

7.3 Journal of Large Objects

Logging transactions involving BLOB (LONG VARCHAR or LONG VARBINARY)
data requires large amounts of disk space and results in decreased performance.

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-19

DBMaker lets the database administrator decide whether a BLOB in a specified
tablespace is logged or not. DBMaker does not support logging for file objects (FILE).

DBMaker does not log the content of BLOB data by default. During the period
between starting and shutting down the database, DBMaker ensures the consistency of
BLOB data. Even in the event of a system crash, BLOB data is consistent after

recovery.

However, when restoring a database from incremental backups, DBMaker does not
ensure BLOB data consistency. Two steps must be taken to ensure that BLOB data is

recorded in the journal. First, the configuration parameter DB_BMode must be set to
record BLOB transactions. Second, the tablespace containing the BLOB data that is to
be backed up must have been created with the BACKUP BLOB ON option.

BLOB Journal Logging

There are two conditions to ensure BLOB logging:

 Setting the value of the DB_BMode keyword in the dmconfig.ini file to 2
(BACKUP DATA AND BLOB mode).

 BLOB files are added to a tablespace that was created with the option BACKUP
BLOB ON.

SETTING THE DB_BMODE VALUE

The keyword DB_BMode specifies the backup mode of a database. Setting the value
to 0 enables NON-BACKUP mode, 1 enables BACKUP-DATA mode, and 2 enables
BACKUP-DATA-AND-BLOB mode.

 NON-BACKUP (0) mode — cannot support incremental backup for
tablespaces, including system or user-defined.

 BACKUP-DATA (1) mode — supports incremental backup for the system

tablespace, data in user-defined tablespaces, but not BLOBs in user-defined
tablespaces.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-20

 BACKUP-DATA (2) mode — supports incremental backup for the system
tablespace, data in user-defined tablespaces, BLOBs in user-defined tablespaces

created with the BACKUP BLOB ON option, but not BLOBs in user-defined
tablespaces created with the BACKUP BLOB OFF option.

To turn on BLOB journal logging, add a line to the dmconfig.ini file:

DB_BMode = 2 ;log all data including BLOB

For details on database backup mode, refer to Chapter 14, Database Backup, Recovery,
and Restoration.

SETTING THE CREATE TABLESPACE BACKUP OPTION

The backup mode for an individual tablespace is set when it is being created. The
syntax for the CREATE TABLESPACE command follows:

CREATE [AUTOEXTEND] TABLESPACE tablespace_name [backup_mode]

DATAFILE [tsfile , tsfile, ...];

Where:

backup_mode ::= BACKUP BLOB OFF | BACKUP BLOB ON

tsfile ::= file_name TYPE = DATA | file_name TYPE = BLOB

Users can place important BLOBs in tablespaces with the BACKUP BLOB ON flag.

It is a good idea to place BLOBs that do not need to be backed up in tablespaces with
the BACKUP BLOB OFF setting in order to improve the system performance.
Tablespace creators determine the trade-off.

Data and BLOB files must be specified in the dmconfig.ini file before the tablespace is
created. This may be accomplished through the “user files” page in the JConfiguration
Tool. Refer to the JConfiguration Tool Reference for detailed instructions on creating

data and BLOB files.

Â Example 1

To create tablespace ts1 with BACKUP BLOB OFF and ts2 with BACKUP BLOB
ON:

dmSQL> CREATE TABLESPACE ts1 BACKUP BLOB OFF

 2> DATAFILE f1 TYPE = DATA, f2 TYPE = BLOB;

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-21

dmSQL> CREATE TABLESPACE ts2 BACKUP BLOB ON

 2> DATAFILE f3 TYPE = DATA, f4 TYPE = BLOB;

Â Example 2

Query the BK_MODE column from the SYSTABLESPACE table to know the

backup mode for each tablespace. The value 1 means that BACKUP BLOB is OFF,
while 2 means that it is ON. Querying the backup mode of a tablespace will yield the
following result:

dmSQL> SELECT TS_NAME, BK_MODE FROM SYSTABLESPACE;

 TS_NAME BK_MODE

============== ===========

SYSTABLESPACE 2

DEFTABLESPACE 2

ts1 1

ts2 2

4 rows selected

A summary of the interaction of the backup modes between a database and its

tablespaces follows. ‘Yes’ indicates that the type of tablespace in question is backed up.
‘No’ indicates that it is not.

DATABASE

BACKUP

MODE

TABLESPACE

BACKUP

MODE

USER-
DEFINED

TABLESPACE

(DATA)

USER-
DEFINED

TABLESPACE

(BLOB)

SYSTEM

TABLESPACE

(DATA AND

BLOB)

NON
BACKUP

(DB_BMode =
0)

--- No No No

BACKUP
DATA

(DB_BMode =
1)

--- Yes No Yes

BACKUP
DATA AND

BACKUP BLOB
OFF

Yes No Yes

mailto:sales@casemaker.com
http://www.casemaker.com/support

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-22

DATABASE

BACKUP

MODE

TABLESPACE

BACKUP

MODE

USER-
DEFINED

TABLESPACE

(DATA)

USER-
DEFINED

TABLESPACE

(BLOB)

SYSTEM

TABLESPACE

(DATA AND

BLOB)
BLOB

(DB_BMode =
2)

BACKUP BLOB
ON

Yes Yes Yes

Before setting the backup mode, ensure that the journal file is large enough to record
all BLOB data; otherwise, a journal full message may be returned. For information on
how to adjust journal file size, refer to the subsection Resizing Journal Space in Chapter

5.

For concepts on data files, the BLOB file and the tablespace, refer to Chapter 5,
Storage Architecture.

For information on the CREATE TABLESPACE command, refer to the SQL
Command and Function Reference.

For information on the SYSTABLESPACE table, refer to Appendix B, System Catalog
Reference.

File Object Journal Logging

DBMaker does not support journal logging of FOs. When backing up the database,
back up all FOs belonging to the database as well by manually copying them into a

backup directory. Alternatively, Bakup server may be used to automatically back up
file objects to a backup directory. For more information on backing up file objects,
refer to section 14.6, Backup Server. To determine what files belong to a database,

query the SYSFILEOBJ table.

Â Example

To retrieve the filenames of all FOs by querying the SYSFILEOBJ table:

dmSQL> SELECT FILE_NAME FROM SYSFILEOBJ;

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-23

Copy all FOs to the backup storage location. When restoring the database from a
backup, copy all FOs as well. If the file paths or file names have changed, use the

MOVE FILE OBJECT command to update the file names in the SYSFILEOBJ table.

7.4 Large Objects and SELECT
INTO Command

The SELECT INTO command takes selected data and inserts it into a specified table.
File objects and BLOBs can be moved from one table to another using this command.
The SELECT INTO command can be used in a distributed database (DDB)

environment.

In a local-to-local SELECT INTO statement, DBMaker needs to duplicate the BLOB
data or increase the shared counter of the system file object or a user file object.

In a DDB environment, DBMaker copies the BLOB data from one site to another,
but there are many considerations for file objects. DBMaker provides the distributed
file object duplication mode (SET DFO DUPMODE command) to take care of

processing file objects in a DDB environment.

SET DFO DUPMODE

The DFO DUPMODE tells a database whether file objects are to be copied to the
target database or not. There are two modes for DFO DUPMODE: NULL and

COPY mode.

Â Example

Syntax for DFO DUPMODE: NULL and COPY mode:

dmSQL> SET DFO DUPMODE NULL;

dmSQL> SET DFO DUPMODE COPY;

SET DFO DUPMODE NULL

There are two cases in DDB mode to consider:

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-24

 The source and target databases are the same, including the local database or
both remote databases. Since they are the same database, DBMaker only

increases the shared counters of the file objects.

 The source and the target database are not the same. The target FILE column is
set to NULL. Thus, the file objects in the source database are not sent out.

SET DFO DUPMODE COPY

There are three situations to consider for file objects.

 For user file objects, DBMaker only passes the source file name to the target

database. The user needs to copy the files to a place where the target database
can access them. Sometimes a user must use the UPDATE command or the
MOVE FILE OBJECT command to change the file names on the target

database if the new directories are not the same on the source database.

 For system file objects between two different databases, DBMaker will create a
new system file object on the target database and copy the contents of the source

database to it.

 For system file objects on the same database, local-to-local or remote-to-remote,
DBMaker only increments the shared counters.

Limitations

DFO DUPMODE mode does not affect a SELECT INTO command used on a
BLOB (LONG VARCHAR and LONG VARBINARY) column. BLOB data can be
copied using the SELECT INTO command regardless of the DFO DUPMODE.

In a DDB environment, if a SELECT INTO command is used on a user file object
and the option of DFO DUPMODE is set to COPY, then the user should be aware
of the location of the linked file on the target database. The linked file object should

exist in the same relative path on the target database. If it is not, the user should use
the operating system to copy the file from the source to the target database and use the
UPDATE or the MOVE FILE OBJECT commands for these columns if the file paths

of the source and target databases are different.

http://java.sun.com/products/jdbc/
http://java.sun.com/products/jdbc/

1Large Object Management 7

©1995-2003 CASEMaker Inc. 7-25

If the user has not performed the above operations, an error message will be returned
when querying the file object, because the file does not exist in the full path or the

path of the file is incorrect.

When selecting a system file object from a remote database into the local database,
DBMaker has to keep a record of the shared information. The information is kept

within one SELECT INTO command. Therefore, there is still a duplicate file
problem, which wastes space. Additionally, selecting system file objects into a remote
database creates duplicate files.

The SET EXTNAME option does not affect the result of the SELECT INTO
command. The extension names of the file objects on the source and target databases
are the same. For example, the file name of the source database is 'ZZ000001.BMP',

and then the target name of the file object on the target may be 'ZZXXXXXX.BMP'.

Â Example

DBMaker assumes the data of CHAR, VARCHAR or BINARY as the file name, so
users must make sure db2 can access the /etc/hosts file from the view of db1. Select
the CHAR column into the FILE column, where column c2 in table t2 on database

db2 is FILE type:

dmSQL> SELECT c1, '/etc/hosts' FROM db1:t1 INTO db2:t2(c1, c2);

Considering the FILE type column on the target database, the table below summarizes

the effect of the SELECT INTO command with the different source data types:

TYPE ON THE

SOURCE

DATABASE
ENVIRONMENT

SET DFO
DUPMODE

RESULT

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 7-26

TYPE ON THE

SOURCE

DATABASE
ENVIRONMENT

SET DFO
DUPMODE

RESULT

string
expression

CHAR

VARCHAR

BINARY

non-DDB or
DDB
Environment.

…
Source: passes the file name.

Target: inserts new user file
objects.

The source and the
target are the same
database.

…
Increases the shared counter
of the file objects.

NULL
Target: inserts the NULL
value.

FILE
The source and the
target database are
not the same. COPY

The source is the user file
object:

Source: passes the file name.

Target: inserts the new user
file object.

The source is the system file
object:

Source: passes the content of
the file object.

Target: inserts the new system
file object.

LONG
VARCHAR

LONG
VARBINARY

Other

… … Not supported.

1Security Management 8

©1995-2003 CASEMaker Inc. 8-1

8 Security
Management

This chapter provides guidelines on setting up the security policies for a database, and
includes information on security, authority levels, and table privileges.

8.1 Security Policies

DBMaker provides two kinds of security:

 Database authority — determines who can log on to DBMaker and the actions
they can perform.

 Object privileges — controls access rights for DBMaker objects. DBMaker

objects include tables, columns, views, domains, and synonyms.

8.2 Database Authority

Database authority is used to determine access for a database. DBMaker controls
database access with user names and passwords and has four classes of users as shown in

Table 12-1.

The SYSADM is the most powerful authority level in DBMaker. There can be only
one SYSADM for every database. A user with SYSADM authority can grant DBA,

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 8-2

RESOURCE or CONNECT authority to other users, and has all the privileges of the
DBA authority level on the database.

Users with DBA authority level have all privileges for all objects in the database and
can grant, change, or revoke object privileges for any user except users with SYSADM
or DBA authority. They can also create new resources like tablespaces and files, and

perform database administrative operations like starting/terminating and backing up
databases.

Users with RESOURCE authority are allowed to create new tables or views, and to

grant privileges on their own tables to other users.

Users with only CONNECT authority can access objects that they have been granted
privileges for, but cannot create new tables or views. They may also select information

from the system tables.

Authority levels are hierarchical

DBA

RESOURCE

CONNECT

SYSADM

Figure 8-1: DBMaker database authority level hierarchy.

LEVEL PRIVILEGES

SYSADM Can grant and revoke security authority levels to all users
except the SYSADM authority level.

Can change the passwords of all users.

Has all privileges of the DBA authority level.

1Security Management 8

©1995-2003 CASEMaker Inc. 8-3

LEVEL PRIVILEGES

DBA Has all privileges on tables except SYSTEM tables.

Can grant/change/revoke object privileges of all users and
groups.

Can add/remove users from groups.

Has privileges on database administration commands such as
starting or terminating a database, creating/dropping/ altering
a tablespace, and backing up a database.

Has all the privileges of the CONNECT and RESOURCE
authority levels.

RESOURCE Can create and drop tables, views, domains, and synonyms.

Can only drop tables, views, domains, and synonyms created
by the user.

Can grant/revoke owned table/view privileges to other users.

Has any table privileges granted to the user.

Has all the privileges of the CONNECT authority level.

CONNECT Can log on to the database.

Can select the SYSTEM tables.

Has any table privileges granted to the user.

This authority level must be granted before the other authority
levels.

Table 8-1: DBMaker database authority levels

Managing Users

DBMaker provides several SQL commands for managing users. These commands

allow new users to be added, existing users to be removed from a database, user
passwords to be set or changed, and user authority levels to be granted.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 8-4

ADDING A USER

The SYSADM must assign each user a user name and a password by using the
GRANT (database authority) command before a user can log on.

GRANT

TO
RESOURCE

DBA user_ID

,

,

user_ID
password

CONNECT TO

Figure 8-2 Syntax for the GRANT command

The GRANT command grants authority levels to users. Only the SYSADM can grant
authority levels to other users. The SYSADM authority level cannot be granted to
other users. As a result, for each database there is only one user with the SYSADM

user name and SYSADM authority level. The SYSADM is also the default user who
creates the database. Only the password can be changed for the SYSADM user name.

The SYSADM can grant CONNECT, RESOURCE or DBA authority to other users.

If the GRANT command is used to grant RESOURCE or DBA authority to a user, it
will not take effect until the next time the user connects.

The SYSADM can grant CONNECT authority to a user with a password. If the

SYSADM does not specify the password, it means that user does not need a password
to log on to database. A password can be any valid SQL identifier, which is not longer
than eight bytes.

Â Example 1

To grant CONNECT authority level and the password jeff123 to user Jeff:

dmSQL> GRANT CONNECT TO Jeff jeff123;

Â Example 2

To increase the authority level for user Jeff to RESOURCE:

1Security Management 8

©1995-2003 CASEMaker Inc. 8-5

dmSQL> GRANT RESOURCE TO Jeff;

Â Example 3

To increase the authority level for user Jeff to DBA:

dmSQL> GRANT DBA TO Jeff;

CHANGING A PASSWORD

The ALTER PASSWORD command can be used to change a user's password.

ALTER PASSWORD
OF user_name

NULL
old_password

new_password

NULL
TO

Figure 8-3 Syntax for the ALTER PASSWORD command

There are two ways to use the command:

 A user can change their own password with the ALTER PASSWORD
<old_password> TO <new_password> command. The <old_password> must
match the original password stored in the database.

 The SYSADM can change any user's password with the ALTER PASSWORD
OF <user_name> TO <new_password> command. It is not necessary for the
SYSADM to know the old password of other users.

Â Example 1

The user Jeff changes his password from no password to xyz@#:

dmSQL> ALTER PASSWORD NULL TO “xyz@#”;

Â Example 2

The SYSADM changes the password for user Jeff to xyz@#:
dmSQL> ALTER PASSWORD OF Jeff TO “xyz@#”;

REMOVING A USER OR CHANGING A USER’S AUTHORITY LEVEL

The SQL REVOKE command removes a database authority level.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 8-6

REVOKE FROM
CONNECT

DBA
RESOURCE

user_ID

,

Figure 8-4 Syntax for REVOKE command

Revoking a user’s RESOURCE or DBA authority does not take effect until the next
time the user connects to the database.

Â Example 1

To revoke DBA authority from user Jeff:

dmSQL> REVOKE DBA FROM Jeff;

After executing the command, Jeff will no longer have DBA authority but will still
have CONNECT authority.

Â Example 2

To remove Jeff's CONNECT authority and take away his ability to log on:

dmSQL> REVOKE CONNECT FROM Jeff;

REVOKED

PRIVILEGE
DESCRIPTION

DBA Revoking DBA authority for a user means they can no longer
create or drop tables and grant or revoke privileges from other
users.

The user will retain only the CONNECT authority unless
granted the RESOURCE privilege.

All tables, views, domains, and synonyms created by this user
remain in the database.

RESOURCE Revoking RESOURCE authority means the user can no longer
create or drop tables.

The user will retain only the CONNECT authority unless
granted the DBA privilege.

All tables, views, domains, and synonyms created by this user
remain in the database.

1Security Management 8

©1995-2003 CASEMaker Inc. 8-7

REVOKED

PRIVILEGE
DESCRIPTION

CONNECT Revoking this authority means the user can no longer log on to
the database.

All privileges owned by this user on tables and views will be
revoked.

All tables, views, domains, and synonyms created by this user
remain in database.

Table 8-3: Description of revoking DBMaker database authority levels

Managing Groups

To simplify management of authority levels, use a group to collect several users and/or

other groups. Database privileges can then be granted to all members in a group at the
same time with one command. Though a group is different from a user, it can be
treated as a user. Object privileges granted to a group apply to all members in the

group.

Only users with SYSADM or DBA authority levels can do the following:

 Create groups

 Add members to groups

 Remove members from groups

 Drop groups

CREATING GROUPS

The CREATE GROUP statement is used to create a new group.

CREATE GROUP group_name

Figure 8-5 Syntax for the CREATE GROUP command

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 8-8

The group identification (group name) uniquely identifies the name of a group in
DBMaker. The group name cannot be SYSTEM, PUBLIC, GROUP or any existing

user or group names.

Â Example

To create a new group named COMMITTEE:
dmSQL> CREATE GROUP COMMITEE;

ADDING MEMBERS TO GROUPS

After creating a new group, users can be added using the ADD <user name or group
name> TO GROUP command.

ADD
user_name

,
TO GROUP group_name

Figure 8-6 Syntax for the ADD … TO GROUP command

A group cannot be added as a new member of itself. Members of a group can include
any existing user or group name.

Â Example

To add user Jeff and group RD to the COMMITEE group and grant SELECT
privilege to the CASEMaker.EMPLOYEE table:

dmSQL> ADD Jeff, RD TO GROUP COMMITEE;

dmSQL> GRANT SELECT ON CASEMaker.EMPLOYEE TO COMMITEE;

All members in COMMITEE will have the SELECT privilege for the

CASEMaker.EMPLOYEE table.

REMOVING MEMBERS FROM GROUPS

The REMOVE <user name or group name> FROM GROUP command can be used to

remove users from a specified group.

1Security Management 8

©1995-2003 CASEMaker Inc. 8-9

REMOVE FROM GROUP group_name
user_name

,

Figure 8-7 Syntax for the REMOVE … FROM GROUP command

The members removed from the group will lose all privileges granted to the specified
group, but will retain privileges granted to them directly.

Â Example

To remove user Jeff from the COMMITEE group:

dmSQL> REMOVE Jeff FROM GROUP COMMITEE;

After this command is executed, user Jeff will be removed from the group
COMMITEE and lose SELECT privilege on the table CASEMaker.EMPLOYEE.

DROPPING GROUPS

The DROP GROUP command will drop a specified group from a database; all
members in the group will lose the privileges granted for the group.

DROP GROUP group_name

Figure 8-8 Syntax for the DROP GROUP command

Â Example

To drop the COMMITTEE group from the database:
dmSQL> DROP GROUP COMMITEE;

8.3 Object Privileges

An object in a database includes the following items: tables, views, and columns in
tables/views, domains, or synonyms. DBMaker provides security management for
objects, which enables users to GRANT or REVOKE object privileges for other users.

All users can reference a domain by default, but only the creator can drop the domain.
The privileges for a synonym are based on a base table. Refer to Chapter 6, Managing
Schema Objects for detailed definitions of views, domains, and synonyms.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 8-10

GRANTING OBJECT PRIVILEGES

The user that creates an object becomes the owner of the object and has all privileges
for it. An owner can also grant privileges on the object to other users by using the SQL

GRANT <object privilege> command.

GRANT column_name

,
)(

,

UPDATE

REFERENCE
INSERT

,

DELETE

INDEX
UPDATE

SELECT

REFERENCE
ALTER

INSERT

ALL
PRIVILEGES

ON table_name TO

,

user_ID

PUBLIC
group_ID

Figure 8-9 Syntax for the GRANT command

A user with DBA authority can grant privileges for any table or view in a database. A
user with the RESOURCE authority can grant privileges only on tables or views

created them. All privileges supported by DBMaker are described in Table 12-3.

INSERT, UPDATE, and DELETE privileges should be controlled to prevent
corruption of information in a database. ALTER and INDEX privileges should be

restricted to developers.

UPDATE, INSERT, and REFERENCE privileges can be restricted to some specific
columns. Each column name must be qualified and be in every table identified in the

ON clause.

1Security Management 8

©1995-2003 CASEMaker Inc. 8-11

PRIVILEGE DESCRIPTION

SELECT Allows users to select data from a table or view.

INSERT Allows users to insert rows into a table or view and
optionally insert into specified columns.

DELETE Allows users to delete rows from a table or view.

UPDATE Allows users to update a table or view and optionally
update specified columns.

INDEX Allows users to create or drop indexes for a table.

ALTER Allows users to alter the definition of a table.

REFERENCE Allows users to create a foreign key on a source table
that references a primary key for a destination table or
view.

ALL [PRIVILEGES] Allows users to exercise all the above privileges for a
table or view. PRIVILEGES is an optional keyword.

Table 8-5: Description for granting DBMaker table level privileges

The user in a GRANT command must have at least CONNECT authority. The
group name is created using the CREATE GROUP command. The keyword

PUBLIC includes all current and future users.

Â Example 1

Jeff executes the GRANT command to give Cathy the read privilege to data in the
EMP_INFO table, created by him:

dmSQL> GRANT SELECT ON EMP_INFO TO Cathy;

Â Example 2

A DBA executes the GRANT command to give Cathy the read privilege to data in the

EMP_INFO table created by Jeff:

dmSQL> GRANT SELECT ON Jeff.EMP_INFO TO Cathy;

Â Example 3

A DBA gives INSERT and UPDATE privileges for the PHONENO column of
EMP_INFO table to Cathy:

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 8-12

dmSQL> GRANT INSERT, UPDATE (PHONENO) ON Jeff.EMP_INFO TO Cathy;

Cathy will have no privileges for deleting information from the column.

Â Example 4

Use of the PUBLIC keyword to permit all users to read data in the Jeff.EMP_INFO

table:

dmSQL> GRANT SELECT ON Jeff.EMP_INFO TO PUBLIC;

REVOKING OBJECT PRIVILEGES

The REVOKE <object privileges> command revokes privileges granted to a user. The
syntax for this command is shown in Figure 8-10.

The privileges in the REVOKE (object privileges) command are the same as those for

the GRANT (object privileges) command. In the diagram, the user name represents
an authorized user in the database, the group name represents a group of users, and
the PUBLIC keyword represents all users in the database

1Security Management 8

©1995-2003 CASEMaker Inc. 8-13

REVOKE column_name

,
)(

,

UPDATE

REFERENCE
INSERT

,

DELETE

INDEX
UPDATE

SELECT

REFERENCE
ALTER

INSERT

ALL
PRIVILEGES

ON table_name FROM

,

user_ID

PUBLIC
group_ID

Figure 8-10 The REVOKE (object privileges) command

Â Example 1

The following command revokes the SELECT privilege for the EMP_INFO table
from Cathy:

dmSQL> REVOKE SELECT ON EMP_INFO FROM Cathy;

Â Example 2

The following command revokes the SELECT privilege for table Jeff.EMP_INFO
from Cathy:

dmSQL> REVOKE SELECT on Jeff.EMP_INFO FROM Cathy;

Â Example 3

The following command revokes the UPDATE privileges on the column

PHONENO in table Jeff.EMP_INFO from group1:

dmSQL> REVOKE UPDATE (PHONENO) on Jeff.EMP_INFO FROM group1;

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 8-14

Â Example 4

The following command revokes all privileges granted to PUBLIC on the
EMP_INFO table:

dmSQL> REVOKE ALL ON EMP_INFO FROM PUBLIC;

Â Example 5

The following command revokes INSERT, UPDATE, and SELECT privileges for the
EMP_INFO table from user Cathy and all users in group2:

dmSQL> REVOKE INSERT, UPDATE, SELECT ON EMP_INFO FROM Cathy, group2;

8.4 Security System Catalog

All information on authority levels, privileges, and groups is recorded in the following

system catalogs:

 SYSAUTHUSER—authority level of each user.

 SYSAUTHTABLE—privileges on tables.

 SYSAUTHCOL—columns of a table to which a user has been restricted for
INSERT, UPDATE, and REFERENCE privileges.

 SYSAUTH—group name, group creator, and number of group members.

The security system catalogs are owned by SYSTEM. No user (including SYSADM)
can modify the system catalogs. See “Appendix B” for more details on the DBMaker
system catalogs.

1 Concurrency Control 9

©1995-2003 CASEMaker Inc. 9-1

9 Concurrency Control

Transactions and concurrency control are described in this chapter. How DBMaker
maintains concurrent access and data accuracy in a multi-user environment wit the

lock mechanism is also described. Section 9.1 presents the transaction concept and the
functions used in managing a transaction. Section 9.2 describes the necessity of
concurrency control in a database system. Finally, section 9.3 explains concurrency

control techniques used by DBMaker.

9.1 Transactions

In a database, a transaction is a work unit that is composed of one or more SQL
statements. It is an atomic operation. That means it should either complete a series of

statements entirely or do nothing at all. Serial, atomic, permanent, consistent, and
isolated are the properties of a transaction.

Transaction States

A transaction must be in one of the following states:

 Active—When a transaction starts to execute, it immediately goes into an active
state. In the active state, a transaction can perform various database operations.

 Partially Committed—When a transaction reaches its last statement in

DBMaker (such as COMMIT WORK), it enters into the partially committed

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 9-2

state. The transaction has completed its execution and can still be aborted if an
error occurs during the actual output. The result cannot be written to disk and a

hardware failure may preclude its successful completion.

 Committed—When a transaction has completed its execution successfully it
enters into the committed state.

 Failed—When a transaction cannot proceed to a normal conclusion, it enters
into the failed state. This may be caused by hardware or logic errors, or a user
abort of the transaction during an active state.

 Aborted—When a transaction has ended unsuccessfully, it enters into the
aborted state. In this situation, any change or effect that a transaction has
applied to the database must be rolled back.

The state diagram corresponding to a transaction is shown in Figure 9-1.

Partially
Committed

Active

Failed Aborted

Committed

Begin
Transaction

issue
'commit work'

command

Error
Occurs

Commit

Rollback

Successfully

issue
'rollback work'
command or
serious error

occurs

Figure 9-1: The transaction states

Managing a Transaction

When connecting to DBMaker, a transaction starts automatically and enters the active
state. DBMaker will automatically begin a new transaction after the preceding

transaction has been terminated.

1 Concurrency Control 9

©1995-2003 CASEMaker Inc. 9-3

NOTE

Every time a statement executes a transaction is committed automatically by
DBMaker. This is known as autocommit mode. In this mode, the lifetime of a

transaction equals the lifetime of a single SQL statement. That means when one
transaction is terminated at the end of an SQL statement, another begins with the
next SQL statement. Each SQL statement is an independent transaction.

To force a transaction to remain uncommitted until several SQL statements have been
executed, change to manual commit mode by issuing a SET AUTOCOMMIT OFF
command. In this mode, a transaction can only be committed by using the SQL

command COMMIT WORK. As many SQL statements as necessary can be executed
before ending the transaction. To end the transaction, issue a COMMIT WORK
command to commit changes, or issue a ROLLBACK WORK command to abort any

changes made and terminate the transaction.

To return to autocommit mode, issue a SET AUTOCOMMIT ON command. The
default transaction mode is AUTOCOMMIT ON.

After a transaction is terminated, all resources allocated are released.

Using a Savepoint

A savepoint is an intermediate point that can be arbitrarily declared within the context
of a transaction. A savepoint is used to rollback the work performed after a savepoint

has been declared within a transaction.

For example, a transaction with a series of statements is executed, and an error occurs
while executing the twentieth statement. If a savepoint is marked between the fifteenth

and sixteenth statements, the first fifteen statements can be preserved. A user can roll
back to the savepoint and begin issuing commands from the sixteenth SQL statement
after correcting the error. The user does not need to abort the transaction and

resubmit all the statements. Figure 9-2 shows an example of this.

However, if the user does not mark a savepoint between the fifteenth and sixteenth
statements, the transaction must be aborted and the first fifteen statements

resubmitted. This is inconvenient and wastes time. A savepoint solves this problem
completely.

 Database Administrator’s Guide1

©1995-2003 CASEMaker Inc. 9-4

statement 1;

statement 15;

savepoint SP1;

statement 16;

statement 20;

rollback to SP1;

statement 16;

error occurs

valid statements after
roll back to savepoint

invalid statements after
roll back to savepoint

Figure 9-2: Using Savepoints

The SAVEPOINT and ROLLBACK TO … commands mark a savepoint and
rollback to a specific savepoint.

Â Example 1

The SAVEPOINT command:

dmSQL> SAVEPOINT <savepoint_name>;

Â Example 2

The ROLLBACK TO … command:

dmSQL> ROLLBACK TO <savepoint_name>;

The user specifies the <savepoint_name>. After rolling back to a savepoint, the system

resources that were allocated after the savepoint, like locks, are released.

1 Concurrency Control 9

©1995-2003 CASEMaker Inc. 9-5

9.2 Multi-User Environment

When more than one user is accessing a database, consider what can happen when
they try to access data simultaneously.

Sessions

A connection is a communication pathway between a user and DBMaker. A
communication pathway is established using shared memory or a network.

Before using the database resources, establish a connection to DBMaker using the

following SQL statement.

Â Example

To connect a user to a DBMaker database:

dmSQL> CONNECT TO database_name user_name password;

When a user connects to a DBMaker database, the specific connection is called a

session. A session lasts from the time a user connects to a DBMaker database until the
time the user disconnects from it. A session can only have one active transaction at a
time.

The Necessity of Concurrency Control

In a multi-user database system environment, more than one user can connect to a
database at the same time. This could possibly result in many transactions updating
the same database simultaneously.

If no concurrency control mechanism is used, several situations could result in data
inconsistency:

 The lost update problem.

 The temporary update problem.

 The incorrect summary problem.

 Database Administrator’s Guide1

LOST UPDATE PROBLEM

A lost update problem occurs when two transactions update a data item at
approximately the same time.

Â Example

Transactions T1 and T2 read and modify the value of X but use different calculations

to modify the value. This results in the transactions each containing a different value
for X. T1 writes the value it holds for X to the database after it is read but before it is
written by T2. T2 then writes the value it holds for X to the database, overwriting the

value written by T1. The value written by T1 is lost:
 T1 T2
-------------- --------------
read(X);
 read(X);
X = X - N;
 X = X + M;
write(X);
 write(X);

TEMPORARY UPDATE PROBLEM

A temporary update problem occurs when a transaction updates a value, but is rolled

back after another transaction updates the same value.

Â Example

Transaction T1 reads and modifies the value of X, writes it back to the database, and
then continues with other commands. While transaction T1 continues executing,
transaction T2 reads the value of X, modifies it to a new value, and writes it back to

the database. Transaction T1 then fails before completion, and must roll back all
values to restore the database to its original status. The database management system
restores the original value of X, overwriting the value written by transaction T2. The

value of X calculated by transaction T2 exists only temporarily:

 T1 T2

-------------- --------------

read(X); read(X);

©1995-2003 CASEMaker Inc. 9-6

1 Concurrency Control 9

©1995-2003 CASEMaker Inc. 9-7

X = X - N;

write(X); X = X + M;

 write(X);

rollback;

INCORRECT SUMMARY PROBLEM

An incorrect summary problem occurs when a transaction is calculating the aggregate
sum of a number of records while other transactions are updating those records.

Â Example

Transaction T1 calculates the aggregate sum using the values of X and Y at the same
time transaction T2 is modifying those values. Transaction T2 updates the value of X

before transaction T1 uses it to calculate the sum, and updates the value of Y after
transaction T1 uses it to calculate the sum. This results in transaction T1 using some
values to calculate the sum before they are updated, and using others after they are

updated. When both transactions complete, the value of the sum is incorrect with
respect to the values in the database:

 T1 T2

-------------- --------------

sum = 0;

 read(X);

 X = X - N;

 write(X);

read(X);

sum = sum + X;

read(Y);

sum = sum + Y;

 read(Y);

 Y = Y + N;

 write(Y);

There are various techniques to solve concurrency problems, such as locks and time
stamps. The next section shows how the locking technique is applied in DBMaker to
control concurrent execution of transactions.

 Database Administrator’s Guide1

9.3 Locks

In this section, the lock concept is first presented. Then, the DBMaker lock
mechanism is introduced, including lock granularity and lock modes. Finally, dealing

with deadlock is demonstrated.

Lock Concept

In general, a multi-user database system uses several forms of locking to synchronize
the access of concurrent transactions. Before accessing the data objects, such as tables

and tuples, a transaction must lock those data objects.

DBMaker locking is fully automatic and does not require any user action. Implicit
locking occurs in all SQL statements; the users do not need to explicitly lock any data

objects in the database.

SHARED AND EXCLUSIVE LOCKS

In general, two types of locking are used to allow multiple-read with single-write

operations in a multi-user database.

 Share Locks (S)—A transaction involving a read operation on a data object. To
support a higher degree of data concurrency, several transactions can acquire

share locks on the same data object at the same time.

 Exclusive Locks (X)—A transaction involving an update operation on a data
object. This transaction is the only one that can access the object until the

exclusive lock is released.

TWO-PHASE LOCKING

The two-phase locking protocol is used to ensure the transactions are serialized. In the

two-phase locking protocol, each transaction must issue all lock requests before it can
issue any unlock requests.

©1995-2003 CASEMaker Inc. 9-8

1 Concurrency Control 9

©1995-2003 CASEMaker Inc. 9-9

The protocol can be divided into two phases:

 Expanding (growing) phase—This phase allows the transaction to issue any
new lock requests that are required. Unlock requests are not permitted in this

phase.

 Shrinking phase—This phase allows the transaction to release locks acquired in
the expanding phase. New lock requests are not permitted in this phase.

The two-phase locking protocol is currently used by DBMaker to provide concurrency
control by serializing transactions.

DEADLOCK

When two or more transactions are waiting for the release of data locked by other
transactions before it can proceed, a deadlock occurs.

Â Example

T1 is waiting for T2 to release the share lock of X, while T2 is waiting for T1 to
release the share lock of Y. Therefore, deadlock occurs and the system will wait

indefinitely:

 T1 T2

-------------- --------------

share_lock(Y);

read(Y);

 share_lock(X);

 read(X);

exclusive_lock(X);

(T1 waits for T2) exclusive_lock(Y);

 (T2 waits for T1)

Lock Granularity

There are three granularity levels for data locks in DBMaker: relation (table), page,
and tuple (row). A relation contains several pages, and a page contains several tuples.

 Database Administrator’s Guide1

A lock applied on a higher level carries through to lower levels. For example, if a user
gets an exclusive lock (X lock) on a relation, all pages and tuples that are included in

this relation will have the X lock applied to them. Therefore, no user can access any
tuple or page from this relation. However, if a user gets an X lock on a tuple, another
user can get an X lock on another tuple simultaneously. There is no interference

between two objects at the same level when using the X lock. Figure 9-3 shows the
lock granularity (levels) in DBMaker.

RELATION

PAGE

TUPLE

Figure 9-3: Lock granularity

Using a higher lock granularity results in a lower degree of data concurrency, in

contrast, the higher lock granularity uses fewer system resources (such as shared
memory). Selecting the lock granularity level is a trade-off between concurrency and
resources. In DBMaker, the default lock granularity level is page, but if a different lock

granularity is required, it can be specified when creating a table. Refer to Chapter 5,
Storage Architecture for more information.

Lock Types

The main lock modes (types) supported in DBMaker are shared (S) and exclusive (X)

locks. More than one user can have an S lock on a data object simultaneously, but
only one user can have an X lock on a data object. In addition to S and X locks,
another lock mode called an intention lock is supported.

When a data object is locked, the system will automatically assign an intention lock to
the next higher granularity object. For example, an S lock specified on a tuple will
generate an intention S (IS) lock on the page which includes this tuple, and an IS lock

on the relation which the tuple belongs to.

The supported intention lock modes are:

©1995-2003 CASEMaker Inc. 9-10

1 Concurrency Control 9

 IS—Indicates that the S lock is specified at a lower granularity.

 IX—Indicates that the X lock is specified at a lower granularity.

 SIX—Indicates that an S lock is specified at the current granularity and an X
lock is specified at a lower granularity. This is a combination of S and IX locks.

The result from the compatibility of each of the lock modes is listed in Table 9-1. T

represents true, which means the matrix for each of the two lock modes are compatible
and can exist on a data object simultaneously. F represents false, which means the
matrix for each of the two lock modes are not compatible and cannot exist

simultaneously.

If lock requests on a data object conflicts with an existing lock on that object, this
request will not execute until the existing lock is released, or until the waiting time for

the lock request times out. If the error message 'Lock timeout' is returned to the user,
the waiting time for the lock has expired. The default waiting time is 5 seconds.
However, users can specify a different waiting time by setting the value of the

DB_LTimO keyword in the dmconfig.ini file to another value according to their
individual requirements.

Â Example

The following shows how to set the waiting time to 8 seconds:

DB_LTimO = 8;

 IS S IX SIX X

IS T T T T F

S T T F F F

IX T F T F F

SIX T F F F F

X F F F F F

Table 9-1: Compatibility matrix for lock modes

©1995-2003 CASEMaker Inc. 9-11

 Database Administrator’s Guide1

Dealing with Deadlock

By analyzing the “wait for” graph, DBMaker can automatically detect a deadlock
situation. If a deadlock is detected, a victim transaction will be aborted to solve the
deadlock problem.

Â Example

DBMaker detects a deadlock when transaction T2 issues an X lock on Y. Transaction

T2 will be aborted to resolve the deadlock problem and the user executing transaction
T2 will receive the error message, “transaction aborted due to deadlock”:

 T1 T2

-------------- ------------

share_lock(Y);

read(Y);

 share_lock(X);

 read(X);

exclusive_lock(X);

(T1 waits for T2) exclusive_lock(Y);

 (T2 waits for T1)

 T2 aborted by DBMaker

©1995-2003 CASEMaker Inc. 9-12

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-1

10 Triggers

Triggers are a very useful and powerful feature of the DBMaker database server.
Triggers automatically execute predefined commands in response to specific events,

regardless of which user or application program generated them.

Triggers allow a database to be customized in ways that may not be possible with
standard SQL commands. The database can consistently control complex or

unconventional database operations without requiring any action on the part of users
or application programs.

Use triggers to:

 Implement business rules.

 Create an audit trail for database activities.

 Derive additional values from existing data.

 Replicate data across multiple tables.

 Perform security authorization procedures.

 Control data integrity.

 Define unconventional integrity constraints.

Exercise restraint when using triggers to avoid forming complex interdependencies
within the database that may be difficult to follow and change. Use triggers only when

the desired functionality cannot be implemented using standard SQL commands and
integrity constraints.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 10-2

10.1 Trigger Components
DBMaker stores trigger definitions in the system catalog.

Every DBMaker trigger has six main components:

 Trigger Name—a name that uniquely identifies the trigger

 Trigger Action Time—the time relative to when a trigger will be fired

 Trigger Event—a specific situation that occurs in the database in response to

some user action, such as inserting data into a table

 Trigger Table—the name of the table the trigger executes on

 Trigger Action—an SQL statement or stored procedure that is executed when

the trigger event occurs

 Trigger Type—the type of trigger

Each of these components must be present in all triggers. In addition, there is an

optional component, the REFERENCING clause.

Trigger Name

The trigger name uniquely identifies a trigger. Trigger names have a maximum length
of 18 characters and may contain letters, numbers, the underscore character, and the

symbols # and $. The first character cannot contain a number, and the name cannot
contain spaces.

Trigger Action Time

The trigger action time specifies whether it should fire before or after the SQL

statement that activates it. The trigger action time is specified by the BEFORE and
AFTER time keywords. The BEFORE keyword instructs the trigger to fire before the
trigger statement. The AFTER keyword instructs the trigger to fire after the trigger

statement. Only one trigger time can be specified for each trigger.

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-3

Trigger Event

The trigger event is the database operation that causes a trigger to operate, or fire. The
trigger event may be an INSERT, UPDATE, or DELETE statement that operates on
the trigger table. There can be only one trigger event for each trigger statement.

However, multiple trigger events can be used to activate multiple triggers.

Trigger Table

The trigger event operates on the associated trigger table. The trigger table must be a
base table; it cannot be a temporary table, view, or synonym. A trigger may only have

one trigger table.

Trigger Action

A trigger action is the command that a trigger executes when it fires. The trigger
action may be an INSERT, UPDATE, DELETE, or EXECUTE PROCEDURE

statement. A trigger can only have a single trigger action.

Trigger Type

The trigger type specifies how many times the trigger will fire for each trigger event.
There are two types of triggers: row triggers and statement triggers. The FOR EACH

ROW option specifies a row trigger, which fires a trigger action once for each row
modified by the trigger event. The FOR EACH STATEMENT option specifies a
statement trigger, which fires a trigger action once for each trigger event.

REFERENCING Clause

The REFERENCING clause defines correlating names for the old and new values in a
column. This is primarily used when the default OLD and NEW names cannot be
used because of a name conflict with a table.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 10-4

10.2 Trigger Operation
DBMaker checks to see if a trigger should be fired and will execute the defined triggers
each time a user or an application program causes a trigger event. Firing triggers from

within a database ensures that DBMaker handles data consistently across all
applications. This guarantees that when a specific event occurs, a related action is also
performed.

Users can create triggers to implement domain, column, referential, and
unconventional integrity constraints. However, these can also be done by declarative
integrity control.

Triggers do not have an owner, but are associated with a table.

Event on Trigger Table
(INSERT, UPDATE, DELETE)

Resulting Action
(INSERT, UPDATE, DELETE, EXECUTE)

Trigger

Figure 10-110-2: Trigger event and action

10.3 Creating Triggers
The CREATE TRIGGER command creates a new trigger associated with a specific
table. Only a user with privilege on the trigger table can execute the command. The

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-5

user must also have the necessary object privileges for all objects referenced in the
trigger definition in order to successfully create a trigger.

Basic Requirements

All of the CREATE TRIGGER statements must contain at least the following:

 A trigger name

 The trigger action time (before or after)

 The trigger event

 The trigger table

 The trigger type (row or statement)

 The trigger action

Security Privileges

All SQL statements in the trigger action operate with the same privileges as the owner
of the trigger table, and not with the privileges of the user executing the trigger event.

If the trigger exists, any user executing the trigger event will result in the trigger firing.

 Database Administrator’s Guide1

CREATE TRIGGER Syntax

sql_statement()
for_each_statement_clause

for_each_row_clause

REFERENCING

NEW AS new_name

OLD AS old_name

NEW AS new_name

CREATE TRIGGER trigger_name
AFTER

BEFORE

table_nameON

UPDATE

OF
column_name

,

DELETE

INSERT

FOR EACH ROW clause

OLD AS old_name

FOR EACH ROW
WHEN (search_condition)

©Copyright 1995-2003 CASEMaker Inc. 10-6

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-7

FOR EACH STATEMENT clause

FOR EACH STATEMENT

Figure 10-3: The Syntax for the CREATE TRIGGER Statement

Specifying the Trigger Action Time

You can use the trigger time and trigger type in combination to create four triggers for
each table for the same event (INSERT, DELETE, or UPDATE). For each event the

BEFORE/FOR EACH ROW, AFTER/FOR EACH ROW, BEFORE/FOR EACH
STATEMENT, and AFTER/FOR EACH STATEMENT combinations are possible.

A BEFORE/FOR EACH STATEMENT trigger executes once and only once before

the triggering statement is performed. That is before the occurrence of the trigger
event. An AFTER/FOR EACH STATEMENT trigger executes once and only once
after the triggering statement is complete. Note that BEFORE and AFTER statement

triggers are executed even if the triggering statement does not process any rows.

BEFORE OR AFTER INSERT OR DELETE TRIGGER EVENTS

The following examples show how to create triggers that fire before or after INSERT

or DELETE trigger events. The trigger action is represented by <sql_statement>.

Â Example 1

To define four triggers for an INSERT event on table t1:
dmSQL> CREATE TRIGGER tr1 BEFORE INSERT ON t1 FOR EACH STATEMENT <sql_statement>
dmSQL> CREATE TRIGGER tr2 BEFORE INSERT ON t1 FOR EACH ROW <sql_statement>
dmSQL> CREATE TRIGGER tr3 AFTER INSERT ON t1 FOR EACH ROW <sql_statement>
dmSQL> CREATE TRIGGER tr4 AFTER INSERT ON t1 FOR EACH STATEMENT <sql_statement>

Â Example 2

To define four triggers for a DELETE event on table t1:
dmSQL> CREATE TRIGGER tr1 BEFORE DELETE ON t1 FOR EACH STATEMENT <sql_statement>
dmSQL> CREATE TRIGGER tr1 BEFORE DELETE ON t1 FOR EACH ROW <sql _statement>
dmSQL> CREATE TRIGGER tr1 AFTER DELETE ON t1 FOR EACH ROW <sql _statement>

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 10-8

dmSQL> CREATE TRIGGER tr1 AFTER DELETE ON t1 FOR EACH STATEMENT <sql_statement>

BEFORE OR AFTER THE UPDATE TRIGGER EVENT

The situation is different for UPDATE events. Two types of UPDATE triggers can be

created: UPDATE <table> triggers, or UPDATE OF <column> triggers. An UPDATE
<table> trigger fires whenever the table is updated. An UPDATE OF <column> trigger
fires when specific columns are updated. Either one UPDATE <table> trigger or

multiple UPDATE OF <column> triggers can be created on a single table. UPDATE
OF <column> triggers may contain multiple columns, but columns in all UPDATE
OF <column> triggers in a table must be mutually exclusive.

Â Example 1

To create a column trigger tr1 on table tb1 of columns c1, c2, that has four columns,

c1, c2, c3, and c4:
dmSQL> CREATE TRIGGER tr1 AFTER UPDATE OF c1,c2 ON tb1
 FOR EACH ROW
 (INSERT INTO tb2 VALUES (old.c1, old.c2));

If a second UPDATE column trigger tr2 that specifies column c2 is created, the
command will fail because c2 already appears in trigger tr1:
dmSQL> CREATE TRIGGER tr2 AFTER UPDATE OF c2,c3 ON tb1
 FOR EACH ROW
 (INSERT INTO tb3 VALUES (old.c2, old.c3));
ERROR (6150): [DBMaker] the insert/update value type is incompatible with column
data type or compare/operand value is incompatible with column data type in
expression/predicate

If there are four columns in a table, you can create at most four UPDATE column
triggers or one UPDATE table trigger, for triggers of the same type (for instance, a
BEFORE/FOR EACH ROW trigger).

FOR EACH ROW / FOR EACH STATEMENT Clause

The FOR EACH STATEMENT clause specifies that a trigger will fire once and only
once for each trigger event. Even if the trigger event statement does not process any
rows, the trigger will fire.

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-9

The FOR EACH ROW clause specifies that a trigger will fire once for each row that
the trigger event modifies. If the trigger event does not modify any rows, the trigger

will not fire. The OLD and NEW keywords are used to identify which values from
the trigger table are to be used in the trigger action. The OLD keyword indicates that
trigger table values from before the trigger event are used in the trigger action. The

NEW keyword indicates that trigger table values from after the trigger event are used
in the trigger action.

Â Example 1

The following statement shows how to create an UPDATE column trigger on table
Sales. The totSales field is a calculated field from other two fields unitPrice and

unitSale. Both unitPrice and unitSale are triggering columns.
dmSQL> CREATE TRIGGER trTotalSale AFTER UPDATE OF unitPrice, unitSale ON Sales
 FOR EACH ROW
 (UPDATE Sales
 SET totSales = new.unitPrice * new.unitSale);

Â Example 2

In this example, there are four triggers.
dmSQL> CREATE TRIGGER trig1 BEFORE UPDATE ON Orders
 FOR EACH STATEMENT
 (EXECUTE PROCEDURE checkPrivilege);

dmSQL> CREATE TRIGGER trig2 BEFORE UPDATE ON Orders
 FOR EACH ROW
 (INSERT INTO Log_Old_Value (old.customer, old.amount));

dmSQL> CREATE TRIGGER trig3 AFTER UPDATE ON Orders
 FOR EACH ROW
 (INSERT INTO Log_New_Value (new.customer, new.amount));

dmSQL> CREATE TRIGGER trig4 AFTER UPDATE ON Orders
 FOR EACH STATEMENT
 (EXECUTE PROCEDURE Log_Time);

If a user executes an UPDATE statement that changes two rows of the Orders table,
the effect and order of the execution is as follows:

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 10-10

1. Procedure checkPrivilege is called.

2. Insert one row to Log_Old_Value table.

3. Update one row.

4. Insert one row to Log_New_Value table.

5. Procedure Log_Time is called.

6. Insert one row to Log_Old_Value table.

7. Update one row.

8. Insert one row to Log_New_Value table.

9. Procedure Log_Time is called.

Stored procedures cannot contain COMMIT, ROLLBACK, or SAVEPOINT
transaction control statements. Triggers can specify only a single triggered action,

which must be enclosed in parentheses.

Using the Referencing Clause

In row triggers, the <sql_statement> (or action body) should indicate whether the
column values used are from before or after the trigger event. For example, to log the

old price and new price when updating the price of a sale item, use the keywords OLD
and NEW as shown in example 2 in the section “FOR EACH ROW / FOR EACH
STATEMENT Clause”.

However, in some rare cases the tables may contain columns with the names NEW or
OLD. If this is the case, use the referencing clause to define correlation names. The
reference clause allows for the creation of two prefixes that can be used with a column

name: one to reference the old value of the column, and one to reference the new
value. These prefixes are called correlation names. Use the keywords OLD and NEW
to indicate the correlation names.

Â Example
dmSQL> CREATE TRIGGER tr_log_price AFTER UPDATE OF price ON New
 REFERENCING OLD as pre NEW as post
 FOR EACH ROW
 (INSERT INTO logTbl
 VALUES (item_no, today(), pre.price,
 post.price));

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-11

In this example, the triggering table name is NEW, so the correlation names pre and
post are used in the action body. Referencing clauses are only valid for row triggers,

and are not allowed in statement triggers.

If a trigger event is INSERT, there is no old value for the newly inserted record, so the
old value is not available. Similarly, if the trigger event is DELETE, there is no new

value for the deleted record, so the new value is not available. For an UPDATE event
trigger, both old and new values are available.

Using the WHEN Condition

A WHEN condition clause may precede a FOR EACH ROW triggered action to

make the action execution dependent on the result of a boolean expression. The
WHEN clause consists of a keyword WHEN followed by the conditional statement in
parentheses. The WHEN clause follows the action time and precedes the triggered

action body. The WHEN clause is not allowed in the definition of a statement trigger,
it is only allowed in row trigger.

Â Example 1

The following trigger will log a customer complaint into the logComplain table when
a customer calls to complain about something (Assume the call code 'c' means it is a

complaint call.).
dmSQL> CREATE TRIGGER tr_log_complain INSERT ON Customer_Call
 FOR EACH ROW
 WHEN (new.call_code = 'c')
 (INSERT INTO logComplain
 VALUES (Today(), Cus_Name));

If the WHEN condition is included in a trigger definition, the WHEN clause is
evaluated for each row. If the WHEN condition evaluates to TRUE for a row, the

triggered action is fired for that row. If the WHEN condition evaluates to FALSE or
unknown for a row, the triggered action is not fired for that row.

The result of WHEN condition only affects the execution of the triggered action, it

has no effect on the triggering statement.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 10-12

Â Example 2

To create three triggers to record all INSERT, UPDATE and DELETE operations on
table emp:
dmSQL> CREATE TRIGGER trig_emp_insert AFTER INSERT ON emp
 FOR EACH ROW
 (INSERT INTO emp_audit
 VALUES (NULL, NULL,
 new.empId, new.empName));

dmSQL> CREATE TRIGGER trig_emp_update AFTER UPDATE ON emp
 FOR EACH ROW
 (INSERT INTO emp_audit
 VALUES (old.empId, old.empName,
 new.empId, new.empName));

dmSQL> CREATE TRIGGER trig_emp_update AFTER DELETE ON emp
 FOR EACH ROW
 (INSERT INTO emp_audit
 VALUES (old.empId, old.empName,
 NULL, NULL));

Â Example 3

If a primary key is changed, all the foreign keys can be changed in cascade. Suppose

deptNo is the primary key on table dept, DeptNo is foreign key on table emp.
dmSQL> CREATE TRIGGER trig_upd_dept BEFORE UPDATE OF deptNo ON dept
 FOR EACH ROW
 WHEN (NEW.deptNo <> OLD.deptNo)
 (UPDATE emp SET emp.DeptNo = NEW.deptNo
 WHERE emp.DeptNo = OLD.deptNo);

Â Example 4

If the primary key is deleted, all the foreign keys can be deleted in cascade.
dmSQL> CREATE TRIGGER trig_del_dept BEFORE DELETE ON dept
 FOR EACH ROW
 (DELETE FROM emp
 WHERE emp.DeptNo = OLD.deptNo);

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-13

Â Example 5

If a primary key is updated, all the foreign keys can be set to NULL.
dmSQL> CREATE TRIGGER trig_del_dept BEFORE UPDATE ON dept
 FOR EACH ROW
 (UPDATE emp set DeptNo = NULL
 WHERE emp.DeptNo = OLD.deptNo);

Â Example 6

If the number of parts in stock is lower than a given level, the parts should be
reordered. The part number and quantity will be recorded to a table called

pending_orders for further action.

Inventory: part_no int, parts_on_hand int, reorder_level int, reorder_qty int

pending_orders: part_no int, qty int, order_date date
dmSQL> CREATE TRIGGER tr_reorder AFTER UPDATE OF parts_on_hand ON Inventory
 FOR EACH ROW
 WHEN (new.parts_on_hand < new.reorder_level)
 (INSERT INTO pending_orders
 VALUES (new.part_no, new.reorder_qty, today()))

Specifying the Trigger Action

The trigger action is the SQL statement that is performed when the trigger event
occurs. The trigger action can be an INSERT, DELETE, UPDATE, or EXECUTE
PROCEDURE statement. No other statements are allowed. Stored procedures cannot

contain COMMIT, ROLLBACK or SAVEPOINT transaction control statements.
Triggers can specify only a single trigger action, which must be enclosed in
parentheses.

Â Example

The following statement creates a trigger on table emp.
dmSQL> CREATE TRIGGER trigExample AFTER INSERT ON emp
 FOR EACH ROW WHEN (new.empNo > 0)
 (INSERT INTO personnel(new.empName,
 new.empAddress, new.Manager));

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 10-14

In this example, the trigger name is trigExample. The AFTER option is specified,
which means this trigger will be fired after the INSERT statement executes on table

emp. The triggering event is INSERT, the triggering table is emp. The trigger type is
FOR EACH ROW. The SQL action that is triggered is INSERT.
dmSQL> CREATE TRIGGER trDelAcct AFTER DELETE ON Account
 FOR EACH ROW
 (INSERT INTO oldAccount
 VALUES (Old.Customer_name));

In the above example, the trigger trDelAcct will add the deleted customer name into

the oldAccount table when one deletes a record from the Account table. You cannot
create a trigger on a temporary table, view, or system table.

10.4 Modifying a Trigger
A trigger cannot be modified, but its definition can be replaced. When you want to

modify a trigger definition, use the ALTER TRIGGER statement.

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-15

ALTER TRIGGER Syntax

ALTER TRIGGER trigger_name REPLACE WITH
AFTER

BEFORE

UPDATE

OF
column_name

,

DELETE

INSERT

table_nameON

sql_statement()
for_each_statement_clause

for_each_row_clause

FOR EACH ROW clause

REFERENCING

NEW AS new_name

OLD AS old_name

NEW AS new_name

OLD AS old_name

FOR EACH ROW
WHEN (search_condition)

FOR EACH STATEMENT clause

FOR EACH STATEMENT

Figure 10-4 Syntax for the ALTER TRIGGER command

 Database Administrator’s Guide1

Replacing a Trigger Action

To replace a trigger action, use the statement ALTER TRIGGER tr1 REPLACE
WITH ...

Â Example 1

If a manager quits then their data needs to be deleted from the manager table. To
create a trigger on the employee table:
dmSQL> CREATE TRIGGER delEmp AFTER DELETE ON employee
 FOR EACH ROW
 (DELETE FROM manager WHERE empId = old.empId)

Â Example 2

It is possible to add another condition to the triggered action, such as “delete the data

from manager table only when the employee is a project manager”. To replace a
trigger action on the employee table and add a condition:
dmSQL> ALTER TRIGGER delEmp REPLACE WITH AFTER DELETE ON employee
 FOR EACH ROW
 (DELETE FROM manager
 WHERE empId = old.empId
 AND title = 'Project Mananger')

Alternatively, the trigger can be dropped and recreated.

10.5 Dropping a Trigger
The DROP TRIGGER statement can be used to delete a trigger from the database.

DROP TRIGGER Syntax

DROP TRIGGER trigger_name FROM table_name

©Copyright 1995-2003 CASEMaker Inc. 10-16

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-17

Dropping the Trigger

Deleting a table will cause triggers referencing the table to be deleted. When a table
schema is altered, DBMaker will try to execute the trigger according to the new table
definition the next time the trigger is executed. If the specified column in a triggering

event or action is dropped, the trigger execution and statement will fail. The only
solution is to drop the trigger or modify the trigger definition according to the new
table schema. To drop a trigger, specify the name of the trigger to delete, and the

associated table.

Â Example 1

To drop the myTrigger trigger from myTable table:
dmSQL> DROP TRIGGER myTrigger FROM myTable;

Â Example 2

To create a trigger named tr1 for table t1:
dmSQL> CREATE TRIGGER tr1 AFTER UPDATE ON t1
 FOR EACH ROW
 (DELETE FROM t2 WHERE c1 = old.c1)

If the column c1 in table t2 is dropped or the type is changed, an execution error will
occur when the triggering statement (update on t1) is performed causing the DBMS

to attempt to fire trigger tr1.

10.6 Using Triggers
There are several ways to use triggers.

Stored Procedures in Action Body

One of the most powerful features of a trigger is the ability to use a stored procedure

as a trigger action. The EXECUTE PROCEDURE statement calls a stored procedure,
enabling you to pass data from the triggering table to the stored procedure and then
execute the procedure.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 10-18

Â Example

To create a trigger and use the EXECUTE PROCEDURE statement:
dmSQL> CREATE TRIGGER trLogPrice AFTER UPDATE OF price ON Sales
 FOR EACH ROW
 (EXECUTE PROCEDURE
 logPrice(item_no, new.price, old.price));

Users can pass values to a stored procedure in the argument list. If the stored

procedure call is part of the action for a row trigger, users can use the OLD and NEW
correlation values to pass the column values it. If the stored procedure is part of an
action statement trigger, users can only pass constants to the stored procedure.

Within a trigger action, you can update non-triggering columns in the triggering
table, with or without a stored procedure. A stored procedure fired by a trigger cannot
contain transaction control statements, like BEGIN WORK, COMMIT WORK,

ROLLBACK WORK, SAVEPOINT, or DDL statements.

The stored procedure as a trigger action cannot be a cursory procedure that returns
more than one row.

Trigger Execution Order

The column numbers in the triggering columns determine the order of trigger
execution. The trigger execution begins with the trigger with the smallest triggering
column number and proceeds in order to the highest number. In the following

example a=column1, b=column 2, c=column 3 and d= column 4.

Â Example

The operation UPDATE t1 SET b=b+1, c=c+1 will fire both triggers. Trigger trig1,
having a lower triggering column number than trig2, will be executed first. The
following assumes four columns named a, b, c, and d from table t1.
dmSQL> CREATE TRIGGER trig1 AFTER UPDATE OF a,c ON t1
 FOR EACH STATEMENT (UPDATE t2 set c1=c1+1)

dmSQL> CREATE TRIGGER trig2 AFTER UPDATE OF b,d ON t1
 FOR EACH STATEMENT (UPDATE t2 set c2=c2+1)

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-19

Security and Triggers

First, the user must have permission to run the trigger event; otherwise, the user
cannot trigger the event. However, the user does not have to have permission to run
the triggered action because the SQL statements in the triggered action operate under

the domain privilege of the trigger owner. Once a trigger is created successfully, the
trigger creator has privilege to execute the triggered action. Any one else who can issue
the triggering statement can also fire the trigger.

Â Example

User B can update on both tables T1 and T2, and user A can update T1, but not T2.

Now user B creates a trigger on update T1, and the action updates T2. When user A
updates T1, the triggered action (update T2) is executed successfully since the
triggered action is running under the domain privilege of user B. This security rule

simplifies execution and eliminates the requirement for the user to have more
privileges to execute the triggered action.

Cursors and Triggers

UPDATE or DELETE statements within a cursor act differently than a single update

or delete statement. The entire trigger will be executed with each update or delete with
the WHERE CURRENT OF clause.

For example, if four rows are changed with a cursor, the BEFORE/FOR EACH

STATEMENT, BEFORE/FOR EACH ROW, AFTER/FOR EACH STATEMENT
and AFTER/FOR EACH ROW triggers will be executed four times - once for each
row.

Cascading Triggers

Executing one trigger may cause another trigger to also be executed. You can use
cascading triggers to enforce referential integrity. DBMaker supports a maximum of
64 cascading triggers.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 10-20

Â Example 1

To first delete a customer from the customer table, trigger the action to delete
customer related records in the order table, which in turn will trigger the action to

delete order related records in the item table:
dmSQL> CREATE TRIGGER cas1 AFTER DELETE ON customer
 FOR EACH ROW
 (DELETE FROM orders WHERE cust_num = old.cust_num);

dmSQL> CREATE TRIGGER cas2 AFTER DELETE ON orders
 FOR EACH ROW
 (DELETE FROM items WHERE order_num = old.order_num);

In DBMaker, if users create recursive triggers, it will not return an error at trigger
creation time. However, users will get an error when the recursive triggers execute and

meet the maximum limit of cascading trigger levels.

10.7 Enabling and Disabling Triggers
When a trigger is created, the trigger is in enabled mode, which means the triggered
action executes when the trigger event occurs.

Sometimes users may need to disable a trigger:

 When users have to load a large amount of data, disabling the triggers
temporarily will speed up the loading operation.

 When the objects referenced in a trigger are unavailable.

Â Example 1

To disable trigger tr1 for table t1:
dmSQL> ALTER TRIGGER tr1 ON t1 DISABLE

Â Example 2

To enable trigger tr1 on table t1:
dmSQL> ALTER TRIGGER tr1 ON t1 ENABLE

In summary, a trigger has two possible modes:

1Triggers 10

©Copyright 1995-2003 CASEMaker Inc. 10-21

 Enabled—A trigger is enabled when created. The triggered action fires when the
event occurs.

 Disabled—A disabled trigger does not execute, even if the event occurs.

10.8 Create Trigger Privileges
To create a trigger for a table, a user must be the table owner or DBA. The trigger
creator must have privileges to all objects referenced in the CREATE TRIGGER

statement to be successful.

In DBMaker, a trigger has no owner; it is associated with a table. The table owner and
DBA have all privileges associated with a trigger. They can create, drop, or alter the

triggers.

The SQL statements in the trigger action operate under the domain privileges of the
trigger owner, instead of the domain privileges of the user executing the trigger event.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 10-22

1Stored Commands 11

©Copyright 1995-2003 CASEMaker Inc. 11-1

11 Stored Commands

A stored command is a compiled SQL DML statement stored in the database. A
stored command is precompiled in an executable format. The same command can be

executed without compiling and optimizing. It is possible to create a stored command
for any frequently used SQL statement, achieving better performance. Stored
commands cab be considered a subset of stored procedures that only contain one SQL

statement without program logic.

11.1 Creating Stored Commands
Use the CREATE COMMAND statement to create a stored command.

CREATE COMMAND command_name AS

select_statement

update_statement
insert_statement

delete_statement

Figure 11-1 Syntax for the CREATE COMMAND ststement

Input parameters in the SQL statement can be used when creating a stored command.
The actual value of the input parameters for a stored command can be assigned at the
time of execution.

Â Example 1

To create a stored command named sc1 for the SQL DML statement using a table

with the definition t1 (c1 INT, c2 INT, c3 CHAR(32)):
dmSQL> INSERT INTO t1 VALUES (1, ?, ?)

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 11-2

Â Example 2

Alternatively use:
dmSQL> CREATE COMMAND sc1 AS INSERT INTO t1 VALUES (1, ?, ?)

Â Example 3

To create stored commands for other DML statements:
dmSQL> CREATE COMMAND sc2 AS SELECT c1, c2 FROM t1
dmSQL> CREATE COMMAND sc3 AS UPDATE t1 SET c1 = c2+1 WHERE c2 > ?
dmSQL> CREATE COMMAND sc4 AS DELETE FROM t1 WHERE c2 > ?

After creating a stored command, a user with permission can execute it directly using

dmSQL or in an application program. If the stored command has input parameters,
its value can be determined using parameter marks, constants, NULL, DEFAULT, or
built-in functions (built-in functions can't have arguments), when executing the stored

command. When a user executes a stored command, the number of input parameters
should be equal to the number of input parameters in the stored command.

11.2 Executing a Stored Command
Use the EXECUTE COMMAND statement to execute a stored command.

EXECUTE COMMAND command_name

value

,
)(

Figure 11-2 Syntax for the EXECUTE COMMAND statement

Â Example 1
dmSQL> EXECUTE COMMAND sc1 (200, 'john')

Â Example 2
dmSQL> EXECUTE COMMAND sc1 (DEFAULT, ?)

Â Example 3
dmSQL> EXECUTE COMMAND sc1 (?, NULL)

Â Example 4
dmSQL> EXECUTE COMMAND sc1 (?, ?)

1Stored Commands 11

©Copyright 1995-2003 CASEMaker Inc. 11-3

A stored command may be dropped when it is no longer useful.

11.3 Dropping a Stored Command
Use the DROP COMMAND statement to drop a stored command.

DROP COMMAND command_name

Figure 11-3 The syntax of DROP COMMAND statement

Â Example
dmSQL> DROP COMMAND sc1

11.4 Stored Command Security
Stored commands are treated similarly to other database schema objects, and as a
result, any user must consider security and object privileges when creating or using

one.

Only the creator or users that have the RESOURCE privilege can create a stored
command. A user can only create a stored command from an SQL DML statement if

the user has privileges to execute the SQL DML statement.

Â Example

User joe with resource privilege wants to create a stored command CheckDate with
the following syntax:
dmSQL> CREATE COMMAND CheckDate AS SELECT FirstName, LastName, Hiredate FROM
SYSADM.Employee WHERE HireDate > ‘1995-01-01’;

The employee table is owned by SYSADM, so the system administrator must first

grant select permission to user joe on the table SYSADM.employee before user joe
can create the stored command.

A user must have the execute privilege for a stored command to execute it. In order to

allow a stored command to be used by others, the user can grant the execute privilege
on a stored command. However, only users with the necessary privileges (DBA,

 Database Administrator’s Guide1

SYSADM, the creator of the stored command, or others granted the privilege) may
grant or revoke execute privileges for stored commands.

A DBA has the execute privilege on all stored commands in a database. The owner of
a stored command has execute, grant, and revoke privileges. Only the owner of stored
command can drop it.

Granting Execute Privilege

GRANT executable_name

TO

,

user_name

PUBLIC
group_name

EXECUTE ON
COMMAND

PROCEDURE

Figure 11-4 Syntax for the GRANT EXECUTE privilege

Â Example

To grant usr1 the EXECUTE privileges for commands on sc1:
dmSQL> GRANT EXECUTE ON COMMAND sc1 TO usr1

Revoking Execute Privileges

REVOKE executable_nameEXECUTE ON
COMMAND

PROCEDURE

FROM

,

user_name

PUBLIC
group_name

Figure 11-5 Syntax for the REVOKE EXECUTE privilege

©Copyright 1995-2003 CASEMaker Inc. 11-4

1Stored Commands 11

©Copyright 1995-2003 CASEMaker Inc. 11-5

Â Example

To revoke the EXECUTE privileges from usr1 for sc1:
dmSQL> REVOKE EXECUTE ON COMMAND sc1 FROM usr1

11.5 Lifecycle of a Stored Command
A stored command will be invalid if one of the related tables in the stored command is

dropped or altered. If any programs were written previously using old column
information, it may cause unpredictable results at time of execution.

The benefit of stored command is improved performance when repeatedly executing a

SQL command. DBMaker also considers when the execution plan should be
refreshed, such as UPDATE STATISTICS. When the UPDATE STATISTICS
command is issued, all execution plans for the stored command will be updated to

achieve better performance.

11.6 Getting Information for Stored
Commands
Users can get information about stored commands from the system table
SYSCMDINFO. Table 11-1 lists the columns of the SYSCMDINFO table and their

values.

COLUMN NAME VALUE COMMENT

MODULENAME Module name that the
stored command
belongs to

This column is used by an ESQL
application or stored procedure. It
can be ignored if it is a pure stored
command.

CMDNAME Stored command name none

CMDOWNER Stored command owner none

STATEMENT Original SQL string none

NUM_PARM Number of parameters none

STATUS 0, 1, or 2 0 - invalid stored command. It
cannot be executed.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 11-6

COLUMN NAME VALUE COMMENT
1 – valid stored command. It can be
executed
2 – the stored command needs to be
rebound. It can be executed after
internal rebinding.

Table 11-1: Details of the SYSCMDINFO table

Users can get stored command information by issuing the following statement in

dmSQL:
dmSQL> SELECT * from SYSCMDINFO;

1Stored Procedures

12 Stored Procedures

12

©Copyright 1995-2003 CASEMaker Inc. 12-1

A stored procedure is a special kind of user-defined function that contains embedded
SQL statements. Once the stored procedure has been created, it is stored in executable

format in the database as an object. This allows the database engine to bypass repeated
SQL compilation and optimization, increasing the performance of frequently repeated
tasks. stored procedure is executed as a command in interactive SQL, or invoked in

application programs, trigger actions, or other stored procedures.

Accomplish a wide range of objectives with stored procedures including improving
database performance, simplifying the writing of applications, and limiting or

monitoring access to a database.

Because a stored procedure is stored as an executable object in the database, it is
available to every application running on the database. Several applications can use the

same stored procedure to reduce development time for an application.

12.1 Creating Stored Procedures
A stored procedure is an ESQL/C program. Stored procedures can perform any
function a C application can, including calling other C functions and system calls.

Therefore, a C compiler is required for writing stored procedures.

An ESQL/C program for a stored procedure consists of a CREATE PROCEDURE
statement, a declare section if needed, and the code section. If your program does not

use any host variables, the declare section can be omitted.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 12-2

Â Example

To create a stored procedure called a_phone with one input parameter, one output
parameter, and a return value (status):
EXEC SQL CREATE PROCEDURE a_phone (CHAR(13) name, CHAR(13) phone OUTPUT)
 RETURNS STATUS;
{
 EXEC SQL BEGIN CODE SECTION;

 EXEC SQL SELECT PHONE FROM TBL WHERE NAME = :name INTO :phone;

 EXEC SQL RETURNS STATUS SQLCODE;

 EXEC SQL END CODE SECTION;
}

The structure of this program will be explained in the following sections.

Create Procedure Syntax

In the head of a procedure definition is a CREATE PROCEDURE statement. The
syntax for the CREATE PROCEDURE statement is:

CREATE PROCEDURE
module_name.procedure_name

procedure_name

procedure_parameters

,
procedure_return results

1Stored Procedures 12

©Copyright 1995-2003 CASEMaker Inc. 12-3

<procedure_parameters> clause

parameter_namedata_type

IN

OUT

INPUT

OUTPUT

<procedure_return_result > clause

STATUS

RETURNS
,

data_type result_nameSTATUS

Figure 12-1 Syntax for the CREATE PROCEDURE statement

Â Example 1;

The following are examples of the syntax of the CREATE PROCEDURE statement.
dmSQL> CREATE PROCEDURE p1 (INTEGER n IN) RETURNS STATUS;
dmSQL> CREATE PROCEDURE p2 (INTEGER n1 IN, INTEGER n2 OUTPUT) RETURNS CHAR(12)
nm;
dmSQL> CREATE PROCEDURE p3 (CHAR(10) par1 OUTPUT, SMALLINT par1)
 RETURNS STATUS, TIMESTAMP ret1, FLOAT ret2;

In a CREATE PROCEDURE statement the procedure name and the name and type
of any I/O parameters must be provided.

Using Parameters

If parameters are required, a list of type-name pairs for the parameters must be given
in parentheses. IN/OUT (or INPUT/OUTPUT) parameter attributes must be put
after each type-name pairs. If there is no parameter attribute, IN will be used by

default. Input parameters are used to pass a value to a procedure. In example 1, there
is one input parameter name. Every time the procedure is executed, a value for the
input parameter must be provided.

 Database Administrator’s Guide1

Output parameters are used to get a single result, not a result set, after the procedure is
executed. In example 1, procedure a_phone has an output parameter, phone. The

output parameter must have a buffer assigned to it to receive the result. After the
procedure executes, the phone number for the name inputted can be retrieved from
the buffer.

The result list is required for a stored procedure to retrieve a result set of tuples from
the database. If the procedure does not return selected results then there is no need for
the result list. The keyword RETURNS is used to start the result list. It is a list of

name type pairs.

The STATUS keyword is used to indicate an integer value to be returned after the
procedure executes.

Â Example

To execute a procedure with one input parameter and a value:
EXEC SQL CREATE PROCEDURE t19 (FLOAT ifl) RETURNS STATUS,
 FLOAT fl,
 DOUBLE db;
{
 EXEC SQL BEGIN CODE SECTION;
 EXEC SQL RETURNS STATUS SQLCODE;
 EXEC SQL RETURNS SELECT fl, db FROM t8 WHERE fl < :ifl into :fl, :db;
 EXEC SQL END CODE SECTION;
}

DBMaker now supports the following data types for input and output parameters:
INTEGER, SMALLINT, SERIAL, CHAR(), DATE, TIME, TIMESTAMP,
FLOAT, DOUBLE, REAL.

Return Select Statement

A procedure can return a result set using the host variable mechanism to pass
information to the user executing the stored procedure. In the code of the stored
procedure use the RETURNS keyword to instruct the preprocessor to generate a host

variable related to C code. The RETURNS keyword precedes the select statement that
produces the result set.

©Copyright 1995-2003 CASEMaker Inc. 12-4

1Stored Procedures 12

©Copyright 1995-2003 CASEMaker Inc. 12-5

Â Example

There are two RETURNS in this example, one in the create procedure statement and
the other in the select statement forming a pair. If there is to be a result set returned,

declare output parameters with RETURNS in the create procedure statement and put
the RETURNS keyword in the select statement:
EXEC SQL CREATE PROCEDURE get_all_phone RETURNS CHAR(12) name, CHAR(12) phone;
{
 EXEC SQL BEGIN CODE SECTION;
 EXEC SQL RETURNS SELECT NAME, PHONE FROM TBL INTO :name, :phone;
 EXEC SQL END CODE SECTION;
}

Module Names

When a user creates a stored procedure DBMaker will use the owner name and

procedure name as the default dynamic link library name. The user can call or drop
his or her stored procedures using only the procedure name. Any user can call another
user’s procedure using the full procedure name: owner.procedure_name.

A user can also specify a module name in the CREATE PROCEDURE syntax to
change the default dynamic link library name. If a module name is specified in the
CREATE PROCEDURE syntax, users will need to call or drop the procedure with

the full procedure name; module_name.owner.procedure_name, even if the user created
it.

Variable Declaration

The host variables in stored procedures are declared in the same way as in ESQL/C.

The declare section in a stored procedure must be put before the code section, not in
ESQL/C programs. C variables can be placed before or after the declare section, but
need to be before the code section.

Code Section

All statements should be in the code section except the variable declaration. Any non-
declaration statement before the code section may cause problems resulting in compile

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 12-6

errors or wrong results being returned. Statements after the CODE SECTION will
not be executed.

Configuration Settings for Stored Procedures

When a stored procedure is created, a corresponding dynamic link library is built and
stored on the server. By default, the library file is placed in the DBMaker server’s
working directory. The database administrator can set a preferred path to place the

library files for stored procedures using the configuration keyword DB_SPDir.

The keyword DB_SPLog is used by client users to set the directory they prefer to
receive error message files and trace log files, transmitted from the database server

while creating or executing stored procedures.

Â Example 1

To set the default path of dynamic link library files for stored procedures to
/usr1/dbmaker/data/SP add the following line in the dmconfig.ini file:
DB_SPDIR=/usr1/dbmaker/data/SP

Â Example 2

To set the stored procedure log file directory to c:\usr\jerry\data\SP add the following
line in the dmconfig.ini file:
DB_SPLOG=c:\usr\jerry\data\SP

Creating a New Stored Procedure from File

First, write the stored procedure and save it to a file, then use DBMaker tools like
dmSQL or DBATool to insert this new stored procedure into the database.

CREATE PROCEDURE FROM file_name

Figure 12-2 Syntax for the CREATE PROCEDURE FROM <file_name> statement

Â Example

To create a procedure using multiple files:

1Stored Procedures 12

©Copyright 1995-2003 CASEMaker Inc. 12-7

dmSQL> CREATE PROCEDURE FROM ‘proc1.ec’;
dmSQL> CREATE PROCEDURE FROM ‘.\esql\sp\proc2.ec’;
dmSQL> PROCEDURE FROM ‘c:\users\jerry\sp\proc3.ec’;

The previous examples show how to create stored procedures using dmSQL.

Â Alternatively, use JDBATool.

1. Click the object Stored Procedure in the Tree.

2. Click the Create button. The Introduction window of the Create Stored
Procedure wizard is displayed.

3. Import a stored procedure by selecting the Import button.

4. Selecting Import opens the Open window. Files can be imported from any source,
including the SPDIR directory of other databases on the server or network drives.
Select the desired file by typing in the path in the File name field, or browse
through the directory tree until the correct path is found.

 Imported files must be ASCII format files that contain C++ code.

5. Select Open to open the file.

6. The Create Stored Procedure window will reappear if the imported file contains
properly formatted (ASCII) text. Select Save As to store the stored procedure to
another location, or select OK to compile and store the stored procedure in the
database.

NOTE

NOTE

If there are any errors when creating a stored procedure, they will be shown in the

lower part of the window.

12.2 Executing Stored Procedures
You can invoke a stored procedure in dmSQL, a C program (ODBC or ESQL),

another stored procedure, or using a trigger action.

 Database Administrator’s Guide1

dmSQL

CALL file_name
owner_name.

))

:call_parameter

,

Figure 12-3 Syntax for the CALL statement within dmSQL

Â Example 1

To execute a stored procedure in dmSQL:
dmSQL> CALL p1 (3); // execute procedure p1
dmSQL> CALL SYSADM.p2 (5, ?); // execute SYSADM’s procedure p2
dmSQL/Val> 100; // input the value of parameter
dmSQL> ? = CALL SYSADM.p2 (5, 100); // execute procedure p2 and get
 // returned status

Â Example 2

If the procedure returns a result set, dmSQL automatically handles the output
parameters and displays the result set on the screen. The result set appears on the

screen as if you had typed a SELECT statement using dmSQL:
dmSQL> call a_phone('jeff');
 STATUS PHONE
 =========================
 0 408-255-2689

dmSQL> call sel_all_phone;
 NAME PHONE
 ============================
 Jerry 02-775-8615
 Jeff 408-255-2689

©Copyright 1995-2003 CASEMaker Inc. 12-8

1Stored Procedures 12

©Copyright 1995-2003 CASEMaker Inc. 12-9

ESQL

CALL file_name
owner_name.:status =

))

:call_parameter

,

Figure 12-4 Syntax for the CALL statement within ESQL

Â Example

To execute a stored procedure in ESQL:
EXEC SQL :s = CALL p1 (3);
EXEC SQL CALL SYSADM.p2 (5, :n2) INTO :nm;
EXEC SQL :s = CALL jack.p3 (:par1, 7) INTO :ret1, :ret2;

The syntax used in an ESQL program is similar to dmSQL. Use host variables to

receive the status, output parameter, and result set values.

Executing Nested Stored Procedures

A stored procedure program is an ESQL/C program; a stored procedure inside
another stored procedure may be invoked in exactly the same way it would be in an

ESQL/C program. There is only one exception, regular ESQL programs cannot use
the RETURNS keyword, but the stored procedure can use it when invoking another
stored procedure.

Assume stored procedure sel_all_phone returns a multiple tuple result set. A regular
ESQL program needs to use a cursor to fetch the tuples when invoking this procedure
as shown in the last section. Another stored procedure sp2 can use the same method to

fetch tuples and examine the data. Also return the whole result set of the called stored
procedure to the caller directly from within the current stored procedure.

Â Example

To call a statement from within the sp2 stored procedure:
EXEC SQL RETURNS CALL sel_all_phone INTO :oName, :oPhone;

 Database Administrator’s Guide1

When a stored procedure returns another stored procedure's result set, the caller
should have exactly the same result set list, or the first n result columns from the called

procedure.

Executing Stored Procedures in ODBC programs

You can also call a stored procedure in an ODBC program by binding parameters for
a procedure and using columns to return the result set. In an ODBC program, you

can bind partial columns of the result set. After the procedure executes, output
parameters are returned in the host variables. Use a fetch, like a SELECT command,
to get the result set.

Â Example 1

Procedure proc1 declaration:
dmSQL> CREATE PROCEDURE proc1(CHAR(12) p1, CHAR(12) p2 OUTPUT) RETURNS INTEGER
r1;
{
EXEC SQL BEGIN CODE SECTION;
EXEC SQL SELECT c2 FROM t1 WHERE c1 = :p1 INTO :p2;
EXEC SQL RETURNS SELECT c1 FROM t2 INTO :r1;
EXEC SQL END CODE SECTION;

Â Example 2

ODBC program that calls proc1:
SQLPrepare(cmdp,(UCHAR*)"call proc1(?, ?)", SQL_NTS);

strcpy(bpname, "12345");

SQLBindParameter(cmdp, 1, SQL_PARAM_INPUT_OUTPUT, SQL_C_CHAR, SQL_CHAR,
 20, 0, &p1, 20, NULL);
SQLBindParameter(cmdp, 2, SQL_PARAM_INPUT_OUTPUT, SQL_C_CHAR, SQL_CHAR,
 20, 0, &p2, 20, NULL);

SQLBindCol(cmdp, 1, SQL_C_LONG, &i, sizeof(long), NULL);
SQLExecute(cmdp); /* get p2 */

while ((rc=SQLFetch(cmdp))!=SQL_NO_DATA_FOUND) /* fetch result set */

©Copyright 1995-2003 CASEMaker Inc. 12-10

1Stored Procedures 12

©Copyright 1995-2003 CASEMaker Inc. 12-11

Tracing Stored Procedure Execution

DBMaker provides trace functionality to help users trace the execution of stored
procedures for debugging.

Â Example

Using the TRACE command:
EXEC SQL TRACE ON; // Start TRACE
EXEC SQL SELECT c1 FROM t1 INTO :var1;
EXEC SQL TRACE (“var1 = %d\n”, var1); // TRACE the value of var1
EXEC SQL TRACE OFF; // END OF TRACE

Turn on and use the TRACE function to place variables for tracing and print

messages. After the stored procedure executes, all trace information will be written to a
file named _spusr.log in the DB_SPLog keyword directory found in the dmconfig.ini
file on the client machine.

12.3 Dropping A Stored Procedure

DROP PROCEDURE file_name
module_name.

Figure 12-5 Syntax for the DROP PROCEDURE statement:

Â Example

The first statement drops the stored procedure proc1 the second statement drops
stored procedure user1.proc2.
dmSQL> DROP PROCEDURE proc1;
dmSQL> DROP PROCEDURE user1.proc2;

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 12-12

12.4 Getting Procedure Information
Â Example 1

To using dmSQL to get procedure information from the system table
SYSPROCINFO:
dmSQL> SELECT * FROM SYSPROCINFO;

Â Example 2

To use dmSQL to get procedure information from system table SYSPROCPARAM:
dmSQL> SELECT * FROM SYSPROCPARAM;

NOTE ODBC functions SQLProcedure() and SQLProcedureColumns() are used to get

procedure and parameter information for programs.

12.5 Security
Only the owner or a user with DBA or higher authority can initially execute a stored
procedure. Other users can execute the procedure when the execution privilege has

been granted to them or a group that the user is a member of. Only owner or a user
with DBA or higher authority can grant EXECUTE PROCEDURE privilege on a
stored procedure for other users.

GRANT executable_name

TO

,

user_name

PUBLIC
group_name

EXECUTE ON
COMMAND

PROCEDURE

Figure 12-6 Syntax for the GRANT EXECUTE privileges statement

The owner or a user with DBA or higher authority can also revoke execute privilege
on a stored procedure for other users.

1Stored Procedures 12

©Copyright 1995-2003 CASEMaker Inc. 12-13

REVOKE executable_name

FROM

,

user_name

PUBLIC
group_name

EXECUTE ON
COMMAND

PROCEDURE

Figure 12-7 Syntax for the REVOKE EXECUTE privileges statement

Â Example 1

user1 creates a stored procedure called proc1 and grants the execute privilege to user2
using dmSQL:
dmSQL> GRANT EXECUTE ON PROCEDURE proc1 TO user2;

Â Example 2

user1 creates a stored procedure called proc1 and grants the execute privilege to
PUBLIC using dmSQL:
dmSQL> GRANT EXECUTE ON PROCEDURE proc1 TO PUBLIC;

Â Example 3

user1 revokes the execute privilege from user2 using dmSQL:
dmSQL> REVOKE EXECUTE ON PROCEDURE proc1 FROM user2;

Â Example 4

user1 revokes the execute privilege from PUBLIC using dmSQL:
dmSQL> REVOKE EXECUTE ON PROCEDURE proc1 FROM PUBLIC;

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 12-14

1Coding User-Defined Functions

13 Coding User-Defined
Functions

13

©Copyright 1995-2003 CASEMaker Inc. 13-1

DBMaker allows programmers to build their own user-defined functions (UDF).
Once a UDF has been written in DBMaker, it is treated as a new built-in DBMaker

function with the same usages. Creating a new user-defined function is straightforward
and follows the general procedure outlined below:

Â To create a user defined function:

1. Write a user defined function in C (UDF Interface)

a) Write the include statement

b) Write the function header

c) Write the arguments that the function passes.

d) Define allocated memory if necessary

e) Define an error code, if desired.

2. Build the dynamic link library for the UDF

3. Create the UDF in DBMaker, with the data array to be passed to the UDF.

13.1 UDF Interface
The first step in creating a UDF is coding it in C. The following sections give an

example of a UDF in C, and describe each of the elements of the code that are
particular to a DBMaker UDF.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 13-2

Example

If you want to create a new UDF, INT2STR(), to convert integer data to a string, you
should build a dynamic link library to include it.
dmSQL> SELECT INT2STR(c1) FROM t1; // c1 is integer type

The following C source code, template.c, gives a snapshot of code of the INT2STR()
UDF:
#include <memory.h>
#include <string.h>
#include <stdio.h>
#include "libudf.h"

/* Transfer integer type to string type */
#ifdef WIN32
__declspec(dllexport)
#endif
int INT2STR(int narg, VAL args[])
{
 char *ptag;
 int len;
 char p1[11];
 int rc;

 if (args[0].type != NULL_TYP)
 {
 sprintf(p1, "%d", args[0].u.ival);
 len = strlen(p1);
 if (rc = _UDFAllocMem(args, &ptag, len))
 return rc;
 memcpy(ptag, p1, len);
 args[0].type = CHAR_TYP;
 args[0].len = len;
 args[0].u.xval = ptag;
 }
 return _RetVal(args, args[0]);
}

1Coding User-Defined Functions 13

©Copyright 1995-2003 CASEMaker Inc. 13-3

Including libudf.h

DBMaker defines some constants, data types and common interfaces, which are
needed in UDF coding.

Programmers should include libudf.h before any UDF coding:
#include "libudf.h"

Passing Parameters

The arguments of a UDF used in an SQL command are packaged into the args
parameter of the UDF coded in C language. Through the args array, a UDF gets the
input data. args is also called the UDF control block, which is always used as the first

argument of the common interface provided by DBMaker. Some common interfaces,
such as the BLOB Common Interface, will be introduced later.

Each UDF header in a C function should follow the form:
int FUNCTION_NAME(int narg, VAL args[])
{
...
}

NOTE args[] points to an array. Functions passing only one argument should use the

pointer form: *args.

narg specifies how many arguments the function passes. For example, if a UDF

MYSUBSTRING (c1, c2, c3) is called in an SQL command, c1 information is passed
by args[0], c2 by args[1] and c3 by args[2]. The value of narg, specifying the array size,
is 3.

Â Example 1

Using the value of c1 as 'abcdefghijklmn', args[0] would be:
args[0].type = CHAR_TYP
args[0].len = 14
args[0].u.xval = "abcdefghijklmn"

Â Example 2

Using the value of c2 as integer 30, args[1] would be:

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 13-4

args[1].type = INT_TYP
args[2].len = 4
args[3].u.ival = 30

In addition to CHAR_TYP and INT_TYP, BIN_TYP, FLT_TYP, OID_TYP,
BLOB_TYP, DEC_TYP and NULL_TYP constants are defined in libudf.h:
#define BIN_TYP 0x0000 /* bit string data type*/
#define CHAR_TYP 0x1000 /* character data type*/
#define INT_TYP 0x2000 /* integer data type*/
#define FLT_TYP 0x3000 /* floating point data type*/
#define OID_TYP 0x4000 /* OID data type*/
#define BLOB_TYP 0x5000 /* BLOB data type*/
#define DEC_TYP 0x6000 /* decimal data type*/
#define NULL_TYP 0xF000 /* set if column is null */

Â Example 3

Through NULL_TYP, the programmer can know whether the input data is NULL:
if (args[0].type == NULL_TYP)
{
 /* input data is NULL */
}
else
{
 /* input data is not NULL */
}

The complete data structure of VAL, as defined in libudf.h:
typedef struct tVAL {
 i16 type; /* data type */
 i15 len; /* data length */
 union {
 i31 ival; /* long integer data */
 i15 sival; /* short integer data */
 double fval; /* double data */
 float sfval; /* float data */
 dec_t dval; /* decimal data */
 char *xval; /* pointer to data */
 } u;
} VAL;

1Coding User-Defined Functions 13

©Copyright 1995-2003 CASEMaker Inc. 13-5

The structure dec_t, used for DECIMAL type, in libudf.h:
typedef struct
{
 i8 pre;
 i8 sca;
 i8 dgt[9];
 i8 exp;
} dec_t10;
typedef dec_t10 dec_t;

A UDF not only passes input data through VAL type, but also returns output data

through it. How to return data is discussed later.

Allocating Memory Space

In C functions, you may need to allocate memory and free it before leaving the
function. Returned values, such as a string or temporary BLOB ID, need to allocate

memory, hold it in the UDF function, and have DBMaker assist in freeing memory
space.

Â Example

In the following example of a UDF UDFAllocMem, arg is the UDF control block, ppt
is the pointer to get the allocated memory block, and nb is the desired allocated size.

This function allocates memory and holds it until DBMaker takes care of it:
int _UDFAllocMem(VAL *arg, char **ppt, int nb);

DBMaker knows to free the memory after a result is returned by using args[0].u.xval, a
pointer to memory space allocated by _UDFAllocMem().
if (rc = _UDFAllocMem(args, &ptag, 10))
 return rc; /* return error code */
memcpy(ptag, "0123456789", 10);
args[0].type = CHAR_TYP;
args[0].len = len;
args[0].u.xval = ptag;

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 13-6

Returning Results

There are two types of returned values: one is an error code and the other is the result
of the UDF through the argument type VAL. Error codes are returned to DBMaker
but their values are hidden from the user; only an error message will be displayed. The

following describes how error codes are returned.

The header of UDF in a C function follows the form:
int FUNCTION_NAME(int narg, VAL args[]);

If FUNCTION_NAME() returns a non-zero value there is something wrong, if a 0 is

returned it means that the function worked properly.

Before returning from the UDF, call _RetVal() to pass the imported result from the
UDF to DBMaker with the following declaration:
int _RetVal(VAL *arg, VAL rtn);

The first argument arg is the UDF control block, and the second one rtn is the value
returned. The following code returns integer 30:
int rc; /* error code */
VAL rtn;
rtn.type = INT_TYP;
rtn.len = 4;
rtn.u.ival = 30;
rc = _RetVal(arg, rtn); /* pass result back to DBMaker */
return rc; /* return error code (0 means no error) */

13.2 Building UDF Dynamic-Link
Library
DBMaker provides a library dmudf.lib to link with the UDF source file to build the

dynamic-link library. Since the dynamic-link library is different on Microsoft
Windows and UNIX environments, both cases are discussed separately.

1Coding User-Defined Functions 13

©Copyright 1995-2003 CASEMaker Inc. 13-7

DLL in Microsoft Windows Environment

DBMaker also provides the template.c source code in the /udf_templates directory
and the template make files udf42.mak (for Microsoft VC++ 4.2 version), udf50.mak
(for Microsoft VC++ 5.0 version), or udf60.mak (for Microsoft VC++ 6.0 version) for

WIN32 users to reference. Users can follow the format of a template C source file to
write their UDF.

Â In the following statements, the udf60.mak is used.

1. Ensure where to include the dmudf.lib file and then use the IDE that Visual C++
provides to modify the required changes.

2. Copy udf60.mak template make file into the desired directory and rename it with
a make file name.

3. Choose <File> -> <Open Workspace> to open the make file project workspace.

4. In the <Project Workspace>, choose <File View>, click template.c to remove it,
press Delete

5. Choose <Project> item in the tool bar, choose < Add to project >, <Files>, and,
insert your own .c file into the make file of the project workspace.

6. In the <Project> -> <Settings>, choose WIN32 Debug for this example. In the
Project Settings <General>, you can change output directories. In the template
make file, set 60Deb as the intermediate and output directories.

7. In the Project Settings <Link> item, in Category item <General>, change the
output .dll file name directly in <Output file name>. Also, change the link path of
the dmudf.lib file DBMaker supports in the <Object/Library modules> to the
working directory.

After finishing the above, you can build your own dll make file. Using similar steps,
you can also build a WIN32 Release version dll file.

Users of VC++, can also create a dll make file using the same steps and setting the
structure member alignment to be 4 bytes. In the VC ++ 6.0 IDE project workspace,
choose the C/C++ menu item, then in the Category dialog box, choose <Code

Generation>. You can find the structure member alignment option, and then choose 4
bytes as the result.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 13-8

Use the make file template to note the setting when writing a collect dll. If you do not
want to use template.c as the default C filename within the make file, remove

template.c from udf60.mak and insert your C file into the udf60.mak project
workspace.

Â Example

In the DBMaker template.c, remember to include the libudf.h file provided, and to
export your functions. Use the export function method from the VC++ programmer

guidebook or the following:
__declspec(dllexport) datatype YOUR_FUNCTION_NAME(......)

Alternatively, create a def file in the project workspace to export your functions and
note that the function name for the UDF must be in UPPER CASE, in C source

code.

After finishing the above, you can build a debug/release version dll file, thus creating
a udf60.dll file.

UDF so File in UNIX

A so file, or UNIX dynamic library, can be created.

Â Example

Write UDF C source code, in the example the file is named udf.c. After completion,
use the UDF function in a UNIX based OS
$ cc –c udf.c
$ ld –o libudf.so udf.o –lm
$ dmsqlt
dmSQL> CREATE FUNCTION libudf.INT2STR(INT) RETURNS CHAR(10);

NOTE The options of the ld command in the above example can vary in UNIX. It may

be –G, –shared, or something else. Please refer to your UNIX manual or man

pages to check how to use the ld command in building a shared library.

1Coding User-Defined Functions 13

©Copyright 1995-2003 CASEMaker Inc. 13-9

13.3 Creating, Using, and Dropping
UDF
The next step for a user-defined function is to create it within DBMaker. The
following sections outline the syntax for creating, querying, and dropping a UDF.

Creating a UDF

Â Syntax
dmSQL> CREATE FUNCTION <udf_dll_name.function_name> (<function_datatype>) RETURN
<function_output_datatype>;

Querying a UDF

Â Syntax
dmSQL> SELECT <function_name>(<related_table_column_name>)
FROM <related_table>;

Dropping a UDF

Â Syntax
dmSQL> DROP FUNCTION <function_name>;

Example

The following demonstrates how to use a UDF file.

Â Example 1

Using a database named DMDEMO containing a table, t1, with the table schema, c1
INT, c2 CHAR(10):
dmSQL> SELECT * FROM t1;
c1 c2
==================
10 1
20 2
30 3

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 13-10

3 rows selected

Using the example template.c DBMaker supports, we can now build a udf60.dll
successfully.

In the dmconfig.ini file, add one line to the DMDEMO section:
[DMDEMO]
DB_DBDir = D:\UDFDEMO
DB_FODIR = D:\UDFDEMO\FO
DB_LBDIR = D:\UDF\60Deb ; add this line

For more information on DB_LbDir, refer to Appendix A Keywords in dmconfig.ini.
Set DB_LbDir or place the udf60.dll in the <DBMaker home directory>\shared\udf,
since it is the UDF default directory.

Â Example 2

Start the database DMDEMO, and then create the UDF function. In the example,
the <udf_dll_name> is udf60,the <function_name> is INT2STR, <function_datatype>
is INT, and <function_output_datatype> is CHAR(10):
dmSQL> CREATE FUNCTION udf60.INT2STR(INT) RETURNS CHAR(10);

The UDF function INT2STR returns the following results. The <function_name> is
INT2STR, <related_table_column_name> is c1 according to the schema of t1 and the
<related_table> is t1:
dmSQL> SELECT INT2STR(c1) FROM t1;

INT2STR(c1)
===========
10
20
30

3 rows selected

Â Example 3

Another UDF function, e.g. STR2INT(), in the same dynamic-link file:
dmSQL> CREATE FUNCTION udf60.STR2INT(CHAR(10)) RETURNS INT;

1Coding User-Defined Functions 13

©Copyright 1995-2003 CASEMaker Inc. 13-11

dmSQL> SELECT STR2INT(c2) FROM t1;

 STR2INT(c2)
===========
1
2
3

3 rows selected

Â Example 4

When dropping a UDF function, simply drop the UDF function name, there is no
need to attach the UDF dll name. When dropping a UDF function, wait until the
database has terminated, then the UDF function will be cleaned up. Before the

database is terminated, the function will continue to exist.
dmSQL> DROP FUNCTION INT2STR;

13.4 UDF BLOB Common Interface
Today, multimedia is important and useful to users. DBMaker supports a common
interface to access BLOBs using a file handle method, so programmers can easily write

UDFs for BLOB type data. FILE, LONG VARCHAR, and LONG VARBINARY are
the data types used to store BLOB data in a database.

Many of the new features in DBMaker need a temporary BLOB to process temporary

results. DBMaker supports temporary BLOBs for programmers to write a UDF more
easily. A programmer can open a permanent BLOB, read the data, execute a
conversion function or something else, save the result in a new temporary BLOB and

return it back in a UDF. The API fetches this temporary BLOB as a normal BLOB
column.

BLOB Common Interface Functions

DBMaker provides BLOB common interface functions for programmers to write

UDFs. A DBA should set the DB_FODir in the dmconfig.ini file for the temporary
BLOB file before starting a database. A temporary BLOB will be created in an external

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 13-12

file in the DB_FODir directory, with the file name format "__??????.TMP", where “?”
represents one character of either [0-9, A-Z]. All file names matching the format will

be deleted when the database is shut down and restarted.

_UDFBBOPEN()

Opens a BLOB using bbObj and returns a handle through pHandle. bbObj can be

retrieved by Arg[i], using the BLOB with the input argument of the UDF. The
function returns 0 if it successfully opens the BLOB, otherwise an error code will be
returned:
int _UDFBbOpen(VAL *Arg, BBObj bbObj, i31 *pHandle);

_UDFBBREAD()

Reads the BLOB that belongs to the handle. Before calling this function, allocate a
buffer, (pBuf), with szBuf using the function _UDFAllocMem() to get the read data.

The returned data will be stored in pBuf and the size actually read is in szRead. If
szBuf is non-positive, no characters are read:
 int _UDFBbRead(VAL *Arg, i31 handle, i31 szBuf, i31 *szRead, char
*pBuf);

_UDFBBSEEK()

This function is used to set the position of the next output operation in a BLOB. The
new position is at the offset bytes from the beginning, the current position, or the end
of the file, according to the ptrname using the SEEK_BB_BEG, SEEK_BB_CUR, or

SEEK_BB_END value defined in libudf.h. The function only works between the
period of _UDFBbOpen() and _UDFBbClose(), but not _UDFBbCreate() and
_UDFBbClose():
int _UDFBbSeek(VAL *Arg, i31 handle, i31 offset, i16 ptrname);

_UDFBBCUROFFSET

The function returns the current position of an open BLOB or the offset in a BLOB:
int _UDFBbCurOffset(VAL *Arg, i31 handle, i31 *pOffset);

1Coding User-Defined Functions 13

©Copyright 1995-2003 CASEMaker Inc. 13-13

_UDFBBCLOSE()

Closes the BLOB opened by _UDFBbOpen() or created by _UDFBbCreate():
int _UDFBbClose(VAL *Arg, i31 handle);

_UDFBBCREATE()

Creates a temporary BLOB and returns a handle for _UDFBbWrite(). The caller
should prepare the space for the BBObj structure pointed to by pBbObj and written
by _UDFBbCreate(), _UDFBbWrite() and _UDFBbClose(). BBObj is used to

identify this temporary BLOB. For example if you want to delete the temporary
BLOB called _UDFBbDrop() using the BBObj argument.

If successful, pHandle will return a BLOB handle similar to the handle of the opened

file written by _UDFBbWrite() and closed by _UDFBbClose().

Alternatively, specify the temporary BLOB to be created in file (BB_TEMP_FO)or in
memory (BB_TEMP_MEM). If the caller specifies the temporary BLOB in memory, it

does not mean that the temporary BLOB will be created in memory - a memory
limitation may prevent this. The temporary BLOBs in memory might be converted to
files by the operating system if the original temporary BLOBs in memory or the input

data are over the size limit. Programmers should not depend on this feature when
coding.

The function returns 0 if it is successful and an error code will be returned otherwise.

Before reading the new temporary BLOB, you must close it using _UDFBbClose(),
then reopen it using _UDFBbOpen(). _UDFBbSeek() cannot be used on temporary
BLOBs unless they are closed and reopened for reading :
int _UDFBbCreate(VAL *Arg, BBObj *pBbObj, i31 *pHandle, i31 Opt);

_UDFBBWRITE()

After using _UDFBbCreate() to make a temporary BLOB, write data to it using
_UDFBbWrite(). The handle is from _UDFBbCreate(), pBuf points to input data

and its length is szBuf. The function returns 0 if it is successful, otherwise, an error
code will be returned:
int _UDFBbWrite(VAL *Arg, i31 handle, i31 szBuf, char *pBuf);

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 13-14

_UDFBBDROP()

Normally you do not drop a temporary BLOB if it will be returned from a UDF; the
system will control its life cycle. If you do not return the created BLOB, you'd better

use this function to drop the temporary BLOB. This function cannot work on a
permanent BLOB; doing so will return the ERR_BLOB_INV_BLOB error. The
function returns 0 if it is successful, otherwise, an error code will be returned:
int _UDFBbDrop(VAL *Arg, BBObj bbObj);

_UDFBBSIZE()

This function returns the data size of a BLOB by pLen. BbObj can be a permanent
BLOB or a temporary BLOB. The function returns 0 if it is successful, otherwise, an

error code will be returned:
int _UDFBbSize(VAL *Arg, BBObj bbObj, i31 *pLen);

Example

The following demonstrates how to create the user-defined function, MYCONVERT
with input in varchar format and output as a temporary BLOB.

Â To create the user-defined function, MYCONVERT:

1. Build a dynamic library in UNIX using myudf.c, (the source code follows later):
cc -g -c myudf.c
ld -G -o myudf.so myudf.o

2. Start the database.

3. At the dmSQL prompt, enter:
dmSQL> CREATE FUNCTION myudf.myconvert(VARCHAR(100)) // input string
 2> RETURNS LONG VARCHAR; // output BLOB
dmSQL> SELECT myconvert(c1) FROM mytable; // output temp BLOB

The source code for the UDF MYCONVERT:
#include "libudf.h"

int MYCONVERT(int nArg, VAL args[])

{

 int rc = 0, trc; /* return code */

 BBObj tmpobj; /* output temp BLOB */

1Coding User-Defined Functions 13

©Copyright 1995-2003 CASEMaker Inc. 13-15

 i31 handle; /* handle of created temp BLOB */

 boolean fgCreate = false; /* temp BLOB has been created? */

 char *pInData, pOutData[4096];/* input/output data buffer */

 i31 nInData, nOutData; /* input/output data buffer length */

 if (args[0].type == NULL_TYP)

 goto cleanup;

 pInData = args[0].u.xval; /* get input data */

 nInData = args[0].len; /* input data length */

 /* create a temp BLOB in file */

 if (rc = _UDFBbCreate(args, &tmpobj, &handle, BB_TEMP_FO))

 goto cleanup;

 fgCreate = true;

 /* any real processing function */

 RealConvert(pInData, nInData, pOutData, &nOutData);

 /* write result data to temp BLOB */

 if (rc = _UDFBbWrite(args, handle, nOutData, pOutData))

 goto cleanup;

 /* close created temp BLOB (temp BLOB is still alive) */

 if (rc = _UDFBbClose(args, handle))

 goto cleanup;

 args[0].type = BLOB_TYP;

 args[0].len = sizeof(BBID);

 args[0].u.xval = (char *)&tmpobj;

 /* _RetVal() does a copy from this local buffer */

cleanup:

 if (rc)

 {

 /* error handle */

 if (fgCreate)

 {

 _UDFBbClose(args, handle); /* close created temp BLOB */

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 13-16

 trc = _UDFBbDrop(args, tmpobj); /* drop it because of failure */
 if (trc > rc)

 rc = trc;

 }

 return rc;

 }

 else

 return _RetVal(args, args[0]);

}/* MYCONVERT() */

Troubleshooting Errors

Use the following to troubleshoot errors when writing a BLOB UDF using the BLOB
common interface.

ERROR (327): THE BLOB COLUMN IS NOT OPENED OR
CREATED YET

The function must use _UDFBbOpen() to open the BLOB or _UDFBbCreate() to
create a new temporary BLOB, before using other BLOB function interfaces.

ERROR (328): THE OFFSET OF BLOB COLUMN IS INVALID

When a UDF using _UDFBbSeek() seeks to offset by a length greater than the length
of the BLOB.

ERROR (331): THIS BLOB WAS NOT IN CREATED STATE

_UDFBbWrite() can only work on a temporary BLOB created by _UDFBbCreate()
and must not be closed. For example, if you use it on BLOB opened by

_UDFBbOpen(), this error will occur.

ERROR (330): THIS BLOB WAS NOT IN OPENED STATE

_UDFBbRead() can only work on a BLOB (including temporary BLOBs) opened by

_UDFBbOpen().

1Coding User-Defined Functions 13

©Copyright 1995-2003 CASEMaker Inc. 13-17

ERROR (332): THE BLOB OBJECT IS NOT CLOSE YET

Whenever _UDFBbOpen() or _UDFBbCreate() are used to open a BLOB,
programmers should call _UDFBbClose(), to close the opened BLOB.

ERROR (322): NO FILE OBJECT DIRECTORY IN
CONFIGURATION FILE; CANNOT INSERT FILE OBJECT

If temporary BLOBs are used, the keyword DB_FODir in the dmconfig.ini file must
be set. If not set, attempting to create a temporary BLOB may fail and this error

occurs.

13.5 UDF related dmconfig.ini
keywords

DB_StrSz

In addition to DB_LbDir and DB_FODir, there is also a related keyword DB_StrSz
in dmconfig.ini file
DB_STRSZ=<value>

This keyword indicates the length of returned data of the STRING type, used only by
user-defined function (UDF). Since UDFs can only return data of a fixed size, this
keywords can limit the size of STRING data, in order to avoid receiving strings that

are to long. The default value is 255, and the valid range is from 1 to 4096. It can be
used on a client or server, the client has a higher priority.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 13-18

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-1

14 Database Recovery,
Backup, and
Restoration

In every database management system, the possibility of a hardware or software failure
always exists. A DBMS may fall victim to failures without warning. After a failure

occurs, a DBMS should have some method of recovering the information. This is one
of the main advantages a DBMS has over the old file-based systems they replaced.

DBMaker incorporates advanced data protection features to prevent data loss and

downtime due to failures. These features allow DBMaker to ensure the reliability of a
database and the consistency of data by providing recovery, backup, and restoration
features.

14.1 Types of Database Failures
Database failures can be divided into two types: system failures and media failures.
When either of these types of failure occurs, there is the possibility of data
inconsistency or data loss in a database. A DBMS should provide facilities for

recovering from failures and for replacing a damaged database with a backup copy.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-2

System Failures

A system failure, known as an instance failure, is a failure from the main memory in a
computer system. System failures may be caused by a power failure, an application or
operating system crash, a memory error, or other reason. The result is the unexpected

termination of DBMS.

Applications and active transactions can terminate abnormally when a system failure
occurs. Since the exact state of a transaction in progress or a transaction that has not

been completely written to disk cannot be reliably be determined after a system
failure, these types of transactions require recovery. The most common method of
protection against system failures is the use of a transaction log, or a journal file.

Media Failures

Media failure (also known as disk failure) is a failure of the disk storage system of a
computer system. Media failures are usually caused by physical trauma to the disk
itself, such as a head crash, fire, or exposure to vibration or g-forces outside its physical

operating limits.

There is nothing to prevent the loss of data on an affected disk when a media failure
occurs. One or more files may be physically damaged because of the failure, requiring

restoration of the database. However the database can be successfully restored if the
database provides backup and restoration facilities.

14.2 Recovery from Database
Failures
The goals of recovery after a database failure are to ensure committed transactions are

reflected in the database, ensure uncommitted transactions are not reflected in the
database, and to return to normal operation as quickly as possible while insulating
users from problems caused by the failure.

DBMaker uses journal files and checkpoints to achieve these goals. The journal files
and checkpoints work together to ensure that all transactions are recovered in as short
a time as possible, with as little effect on users as possible.

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-3

Journal Files

Journal files provide a real-time, historical record of all changes made to a database,
and the status of each change. In the event of a system failure, the historical record of
changes maintained in the journal file allows DBMaker to recover and redo changes

made by transactions that completed but were not written to disk, or undo changes
made by transactions that terminated abnormally.

If a database is running in backup mode, the journal files will also store additional

information that DBMaker can use to restoration. This information will remain in the
journal files until they are backed up; after you back up the journal files DBMaker will
free this space for use by new transactions.

During the restoration process, DBMaker will add the information from the backup
journal files to a backup copy of the database. Therefore, only the journal files that
contain the changes made to the database between full backups need to be backed up.

Checkpoint Events

A checkpoint is a system event in which the database is brought to a clean state.
DBMaker writes all journal records and all dirty data pages from its internal memory
buffers to disk, and reclaims journal blocks that are no longer required for backup or

recovery purposes. DBMaker can reclaim journal blocks that contain non-active
transactions that completed before the start of the oldest active transaction.

Startup time after an instance failure is reduced after taking a checkpoint. DBMaker

writes the time of the last checkpoint and a list of all transactions active at the time of
the checkpoint to the journal file header. During database recovery, DBMaker uses
this information to determine which transactions should be undone, which should be

redone, and which should be ignored.

DBMaker will automatically take a checkpoint when the journal files are full to try to
reclaim some journal blocks to reuse. If the checkpoint cannot reclaim enough space

to complete the current transaction, the transaction will be aborted. DBMaker will
also automatically take a checkpoint when the database starts and shuts down, and
when an online backup is performed.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-4

Database administrators can initiate a checkpoint manually by executing the
CHECKPOINT command. The optimal interval between two checkpoints depends

on the frequency of activity in the database, the average size of transactions, and the
size and number of journal files. Since these factors may vary significantly from
database to database, the optimal interval is best determined through experience.

Manual checkpoints reduce the amount of time required to start, terminate, and
backup a database, as well as the possibility that a full journal will be encountered.

Checkpoints may require a significant amount of time to complete, depending on the

size and number of transactions since the last checkpoint. Any transactions that are
active when a checkpoint occurs need to wait for DBMaker to calculate which journal
records it can reclaim, but do not need to wait while DBMaker actually writes journal

records and dirty data pages to disk.

Recovery Steps

DBMaker provides support for automatic recovery when the database is started after a
system failure or when an error occurs during startup. During the recovery process,

DBMaker always performs two separate steps: redo and undo.

The latest Checkpoint Crash here
time

Redo Phase: Reapply changes
recorded in the Journal

Undo Phase: Abort uncommitted transactions

Journal records in disk
The last journal record
before crash

The latest Checkpoint Crash here
time

Redo Phase: Reapply changes
recorded in the Journal

Undo Phase: Abort uncommitted transactions

Journal records in disk
The last journal record
before crash

The first step in the recovery process is to redo (or reapply) all changes made to the

database that are recorded in the journal. This step is necessary since it is possible for a
transaction to have completed before the system failure, without having all the changes
made by the transaction written to the database. However, these changes are stored in

the journal, and can be written to the database during this step. At the end of this
step, the database contains the changes made by all committed transactions, as well as
the changes made by all uncommitted transactions.

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-5

The second step in the recovery process is to undo (or rollback) all the changes made
by transactions that were not completed before the system failure occurred. This step

is necessary since the exact state of a transaction in progress cannot be reliably
determined in the event of a system failure. These incomplete transactions must be
removed since a transaction is self-contained by definition and must either complete

successfully and change the data, or fail and leave the data unchanged. At the end of
this step, the database contains the changes made by all committed transactions, but
does not contain any changes made by uncommitted transactions.

DBMaker also provides support for starting a database after a media failure or after a
system failure, which causes inconsistencies in a database that cannot be repaired
during the automatic recovery process. In these cases, the database will fail to start and

you would normally need to restore your database from a backup copy. However, if
you have never backed up your database, you can force the database to start by setting
the forced-start mode using the DB_ForcS keyword in the dmconfig.ini file. This will

allow you to start the database and unload the unaffected data. For more information
on the forced-start mode, see “Forcing Database Startup”.

Forcing Database Startup

DBMaker automatically performs recovery operations if errors occur when a database

starts normally. If the database cannot start up, there may be some disk errors. Disk
errors require the database be restored from the most recent backup to repair it. If the
database has no backups and cannot start, use the forced startup mode provided by

DBMaker.

DBMaker supplies a forced startup option for this type of situation. To set the forced
startup mode on, use the DB_ForcS keyword in the dmconfig.ini file. Setting this

keyword to 1 enables forced startup mode, and setting it to 0 disables it. When forced
startup mode is on, DBMaker will skip errors when starting the database.

If the database still cannot be started, there is one remaining alternative provided in

the procedure below. However, before performing this procedure, backup all data and
journal files.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-6

Â To start a database when it will not start in force start database mode:

1. Set the Forced Startup Mode to off in dmconfig.ini (DB_ForcS = 0).

2. Set the Start Mode to New Journal Mode in dmconfig.ini (DB_SMode = 2).

3. Restart the database.

4. Reset Start Mode back to normal in dmconfig.ini (DB_SMode = 1)

DBMaker provides the option to use a new journal to force the database to start
without any recovery operations. Therefore, if errors serious enough to prevent the

database from starting have occurred, the database may be in an inconsistent state.

After starting the database with this method, check the consistency of the database.
For more information on database consistency checking, refer to section 6.12 Checking
Database Consistency.

14.3 Types of Backups
Backups are used to protect a database from media failures or other media errors. After
a media failure, one or more database files may be physically damaged and unusable.

Use the most recent backup to replace the damaged files and reconstruct a database.

Database backups consist of backup sequences. One backup sequence consists of one
full backup and any incremental backups that were performed after the full backup.

Full Backups

A full backup is any backup that creates a copy of all data and journal files, providing a
copy of the entire database at one point in time. A backup copy of the dmconfig.ini
file can be created as well, preserving any custom configuration settings there may be

for a database. The database administrator may perform a full backup while the
database is online or offline.

Full backups archive the entire database, therefore requiring a large amount of storage

space. However, a database can be restored relatively quickly using a full backup. A
full backup can be used to restore a database to the point in time the full backup was
performed.

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-7

A valid full backup will be assigned a full backup ID. The full backup ID is a time /
date stamp. The backup ID is used to ensure that full backups and incremental

backups are associated in a backup sequence; all incremental backups between the
current valid full backup and the next belong only to the current valid full backup.
Trying to restore incremental backups against previous (and any other) sequences will

fail. Backup sequences are managed by DBMaker. Repairing a database, restoring a
database, starting a database in new journal mode, or changing the backup mode will
require a new valid full backup.

There are three primary methods of performing full backups. The first is by using the
backup server, and is discussed in more detail in section 14.6 Backup Server. Full
backups by backup server may be performed with dmSQL or with the JServer

Manager utility. The second method is full backup interactively. Full backup
interactively does not require that the Backup Server be started. JServer Manager is the
recommended method of performing this type of full backup. For directions on how

to perform a full backup interactively, refer to the JServer Manager User’s Guide. The
third method for performing a full backup is offline full backup. Refer to section 14.5
Offline Full Backups for more information on how to perform an offline full backup.

Incremental Backups

An incremental backup is any backup that creates a copy of only the journal files that
have changed since the last incremental or full backup. Incremental backups may only
be performed after a full backup has been performed. Performing a new full backup

starts a backup sequence. Subsequent incremental backups are part of that sequence
and may not be used with any other full backup. The incremental backup file
sequence provides a copy of the changes made to the database since the last full

backup. The database administrator can perform an incremental backup only while a
database is online.

Incremental backups archive only journal files, so they require only a small amount of

storage space. However, it may take more time than a full backup to restore a database
since the DBMS must take the time to rollover all transactions in the backup journal
files. Use the incremental backups together with a full backup to restore a database to

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-8

any point in time between the previous full backup and the time the last incremental
backup was completed.

There are two methods for performing Incremental Backups (there is a third method
Incremental backup to current, that is considered a different type of backup). The first
method is Incremental backup by backup server. Backup server must be started on the

database to be able to use this method. For more information on performing
incremental backup by backup server, refer to section 14.6 Incremental Backups. The
second method is incremental backup interactively. This type of Incremental backup

does not require that backup server be started. The recommended method of
performing incremental backup interactively is with the JServer Manager utility.
Incremental backup interactively is explained in the JServer Manager User’s Guide.

Offline Backups

An offline backup is any backup that must be performed after a database has been shut
down. The database administrator must schedule a time to shut down the database,
and notify all users so they can disconnect from the database. Offline backups can be

inconvenient for users, since they must remember to complete all active transactions
and disconnect from the database before it is shut down. The database administrator
can perform only full backups while offline.

A DBMS does not need to provide the capability to backup a database offline, since
you can backup the database with operating system commands after it is shut down.
The database administrator may perform an offline backup using this method, or by

using JServer Manager, an easy-to-use graphical tool that performs offline backups
without resorting to using operating system commands.

Online Backups

An online backup is any backup that is performed while a database is running. The

database administrator does not have to shut down the database, and users do not
need to disconnect. Online backups are more convenient for users, since no action is
required on their part. The database administrator can perform full and incremental

backups while online.

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-9

A DBMS must provide the capability to backup a database online, since it is still
running and still has users connected. DBMaker allows for online backups to be

performed manually using dmSQL and operating system commands, but also provides
JServer Manager, an easy-to-use graphical tool that allows online backups to be
performed without resorting to operating system commands.

Online Incremental to Current Backups

DBMaker also supports an additional backup type known as online incremental to
current.

The difference between an online incremental backup and an online incremental to

current backup in a database with multiple journal files is minor, but important. In an
online incremental backup DBMaker will backup all journal files that have been used
since the last backup, excluding the active journal file. In an online incremental to

current backup DBMaker will backup all journal files that have been used, including
the active journal file. This means that an online incremental backup can restore a
database up to the point in time the last committed transaction was written to the last

full journal file, while an online incremental to current backup can restore a database
up to the point in time the active journal file was backed up.

In a database with only a single journal file, an online incremental backup and an

online incremental to current backup are the same. In this case, the only journal file is
the active journal file. DBMaker will backup this single journal file in both types of
incremental backup.

Online Incremental to current backups may be performed with the JServer Manager
Utility. For directions on how to perform an incremental backup to current, refer to
the JServer Manager User’s Guide.

14.4 Backup Modes
Backup mode determines whether DBMaker can perform online incremental backups,
and the type of data that will be backed up during an incremental backup. It also
determines when DBMaker will free journal blocks that belong to inactive

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-10

transactions for use by other transactions. DBMaker has three backup modes:
NONBACKUP, BACKUP-DATA, and BACKUP-DATA-AND-BLOB.

BACKUP

MODE
TABLESPACE

BACKUP

MODE

USER

DEFINED

TABLESPACE

(DATA)

USER

DEFINED

TABLESPACE

(BLOB)

SYSTEM

TABLESPACE

(DATA AND

BLOB)

No
Backup

 No No No

Backup
Data

 Yes No Yes

Backup
Data and
BLOB

Backup BLOB
Off

Yes No Yes

 Backup BLOB
On

Yes Yes Yes

NONBACKUP Mode

NONBACKUP mode provides no protection for any data that was inserted or
updated since the last full backup. In this mode, online incremental backups cannot

be performed. A database can use the journal to fully recover from instance failure, but
a media failure may result in loss of data. Journal blocks not in use by an active
transaction can be reused immediately after a checkpoint, but once they are

overwritten, the database may only be restored to the point in time of the last full
backup.

BACKUP-DATA Mode

BACKUP-DATA mode provides protection for data (excluding BLOB data) that was

inserted or updated since the last full backup. In this mode, a database administrator
can perform an online incremental backup, but only non-BLOB data will be stored in
the backup files. A database can use the journal to fully recover from instance failure,

and can partially recover from media failure. Although the last backup can be used to
restore the database to the point in time of the media failure, any changes to BLOB

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-11

data will be lost. Journal blocks not in use by an active transaction can only be reused
after a checkpoint has taken place and the journal file has been backed up.

BACKUP-DATA-AND-BLOB Mode

BACKUP-DATA-AND-BLOB mode provides protection for all data (including
BLOB data) that was inserted or updated since the last full backup. In this mode, a
database administrator can perform an online incremental backup, and all data will be

stored in the backup files. A database can use the journal to fully recover from instance
failure, and can fully recover from disk failure. The last backup may be used to
completely restore the database to the point in time of the media failure, including all

BLOB data. Journal blocks not in use by an active transaction can only be reused after
a checkpoint has taken place and the journal file has been backed up.

Tablespace BLOB Backup Mode

DBMaker normally applies the backup mode setting to the entire database; this means

all tablespaces in the database will be in the same backup mode. If the database is in
BACKUP-DATA-AND-BLOB mode, DBMaker will record all changes to data
(including BLOB data) in the journal. Recording BLOB data in the journal can

quickly exhaust journal space, producing frequent backups and large backup file sizes.

This may be necessary if all BLOB data is critical, but in many cases, non-critical
BLOB data may be backed up at the same time. Situations like this make it difficult

for the database administrator to decide which backup mode you should choose. To
prevent this type of situation from occurring, DBMaker allows the database
administrator to modify the database backup mode for individual tablespaces when

creating them.

To backup BLOB data in a specific tablespace, use the BACKUP BLOB ON option
when executing the CREATE TABLESPACE command. To avoid backing up BLOB

data in a specific tablespace, use the BACKUP BLOB OFF option when executing the
CREATE TABLESPACE command.

The backup mode of each tablespace will then depend on the combination of database

backup mode and tablespace backup mode as follows:

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-12

 If the database is running in BACKUP-DATA-AND-BLOB mode and a
tablespace was created with the BACKUP BLOB ON option, DBMaker will

backup BLOB data in that tablespace.

 If the database is running in BACKUP-DATA-AND-BLOB mode and a
tablespace was created with the BACKUP BLOB OFF option, DBMaker will

not backup BLOB data in that tablespace.

 If the database is running in BACKUP-DATA mode, DBMaker will not
backup BLOB data regardless of whether a tablespace was created with the

BACKUP BLOB ON or BACKUP BLOB OFF option.

DBMaker uses the BACKUP BLOB ON mode by default for newly created
tablespaces. All changes to BLOB data in that tablespace will be recorded in the

journal file when the database is in BACKUP-DATA-AND-BLOB mode.

Backup File Object Mode

In addition to backing up regular and BLOB data in the database, users may choose to
back up file objects. File objects are backed up only during automatic full backups

initiated by the backup daemon. Users should first start the backup server, set the full
backup schedule, and set the backup directory. For more information full backup
settings refer to section 14.6, Backup Server.

There are two types of file objects: user file objects and system file objects. The
database administrator may choose to back up user file objects, system and user file
objects, or neither. The dmconfig.ini keyword DB_BkFoM specifies the Backup

Mode of File Objects.

 DB_BkFoM = 0: Do not backup file objects.

 DB_BkFoM = 1: Backup system file objects only.

 DB_BkFoM = 2: Backup both system and user file objects.

When backing up file objects (DB_BkFoM = 1, 2), the backup server copies all
external files of file objects to the “fo” subdirectory under the directory specified by

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-13

DB_BkDir keyword. The schedule follows the full backup schedule specified by
DB_FBkTm and DB_FBkTv .

Â Example

An excerpt from a dmconfig.ini file containing related keywords:
[MyDB]
DB_BkSvr = 1 ; starts the backup server
DB_FBKTm = 01/05/01 00:00:00 ; begins from midnight at May 1, 2001.
DB_FBKTV = 1-00:00:00 ; interval is every one day.
DB_BkDir = /home/dbmaker/backup ; backup directory
DB_BkFoM = 2 ; backup both system and user file objects

Since the Backup Mode of File Objects is 2, the backup server will copy all external
database file objects to the “/home/dbmaker/backup/FO” directory. If the FO
subdirectory does not exist, the backup server will create it.

The files in FO subdirectory are renamed with a sequential number. For example, if
the name of the original external file is “/DBMaker/mydb/fo/ZZ000123.bmp”, the
backup server would copy it to the FO subdirectory and rename it

'fo0000000344.bak', meaning it is the 344th file object. The mapping between the
source full file name and its new name is recorded in the file object mapping list file,
dmFoMap.his. For more information about the file object mapping list file, refer to

section 14.7, Backup History Files

The backup server will also move the previous version of file objects to the FO
subdirectory under the old backup directory specified by DB_BkOdr.

Database administrators should consider that enabling file object backup requires
more time for a full backup. The cost of complete full backup includes (1) copying the
previous full backup if DB_BkOdr is set; (2) copying all database files; (3) copying all

journal files; and (4) copying all file objects if DB_BkFoM is set. Also, ensure that
there is enough disk space in the backup directory specified by DB_BkDir for all
backup files to avoid backup failure.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-14

Setting the Backup Mode

DBMaker provides several different methods to set the backup mode. The method
you choose depends on whether your database is online or offline, and whether you
are more comfortable editing the configuration file directly, using the dmSQL

command line utility, or using the JServer Manager graphical utility.

Modifying the backup mode of a database to provide a higher level of backup
protection (i.e. from NONBACKUP to BACKUP-DATA mode, or from BACKUP-

DATA to BACKUP-DATA-AND-BLOB mode) has an effect on journal usage. The
journal begins recording changes to data that was previously not recorded before
modifying the backup mode. As a result, it is necessary to perform a full backup when

you change the backup mode. This provides a starting point for the backup journal
files to update during the restoration process.

No extra steps are required when modifying the backup mode of a database to provide

a lower level of backup protection (i.e. from BACKUP-DATA or BACKUP-DATA-
AND-BLOB mode to NONBACKUP mode) since the journal simply stops recording
changes to data. DBMaker will use the previous full backup as a starting point for the

backup journal files to update during the restoration process. However, some changes
to data may be lost if the database is restored after changing to a lower level of backup
protection.

The database administrator may change the backup mode of the database while offline
using the dmconfig.ini file or JServer Manager. Since the backup mode affects journal
usage, an offline full backup must be performed before starting the database with the

new backup mode setting. Backup modes may be changed from one mode to another
without restriction when offline, providing a full backup is made when going from a
lower level of backup protection to a higher level. For more information on

performing an offline full backup, see “Offline Full Backups” later in this chapter.

A database adminstrator can change the backup mode of a database online using
dmSQL. Since the backup mode will affect journal usage, backup mode must be

changed from a lower level of backup protection to a higher level (i.e. from
NONBACKUP to BACKUP-DATA or BACKUP-DATA-AND-BLOB mode, or

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-15

from BACKUP-DATA to BACKUP-DATA-AND-BLOB mode) between the start
and finish of a full backup period.

Â Example

To use dmSQL to change the backup mode online:
dmSQL> begin backup;
dmSQL> set data backup on;
dmSQL> end backup datafile;
dmSQL> end backup journal;

or:
dmSQL> begin backup;
dmSQL> end backup datafile;
dmSQL> set data backup on;
dmSQL> end backup journal;

DBMaker does not allow the database to go from a higher level of backup protection
to a lower level unless it is changed to NONBACKUP mode first. To change from

BACKUP-DATA-AND-BLOB to BACKUP-DATA mode, first change to
NONBACKUP mode and then follow the rules above for changing from a lower level
of backup protection to a higher level. The backup mode may be changed from

BACKUP-DATA-AND-BLOB or BACKUP-DATA to NONBACKUP at any time;
it does not need to be done between the start and finish of a full backup period.

USING THE DMCONFIG.INI CONFIGURATION FILE

If the database is offline, change the backup mode directly using the DB_BMode
keyword in the dmconfig.ini file. The next time the database is started, the new
backup mode will be used. If the database is online, changing the value of the

DB_BMode keyword will have no effect until the database is shut down and restarted.
Remember to perform an offline full backup if the backup mode is going to be
changed from NONBACKUP to BACKUP-DATA or BACKUP-DATA-AND-

BLOB mode or from BACKUP-DATA to BACKUP-DATA-AND-BLOB mode.

Â To set the backup mode using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-16

2. Locate the database configuration section for the database.

3. Change the value of the DB_BMode keyword to one of the following values:

0 - NONBACKUP mode

1 - BACKUP-DATA mode

2 - BACKUP-DATA-AND-BLOB mode

4. Restart the database to begin using the new backup mode.

If the DB_BMode keyword is not present in the database configuration section for the
database, you will have to add the DB_BMode keyword to that database

configuration section. You can add the keyword on a separate line anywhere between
the start of the database configuration section and the start of the next configuration
section; the order the keywords appear in is not important. If you do not specify a

value for DB_BMode, the default value of 0 (NONBACKUP mode) will be used.

USING DMSQL

If the database is online and you are comfortable using the dmSQL command line

utility, you can change the backup mode using the SQL SET command. You must
execute this command during an online full backup. The new backup mode will be
enabled as soon as the command is executed.

Â To set the backup mode using the dmSQL command line utility

1. Connect to the database to change the backup mode using dmSQL.

2. Begin an online full backup using the BEGIN BACKUP command.

3. Change the backup mode during the full backup period by issuing one of the
following SET commands at the dmSQL command prompt:

dmSQL> set backup off;

dmSQL> set data backup on;

dmSQL> set blob backup on;

4. Complete the online full backup.

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-17

The SET BACKUP OFF command corresponds to NONBACKUP mode, the SET
DATA BACKUP ON corresponds to BACKUP-DATA mode, and the SET BLOB

BACKUP ON command corresponds to BACKUP-DATA-AND-BLOB mode.

USING JSERVER MANAGER

If the database is offline, you can change the backup mode using the JServer Manager

graphical utility. JServer Manager will automatically change the value of the
DB_BMode keyword in the dmconfig.ini file. The next time you start the database,
the new backup mode will be used. If the database is online, changing the value of the

DB_BMode keyword will have no effect until the database is shut down and restarted.
You must remember to perform an offline full backup if you are going from
NONBACKUP to BACKUP-DATA or BACKUP-DATA-AND-BLOB mode or

from BACKUP-DATA to BACKUP-DATA-AND-BLOB mode. For directions on
how to set the backup mode offline using the JServer Manager graphical utility refer to
the JServer Manager User’s Guide.

14.5 Offline Full Backups
Offline full backups use operating system commands to back up the database.
DBMaker provides this option, however, backup server is recommended. Offline full
backups necessitate the database be shut down, furthermore, managing the backup

sequence is a more complex process.

To perform an offline full backup, you must have read permission on the database
files from the operating system, and write permission on the backup directory from

the operating system. If you have to shut down the database first, you must have DBA
or SYSADM security privileges.

You can perform an offline full backup regardless of the backup mode; the database

may be running in NON-BACKUP, BACKUP-DATA, or BACKUP-DATA-AND-
BLOB mode. Using an offline full backup, you can restore the database to the point
in time the database was shut down.

Note that offline full backup using JServer Manager does not back up file objects. File
objects must be copied manually. Be sure to exactly replicate the file and directory

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-18

structure if restoring a database from an offline full backup. For directions on how to
perform an offline full backup using JServer Manager, refer to the JServer Manager
User’s Guide.

OFFLINE FULL BACKUP USING DMSQL

Â To perform an offline full backup using dmSQL:

1. Notify all users that the database will be shut down at a specified time and ask
them to disconnect before that time.

2. If the database is running, shut it down using the TERMINATE DB command. If
there are any errors while shutting down the database, restart the database, correct
the problem, and shut it down again.

3. Examine the dmconfig.ini file and list all relevant files and directories, including
the file object directory, which require backup.

4. Use operating system commands or utilities to copy the database files, including
data files, journal files, file objects, and the dmconfig.ini file, to the backup
directory or backup device.

14.6 Backup Server
Although DBMaker provides methods for backing up a database manually, you must
still remember to perform the backups on a regular basis. To solve this problem,

DBMaker provides a convenient and easy way to perform fully automated online full
and incremental backups using Backup Server.

The database administrator may also perform backups during runtime with the

JServer Manager utility ‘Backup by Backup Server’

Backup Server runs in the background and performs online full and incremental
backups on a regular schedule, as journal files become full, or both. This flexibility is

possible because Backup Server and the database server communicate to determine
when a backup should occur, the type of incremental backup to perform, and which
backup options to change. Backup Server starts at the same time as the database server,

and continues running until you either stop it or shut down the database server. The
backup server is

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-19

When performing full backups, Backup Server will copy the last full backup from the
backup directory to the old directory. Then, it will copy all database files including

journal files and dmconfig.ini to the backup directory, over writing the previous full
backup.

When performing incremental backups, Backup Server will copy necessary journal

files to the backup directory.

There are several options used to configure Backup Server. These options control the
filename format of the backup files, the location of the backup directory, the location

of the old directory, the schedule Backup Server uses to perform backups, the amount
a journal file must fill before Backup Server performs an incremental backup, and the
way Backup Server saves backup files.

Backup Server also allows backup-related configuration settings to be made during the
run time with the dmSQL SetSystemOption stored procedure.

Starting Backup Server

DBMaker will only start Backup Server if your database is in BACKUP-DATA or

BACKUP-DATA-AND-BLOB mode and the value of the DB_BkSvr keyword is set
to 1 in the dmconfig.ini file. Backup Server will not start if your database is in
NONBACKUP mode or if the value of the DB_BkSvr keyword is set to 0.

You do not have to explicitly start Backup Server after setting the DB_BkSvr
keyword, since DBMaker will automatically start Backup Server while starting the
database. Backup Server is disabled by default.

STARTING BACKUP SERVER USING DMCONFIG.INI

If the database is offline, you can enable Backup Server directly using the DB_BkSvr
keyword in the dmconfig.ini file. The next time you start the database, Backup Server

will also start. If the database is online, changing the value of the DB_BkSvr keyword
will have no effect until the database is shut down and restarted.

Â To start Backup Server using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-20

2. Locate the database configuration section for a database to enable Backup Server.

3. Ensure the backup mode of the database is either BACKUP-DATA or BACKUP-
DATA-AND-BLOB mode. The database is in BACKUP-DATA mode if the value
of DB_BMode is set to 1, and it is in BACKUP-DATA-AND-BLOB mode if the
value of DB_BMode is set to 2.

4. Change the value of the DB_BkSvr keyword to 1 to enable Backup Server.

5. Restart the database to begin using Backup Server.

STARTING BACKUP SERVER USING JSERVER MANAGER

If the database is offline, you can enable Backup Server using the JServer Manager

graphical utility. JServer Manager will automatically change the value of the
DB_BkSvr keyword in the dmconfig.ini configuration file. The next time you start
the database, Backup Server will also start. If the database is online, enabling Backup

Server will have no effect until the database is shut down and restarted. For directions
on how to start Backup Server while offline using JServer Manager, refer to the JServer
Manager User’s Guide.

Incremental Backup Filename Format

The backup filename format allows you to specify the format Backup Server will use
to name incremental backup files. The backup filename format may include both text
constants and must include format sequences (escape sequences) that represent special

character strings.

An incremental backup file name must consist of at least three special character
strings: the full backup id, the database name, and the backup identification number.

Backup Server assigns a full backup ID when naming incremental files in a backup
sequence. When restoring a database, DBMaker uses the full backup ID to correctly
recreate the backup sequence. The database name correctly identifies the database to

which an incremental backup file belongs. The backup identification number
identifies the relative position of the incremental backup file in the backup sequence.

Format sequences have three parts: the escape character, the length value, and the

format character. Valid format sequences are:

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-21

%[x]F—The full backup ID. The variable x may have values 1-4 where the values
represent the following formats;

1: full backup id shown as YYYYMMDD, e.g. 20010917

2: full backup id shown as MMDD, e.g. 0917

3: full backup id shown as MMDDhhmm, e.g. 09171305

4: full backup id shown as DDhhmmss, e.g. 17130558

%[n]B—The backup identification number.

%[n]N—The name of the database the journal file belongs to.

The escape character identifies the start of the format sequence, and is represented by
the % symbol. If you want to include the % symbol as a text constant in the backup
filename format, you must use two % symbols together (i.e. %%). A single digit or

one of the valid format characters shown above must immediately follow the %
symbol. If any other characters follow the % symbol the backup filename format is
invalid, and DBMaker will return an error.

The length value n is an integer value between one and nine that determines the
length of the character string generated by the format sequence. If the format sequence
returns a string that can be represented in fewer characters than the length value

provides then zeros will be appended to it. The database name has zeroes added to the
right of the name, while all other values have zeroes added to the left. If the format
sequence returns a string that requires more characters than the length value provides,

it will be truncated. The database name is truncated from the right, while all other
values are truncated from the left. The square brackets enclosing the length value
indicate the length value is optional; do not include the square brackets when entering

the format sequence. If you do not provide a value for the length, Backup Server will
use the full length of the character string generated by the format sequence.

The format character identifies the type of special character string the format sequence

will return. The format character must be F, B, or N; using any other character will
result in an invalid backup filename format, and DBMaker will return an error. A
valid format character that does not immediately follow either the escape character or

the escape character and a single digit will be treated as a text constant.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-22

NOTE

Date and time values are taken from the system. These values will only be correct if
the system date and time are correct. The value for the backup identification number

is the ordinal position of the backup journal file in the backup sequence. DBMaker
automatically provides this number for each journal file that is backed up by Backup
Server.

The backup filename format is specified by the DB_BkFrm keyword in the
dmconfig.ini file. If you do not specify a backup filename format, Backup Server will
use the default format: %2F%4N%4B.JNL. The total length of the filename returned

by the backup filename format must not exceed 256 characters in length.

DBMaker provides several different methods to set the backup filename format. The
method you choose depends on whether you are more comfortable editing the

configuration file directly or using the JServer Manager graphical utility.

USING DMCONFIG.INI TO SET BACKUP FILE NAME FORMAT

If the database is offline, you can set the backup filename format used by Backup

Server directly using the DB_BkFrm keyword in the dmconfig.ini file. The next time
you start the database, Backup Server will apply this backup filename format to all
backup journal files. If the database is online, changing the value of the DB_BkDir
keyword will have no effect until the database is shut down and restarted.

Â To set the backup file format using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor

2. Locate the database configuration section for a database.

3. Change the value of the DB_BkFrm keyword to a string containing the format to
use for the backup filename format.

The string may contain any valid format sequences and text constants, but the total

length of the resulting filename must not exceed 256 characters in length.

4. Restart the database to begin using the new backup filename format.

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-23

SETTING BACKUP FILE NAME FORMAT WITH JSERVER
MANAGER

If the database is offline or online, you can set the backup filename format used by
Backup Server using the JServer Manager graphical utility. JServer Manager will

automatically change the value of the DB_BkFrm keyword in the dmconfig.ini file.
The next time you start the database, Backup Server will apply this backup filename
format to all backup journal files. For directions on how to set the backup file format

using JServer Manager, refer to the JServer Manager User’s Guide..

Backup Directory

The backup directory specifies where the Backup Server will place backup files. The
backup directory must be a directory that already exists. If the directory you wish to

use does not exist, you must create it using operating system commands before you
specify it as the backup directory. You should choose a backup directory on a different
disk than the database files to prevent the loss of both the database and the backup

files in the event of a media error.

The backup directory is specified by the DB_BkDir keyword in the dmconfig.ini file.
The value of the DB_BkDir keyword may contain either a full or a relative path to the

backup directory. If you do not specify a backup directory, the Backup Server will
automatically create a default backup directory named backup under the database
directory. The database directory is specified by the DB_DbDir keyword in the

dmconfig.ini file. The total length of the backup directory path must not exceed 79
characters in length.

It is not a good idea to allow the Backup Server to create and use the default backup

directory if you have more than one database in the same directory. In this case, the
backup history information from one database may overwrite or append to the backup
history information from another database, rendering one or both of the backups

unusable. To avoid this type of problem you can put each database in a different
database directory, or explicitly specify a backup directory for each database. Placing
each database in a different database directory is the preferred method, since this

allows you to see exactly which files belong to which database.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-24

DBMaker provides several different methods to set the backup directory. The method
you choose depends on whether your database is online or offline, and whether you

are more comfortable editing the configuration file directly or using the JServer
Manager graphical utility.

USING DMCONFIG.INI TO SET BACKUP DIRECTORY

If the database is offline, you can set the backup directory used by Backup Server
directly using the DB_BkDir keyword in the dmconfig.ini file. The next time you
start the database, Backup Server will use this directory as the backup directory. If the

database is online, changing the value of the DB_BkDir keyword will have no effect
until the database is shut down and restarted.

Â To set the backup directory using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database.

3. Change the value of the DB_BkDir keyword to a string containing the name of an
existing directory to set the backup directory.

4. Restart the database to begin using the new backup directory.

USING DMSQL TO SET BACKUP DIRECTORY ON LINE

The SetSystemOption command can be used to change the backup directory while

the database is running. The general syntax for the command is:
SetSystemOption(‘bkdir’, ‘path’)

Where path is the full path of the new backup directory. The length of the string in
path should not exceed 256 characters.

Â Example

To change the directory path to E:/storage/database/backup/WebDB, enter the

following line at the dmSQL command prompt.
dmSQL> SetSystemOption(‘bkdir’, ‘E:/storage/database/backup/WebDB’);

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-25

USING JSERVER MANAGER TO SET BACKUP DIRECTORY

If the database is offline, you can set the backup directory used by Backup Server using
the JServer Manager graphical utility. JServer Manager will automatically change the

value of the DB_BkDir keyword in the dmconfig.ini file. The next time you start the
database, Backup Server will use this directory as the backup directory. If the database
is online, JServer Manager can change the backup directory immediately or delay the

change until the next time you restart the database. In either case, JServer Manager
will also make a copy of the backup history file in the new backup directory. For
directions on how to set the backup directory using JServer Manager, refer to the

JServer Manager User’s Guide.

Setting the Old Directory

The old directory specifies where the Backup Server will place the previous full backup
files. You should choose it on a different disk than the database files to prevent the loss

of both the database and the backup files in the event of a media error.

The old directory is specified by the DB_BkOdr keyword in the dmconfig.ini file. If
you do not specify it, the Backup Server will not backup the previous full backup files.

USING DMCONFIG.INI TO SET THE OLD DIRECTORY

You can set the old directory used by Backup Server directly using the DB_BkOdr
keyword in the dmconfig.ini file. The next time you start the database, Backup Server

will use this directory as the old directory. If the database is online, changing the value
of the DB_BkOdr keyword will have no effect until the database is shut down and
restarted.

USING JSERVER MANAGER TO SET THE OLD DIRECTORY

If the database is offline, you can set the location for the previous backup using the
JServer Manager graphical utility. JServer Manager will automatically change the value

of the DB_BkODr keyword in the dmconfig.ini file. The next time you start the
database, Backup Server will use this directory as the backup directory. If the database
is online, JServer Manager can change the old backup directory immediately or delay

the change until the next time you restart the database. For directions on how to set

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-26

the old backup directory while offline using JServer Manager, refer to the JServer
Manager User’s Guide.

Incremental Backup Settings

The incremental backup schedule specifies the times when Backup Server will perform
an online incremental backup. The schedule is composed of two parts: the initial
backup time and the interval time. The initial backup time determines the date and

time Backup Server will perform the first incremental backup, and the interval time
determines the length of time to wait between subsequent incremental backups.

You can combine the incremental backup schedule with the journal trigger value to

backup your database both on a regular schedule and when journal files fill to a
specified percentage. If you do not specify an incremental backup schedule, Backup
Server will not backup the database on a regular schedule. However, Backup Server

will continue to perform incremental backs as journal files fill even without an
incremental backup schedule.

The initial backup time is specified by the DB_BkTim keyword in the dmconfig.ini
file. You must enter the value of the DB_BkTim keyword as a date and time in the
format YY/MM/DD HH:MM:SS. There is no default value for the initial backup
time. However, if you use JServer Manager to enable Backup Server, JServer Manager

will provide a default value for you and write this value into the dmconfig.ini file.

The interval time is specified by the DB_BkItv keyword in the dmconfig.ini file. You
must enter the value of the DB_BkItv keyword as a time interval in the format D-

HH:MM:SS. There is no default value for the interval time. However, if you use
JServer Manager to enable Backup Server, JServer Manager will provide a default value
of 1-00:00:00 for you and write this value into the dmconfig.ini file.

DBMaker provides several different methods to set the incremental backup schedule.
The method you choose depends on whether your database is online or offline, and
whether you are more comfortable editing the configuration file directly or using the

JServer Manager graphical utility.

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-27

USING DMCONFIG.INI TO CHANGE INCREMENTAL BACKUP
SETTINGS

If the database is offline, you can set the backup schedule used by Backup Server
directly using the DB_BkTim and DB_BkItv keywords in the dmconfig.ini
configuration file. The next time you start the database, Backup Server will use these
settings for the incremental backup schedule. If the database is online, changing the
value of the DB_BkTim and DB_BkItv keywords will have no effect until the

database is shut down and restarted.

Â To set the backup schedule using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the backup
schedule.

3. Change the value of the DB_BkTim keyword to a date and time using the
YY/MM/DD HH:MM:SS value format.

4. Change the value of the DB_BkItv keyword to a time interval using the
DDDDD-HH:MM:SS value format.

5. Restart the database to begin using the new backup schedule.

USING DMSQL TO CHANGE INCREMENTAL BACKUP SETTINGS

The SetSystemOption command can be used to change the incremental backup start
time and interval while the database is running. The general syntax to change the

incremental backup start time is:
SetSystemOption(‘bktim’, ‘StartTime’)

The general syntax to change the incremental backup interval is:
SetSystemOption(‘bkitv’, ‘Interval’)

StartTime is the time to start the first incremental backup, and has the format

YY:MM:DD HH:MM:SS. Interval is the time interval that incremental backups
occur, and has the format D-HH:MM:SS.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-28

Â Example

To set the incremental backup interval to 1 hour, enter the following line at the
dmSQL command prompt.
dmSQL> SetSystemOption(‘bkitv’, ‘0-1:00:00’);

USING JSERVER MANAGER TO CHANGE INCREMENTAL BACKUP
SETTINGS

If the database is offline, you can set the incremental backup schedule used by Backup
Server using the JServer Manager graphical utility. JServer Manager will automatically

change the value of the DB_BkTim and DB_BkItv keywords in the dmconfig.ini file.
The next time you start the database, Backup Server will use these settings as the new
incremental backup schedule. If the database is online, JServer Manager can change

the backup schedule immediately or delay the change until the next time you restart
the database. For directions on how to set the incremental backup schedule using
JServer Manager, refer to the JServer Manager User’s Guide.

Journal Trigger Value Settings

The journal trigger value specifies the percentage a journal file must fill before Backup
Server will perform an online incremental backup. You can combine the journal
trigger value with the backup schedule to backup your database on a regular schedule

and when journal files fill to the specified percentage.

The journal trigger value is specified by the DB_BkFul keyword in the dmconfig.ini
file. The value of the DB_BkFul keyword may be an integer value in the range 50-

100, or zero. Values between 50-100 represent the percentage a journal file must fill
before Backup Server performs a backup. A value of zero causes Backup Server to
perform a backup whenever a journal file fills completely. Setting the value to 0 is

effectively the same as setting it to a value of 100, since both will cause Backup Server
to perform a backup whenever a journal file fills completely (100% full). If you do not
specify a value for the journal trigger value, Backup Server will use the default value of

zero.

DBMaker provides several different methods to set the journal trigger value. The
method you choose depends on whether your database is online or offline, and

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-29

whether you are more comfortable editing the configuration file directly or using the
JServer Manager graphical utility.

USING DMCONFIG.INI TO CHANGE THE JOURNAL TRIGGER
VALUE

If the database is offline, you can set the journal trigger value used by Backup Server
directly using the DB_BkFul keyword in the dmconfig.ini file. The next time you

start the database, Backup Server will use this setting for the journal trigger value. If
the database is online, changing the value of the DB_BkFul keyword will have no
effect until the database is shut down and restarted.

Â To set the journal trigger value using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the journal
trigger value.

3. Change the value of the DB_BkFul keyword to an integer value between 50-100,
or set it to zero.

4. Restart the database to begin using the new journal trigger value.

USING DMSQL TO CHANGE THE JOURNAL TRIGGER VALUE

The SetSystemOption command can be used to change the journal trigger value while
the database is running. The general syntax to change the incremental backup start
time is:
SetSystemOption(‘bkful’, ‘n’)

Where n is either 0 or 50-100. Setting n to 0 will trigger the backup server whenever a
journal file is full. Setting n between 50-100 specifies the percentage a journal file fills
to before the backup server activates.

Â Example

To set the journal trigger value to 75 percent, enter the following line at the dmSQL

command prompt.
dmSQL> SetSystemOption(‘bkful’, ‘75’);

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-30

USING JSERVER MANAGER TO CHANGE THE JOURNAL TRIGGER
VALUE

If the database is offline, you can set the journal trigger value used by Backup Server
using the JServer Manager graphical utility. JServer Manager will automatically change

the value of the DB_BkFul keyword in the dmconfig.ini file. The next time you start
the database, Backup Server will use this setting as the new journal trigger value. If the
database is online, JServer Manager can change the journal trigger value immediately

or delay the change until the next time you restart the database. For directions on how
to set the journal trigger value using JServer Manager, refer to the JServer Manager
User’s Guide.

Compact Backup Mode Settings

Compact backup mode specifies whether Backup Server will backup entire journal
files or only full journal blocks when it performs an online incremental backup. This is
possible since not every journal block contains data needed to restore a database, so

Backup Server will only backup the necessary journal blocks when it performs a
backup. This allows you to save storage space on your backup device, but it also means
restoring a database may take more time.

Non-Compact Mode:
Backup entire Journal files

Compact Mode:
Backup necessary Journal blocks

Non-Compact Mode:
Backup entire Journal files

Compact Mode:
Backup necessary Journal blocks

The compact backup mode setting is specified by the DB_BkCmp keyword in the
dmconfig.ini configuration file. The value of the DB_BkCmp keyword may be zero

or one. Setting the value to one enables compact backup mode, and setting it to zero
disables compact backup mode. If you do not specify a value for the compact backup
mode, Backup Server will use the default value of one (enabled).

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-31

DBMaker provides several different methods to set the compact backup mode. The
method you choose depends on whether your database is online or offline, and

whether you are more comfortable editing the configuration file directly or using the
JServer Manager graphical utility.

USING DMCONFIG.INI TO SET COMPACT BACKUP MODE

If the database is offline, you can set the compact backup mode setting used by
Backup Server directly using the DB_BkCmp keyword in the dmconfig.ini file. The
next time you start the database, Backup Server will use this setting for the compact

backup mode. If the database is online, changing the value of the DB_BkCmp
keyword will have no effect until the database is shut down and restarted.

Â To set the Compact Backup Mode using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the journal
trigger value.

3. Change the value of the DB_BkCmp keyword to one to enable compact backup
mode, or zero to disable compact backup mode.

4. Restart the database to begin using the new journal trigger value.

USING JSERVER MANAGER TO SET COMPACT BACKUP MODE

If the database is offline, you can set the compact backup mode setting used by

Backup Server using the JServer Manager graphical utility. JServer Manager will
automatically change the value of the DB_BkCmp keyword in the dmconfig.ini file.
The next time you start the database, Backup Server will use this setting as the new

compact backup mode setting. If the database is online, JServer Manager can change
compact backup mode setting immediately or delay the change until the next time
you restart the database. For directions on how to set the Compact Backup Mode

using JServer Manager, refer to the JServer Manager User’s Guide.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-32

Full Backup Schedule

The full backup schedule specifies the times when Backup Server will perform an
online full backup. The schedule is composed of two parts: the initial backup time and
the interval time. The initial backup time determines the date and time Backup Server

will perform the first full backup, and the interval time determines the length of time
to wait between subsequent full backups.

You can combine the full backup schedule with an incremental to backup your

database. If you do not specify an full backup schedule, Backup Server will not
perform full backups on a regular schedule.

The initial backup time is specified by the DB_FBkTm keyword in the dmconfig.ini
file. You must enter the value of the DB_FBkTm keyword as a date and time in the
format YY/MM/DD HH:MM:SS. There is no default value for the initial backup

time.

The interval time is specified by the DB_FBkTv keyword in the dmconfig.ini file.
Enter the value of the DB_FBkTv keyword as a time interval in the format D-

HH:MM:SS. There is no default value for the interval time.

USING DMCONFIG.INI TO SET THE FULL BACKUP MODE

If the database is offline, you can set the full backup schedule used by Backup Server

directly using the DB_FBkTm and DB_FBkTv keywords in the dmconfig.ini file.
The next time you start the database, Backup Server will use these settings for the full
backup schedule. If the database is online, changing the value of the DB_FBkTm and

DB_FBkTv keywords will have no effect until the database is shut down and
restarted.

Â To set the full backup schedule using the dmconfig.ini configuration file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the journal
trigger value.

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-33

3. Set the configuration parameter DB_FBkTm to a value of the format
YY/MM/DD HH:MM:SS, and DB_FBkTv to a value of the format D-
HH:MM:SS.

4. Restart the database to begin using the new full backup schedule.

USING JSERVER MANAGER TO SET THE FULL BACKUP
SCHEDULE

You can set the full backup schedule with JServer Manager by using the start database

setup utility. JServer Manager will automatically change the value of the DB_FBkTm
and DB_FBkTv keywords in the dmconfig.ini file. The next time you start the
database, Backup Server will use this setting as the new full backup schedule. For

directions on how to set the full backup schedule using JServer Manager, refer to the
JServer Manager User’s Guide.

Backup Mode of File Objects

The Backup Mode of File Objects lets the database administrator decide whether

Backup Server will back up file objects during a full backup. It is also possible to
specify Backup Server to back up just system file objects or system and user file
objects.

It is possible to set the Backup Mode of File Objects in a number of ways. The
configuration keyword DB_BkFoM determines the setting during database startup,
but it may also be modified during runtime with dmSQL or the JServer Manager

utility.

The backup server will move all files from the previous backup to the old backup
directory specified by DB_BkOdr.

Starting file object backup will cause the database to require more time to complete a
full backup, depending on how many file objects are in the database. The total cost of
a complete full backup includes (1) copying the previous full backup if DB_BkOdr is
set; (2) copying all database files; (3) copying all journal files; and (4) copying all file
objects if DB_BkFoM is set. Be sure that enough disk space is available in the backup
directory specified by DB_BkDir (and DB_BkOdr if applicable) for all mentioned

backup files to avoid backup failure.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-34

File objects are copied into an FO directory that is created in the backup directory at
the time a full backup is performed. File objects are renamed sequentially when they

are copied to the directory for backed-up file objects. The files in the /fo subdirectory
are renamed starting with the letters FO followed by a ten digit serial number. All
backup file objects are appended with the file extension .BAK. The mapping between

the source file name and path and the backup file name is recorded in the file object
mapping file dmFoMap.his.

THE BACKUP FILE OBJECT MAPPING FILE

The file object mapping file dmFoMap.his is created in the "DB_BkDir/FO"
directory. It is a pure ASCII text file that records the original external file name and
backup file name. The format looks like:
Database Name: MYDB
Begin Backup FO Time: 2001.5.13 2:33
FO Backup Directory: /DBMaker/mydb/backup/FO (i.e. DB_BkDir/FO)
[Mapping List]
s, fo0000000000.bak, "/DBMaker/mydb/fo/ZZ000001.bmp"
u, fo0000000001.bak, "/home2/data/image.jpg"
....
s, fo0000002345.bak, "/DBMaker/mydb/fo/ZZ00AB32.txt"

The content before “[Mapping List]” is only a description for user reference. Each line
after "[Mapping List]" represents a record that shows the file object type (s = system
file object, u = user file object), the new file in /fo subdirectory and its original file

name and path. This mapping file is necessary for restoration of file objects.

SETTING THE BACKUP MODE OF FILE OBJECTS WITH
DMCONFIG.INI

The configuration file keyword DB_BkFoM determines the backup mode of file

objects:

 DB_BkFoM = 0: Do not back up file objects

 DB_BkFoM = 1: Back up system file objects only

 DB_BkFoM = 2: Back up both system and user file objects

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-35

If DB_BkFoM = 1 or 2, the backup server will copy all file objects to the /fo
subdirectory under the backup directory. The schedule follows the full backup

schedule.

Â Example

An entry in a dmconfig.ini file for specifying the file object backup parameters.
[MyDB]
DB_BkSvr = 1 ; starts the backup server
DB_FBKTm = 01/05/01 00:00:00 ; begins at midnight, May 1, 2001.
DB_FBKTV = 1-00:00:00 ; interval is once every day.
DB_BkDir = /home/dbmaker/backup ; backup directory
DB_BkFoM = 2 ; backup both system and user file objects

Since the backup mode is 2, the backup server will copy all external files (user file
objects) and system file objects to the /home/dbmaker/backup/FO directory. If the

FO subdirectory does not exist, the Backup Server will create it.

USING DMSQL TO SET THE BACKUP MODE OF FILE OBJECTS

The SetSystemOption command can be used to change the backup mode of file

objects while the database is running. The general syntax to change the Backup Mode
of File Objects is:
SetSystemOption(‘bkfom’, ‘n’)

Where n is 0, 1, or 2. Setting n to 0 will turn the Backup Mode of File Objects to off.

Setting n to 1 configures backup server to back up all system file objects during a full
backup. Setting n to 2 configures backup server to back up all system and user file
objects during a full backup.

Â Example

To configure Backup Server to perform a full backup on all user and system file

objects, enter the following line at the dmSQL command prompt.
dmSQL> SetSystemOption(‘bkfom’, ‘2’);

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-36

SETTING THE BACKUP MODE OF FILE OBJECTS WITH JSERVER
MANAGER

The settings under the Backup File Object Mode effect how file objects are copied
during the full backup process. Selecting Do Not Backup File Objects disables file

backup during the full backup process. Selecting Backup System File Objects Only
will result in system file objects being backed up during automatic full backups.
Selecting Backup System and User File Objects will result in both system file objects

and user file objects being copied to the backup directory during automatic full
backups. For directions on how to set the Backup Mode of File Objects during
database startup or with the Run Time Settings dialog in JServer Manager, refer to the

JServer Manager User’s Guide.

Stopping Backup Server

Stop Backup Server when you no longer want it to run by setting the value of the
DB_BkSvr keyword to zero. However, Backup Server will continue running until you

shut down your database and restart it.

STOPPING BACKUP SERVER USING DMCONFIG.INI

If the database is offline, you can disable Backup Server directly using the DB_BkSvr
keyword in the dmconfig.ini file. The next time you start the database, Backup Server
will not start. If the database is online, changing the value of the DB_BkSvr keyword
will have no effect until the database is shut down and restarted.

Â To stop Backup Server using the dmconfig.ini file:

1. Open the dmconfig.ini file on the database server using any ASCII text editor.

2. Locate the database configuration section for a database to change the backup
mode.

3. Change the value of the DB_BkSvr keyword to 0 to disable the Backup Server.

4. Restart the database.

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-37

STOPPING BACKUP SERVER USING JSERVER MANAGER

If the database is offline, you can disable Backup Server using the JServer Manager
graphical utility. JServer Manager will automatically change the value of the

DB_BkSvr keyword in the dmconfig.ini configuration file. The next time you start
the database, Backup Server will not start. If the database is online, disabling Backup
Server will have no effect until the database is shut down and restarted. For directions

on how to stop Backup Server using JServer Manager, refer to the JServer Manager
User’s Guide.

14.7 Backup History Files
Manual incremental backups require you to note which journal files were backed up,

when they were backed up, and where the backup files are located. This information
may be misplaced or lost if you are not careful. Automatic backups using the backup
server prevent this by automatically storing this information in the backup history file.

Locating the Backup History File

This file is created in the backup path and is named dmBackup.his. The file will
automatically be used during restoration of a database.

Understanding the Backup History File

Backup history files contain all information pertaining to the id number, file names,

and time and date that backups were made. DBMaker uses the backup history file to
track backup sequences and ensure the consistency of full and incremental backups
within each sequence.

The following is the format of the backup history file:
<backup_id>: file_name -> archive_file_name: time: event

This denotes that a file named file_name was copied to an archive file named
archive_file_name at time because of event. The event is a text string indicating the

reason for the backup. This string can be JOURNAL-FULL, TIME-OUT, ON-
LINE-FULL-BACKUP-BEGIN, ON-LINE-FULL-BACKUP, or ON-LINE-FULL-

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-38

BACKUP-END. The string JOURNAL-FULL indicates an incremental backup was
performed because the journal was full. The string TIME-OUT indicates an

incremental backup was performed because the scheduled backup interval has elapsed.
The string ON-LINE-FULL-BACKUPxxxx means it is a full backup.

Using the Backup History File

If journal full occurs frequently, lower the backup journal full percentage or shorten

the time interval. Also, find out if the backup interval is too short by checking the
backup history file. If the same journal file is backed up consecutively in the backup
history file, the time interval may be too short. This situation will waste disk space

because each file may only contain a few changed blocks. To avoid this, enable
compact backup mode or lengthen the backup time interval.

If many journal files are backed up every time, it may mean the time interval is too

long. This situation is more dangerous because of the possibility of losing more data
when a disk fails. Ideally, one journal file should be backed up every time an
incremental backup occurs. This will save storage space and lower the risk of losing

journal data.

To shorten the time of recovery from media failures, perform full backups regularly,
even if you are using the backup server. In addition, this will also reduce the amount

of backup storage needed.

After the backup server is running, you still can perform incremental backups
manually. As stated above, note the backup ID, time, and location for the backup

files.

Understanding the File Object Backup History File

The file object backup history file, dmFoMap.his, keeps a record of all file objects that
have been backed up by setting the file object backup configuration parameter on.

dmFoMap.his is placed in the "<DB_BkDir>/FO" directory, is a pure ASCII text file
that records the original external file name and backup file name.

The following is the file format:
Database Name: MYDB

1Database Recovery, Backup, and Restoration 14

©Copyright 1995-2003 CASEMaker Inc. 14-39

Begin Backup FO Time: 2001.5.13 2:33
FO Backup Directory: /DBMaker/mydb/backup/FO (i.e. DB_BkDir/FO)
[Mapping List]
s, fo0000000000.bak, "/DBMaker/mydb/fo/ZZ000001.bmp"
u, fo0000000001.bak, "/home2/data/image.jpg"
....
s, fo0000002345.bak, "/DBMaker/mydb/fo/ZZ00AB32.txt"

In the first column, s or u represent system or user file objects, respectively. The
second column gives the backup name, and the third column gives the full name and

path of the original file object.

14.8 Recovery Options
Restoring a database will recreate the database, as it existed at the time of the most
recent full backup, plus any changes that have been made in the backed up journal

files.

Analyzing Recovery Options

What recovery operations are available?

 The answer to this question is determined by whether or not a database is in

BACKUP mode. If the database is operating in NONBACKUP mode, the only
option for restoration after a disk failure is to restore the most recent full backup
and restart the database. All work performed since the last full backup will be

lost, and must be re-entered. If this is the case, there is no need to answer the
following questions.

 If the database is operated in BACKUP (BACKUP-DATA or BACKUP-

DATA-AND-BLOB) mode, several recovery options are available for
reconstructing the damaged database.

Preparing for Restoration

Before you restore a database after a disk error, answer the following questions:

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 14-40

 What point in time do you want a database restored to?

 If your answer is the time when the disk error occurs, backup all journal files of

the damaged database. These files will help DBMaker to restore the database to
the most current time.

 What files have previously been backed up?

 Find out where the most current full backup and all subsequent incremental
backups are located. For example, suppose you perform a full backup on the 30th
day of every month and an incremental backup every 10 days. If your system is

damaged on May 25 th, you need the full backup from April 30 th, the
incremental backups from May 10 th and May 20 th, and the damaged journal
files from May 25 th. After locating these files, DBMaker can restore your

database to the state it was in before the failure on May 25. Since all online
backup information is stored in the backup history file, DBMaker will read it to
get this information when restoring a database.

Performing a Restoration

DBMaker uses JServer Manager to perform restoration.

Â The following procedure is used to restore a database:

1. JServer Manager copies all files from the most recent full backup, (BLOB files, data
files, journal files, and dmconfig.ini), to the directory specified by the DB_DbDir
keyword in the dmconfig.ini.

2. To re-create the state the database was in at a specific point in time, set the time to
restore the database. Skip this step if restoring to the most current time.

3. Specify the location of all incremental back-up journal files and list the files in
order of backup ID numbers.

4. Backed up journal files created after a disk error occurred could be included in the
restoration process or after all other backed up journal files.

5. After complete restoration of files and restarting the database in a consistent state,
users may begin using the database.

1Distributed Databases 15

©Copyright 1995-2003 CASEMaker Inc. 15-1

15 Distributed
Databases

This chapter introduces the distributed database management functions provided by
DBMaker, including distributed databases, the distributed architecture, distributed

data access, distributed database object management, and distributed transaction
management.

15.1 Introduction to Distributed
Databases
Traditional client-server DBMS, as shown in Figure 15-1, locate the database on a

specific network computer, and the computer is responsible for handling all client
requests.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 15-2

Database
1

Site 1Communication
Network

Site 2

Site 3

Site 5
Site 4

Figure 15-1 Traditional client/server database management system

Distributed databases, as shown in Figure 15-2, locate a copy of the database on
several network computers, and each can independently support clients. The

distributed database management system manages the databases on these computers,
so users can access the data transparently.

DBMaker supports a true distributed architecture to provide a complete and robust

distributed database management system (Distributed DBMS). It provides remote
database connections, distributed queries, and distributed transaction management.
DBMaker also provides table and database replication to keep data automatically up-

to-date.

1Distributed Databases 15

©Copyright 1995-2003 CASEMaker Inc. 15-3

Site 1Communication
Network

Database
1

Site 2Site 3

Site 5Site 4 Database
5

Database
2

Database
4

Database
3

Figure 15-2 Distributed database in client-server

In the DBMaker distributed database environment, you can write application
programs using the DBMaker ODBC 3.0 compatible API or perform ad-hoc SQL

queries that access data from different parts of the distributed database. DBMaker will
transparently integrate the data and return the results, just as if they all came from a
local database.

In this chapter, we will briefly describe the system architecture and basic functions of
distributed database management using DBMaker. This includes configuring the
distributed environment, managing remote data links and distributed transactions,

and performing distributed queries. Whether you are a database administrator or an
application developer, this chapter will provide you with a thorough overview of the
simplicity and power of the DBMaker distributed architecture.

15.2 Distributed Database Structure
The DBMaker distributed database environment builds on the traditional client/server
architecture, effectively linking multiple client applications and multiple database
servers. Client applications process user requests and display the results, and the

database servers handle data management. Each client has a direct connection to a
single database server, which is known as the Coordinator Database to that client.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 15-4

Through the Coordinator Database, the client can connect to other remote databases,
which are known as Participant Databases.

DBMaker uses a hierarchical distribution structure to connect to remote databases.
This allows DBMaker to access data from a remote database with no direct connection
to the Coordinator Database by routing through one of the Participant Databases.

When this happens, the Participant Database becomes a Local Coordinator Database,
and acts as coordinator for any child databases accessed through it.

Figure 15-3 DBMaker distribution structure

In Figure 15-3, the client application program connects to the database server in New

York, which makes the database in New York the Coordinator Database. If you use
the database in New York to access data from London and Hong Kong, then both the
London and Hong Kong databases are Participant Databases.

Some of the data you are looking for in Hong Kong might actually be in the databases
in Tokyo or Taipei, so the databases in Tokyo and Taipei are Child Participant
Databases. This makes the database in Hong Kong a Coordinator Database for the

databases in Tokyo and Taipei, so the database in Hong Kong is not only a
Participant Database, but also acts as a Local Coordinator Database.

1Distributed Databases 15

©Copyright 1995-2003 CASEMaker Inc. 15-5

15.3 Distributed Database
Environment
Setting up a distributed database environment using DBMaker is very simple. All you
need to do is add some keywords to the dmconfig.ini file to set the distributed

database configuration options. Optionally, these parameters may be set using the
JConfiguration Tool. For more information, refer to the JConfiguration Tool User’s
Guide.

You must provide values for the following keywords when setting up a distributed
database environment in DBMaker. Keywords with the prefix DB_ are for the
client/server connection between the client and the Coordinator Database, and

keywords with the prefix DD_ are for the distributed database connections between
the Coordinator Database and the Participant Databases.

 DB_SvAdr=<ip_address/host name>—specifies the IP address or host name of

the Coordinator Database.

 DB_PtNum=<port number>—specifies the port number that the client
application and the Coordinator Database should use to communicate.

 DD_DDBMd=<0/1>—enables distributed database mode for the Coordinator
Database. The default value is 0, which means that distributed database mode is
disabled.

 DD_CTimO=<number of seconds>—specifies the time in seconds that the
Coordinator Database should wait when trying to establish a connection to a
Participant Database. The default value is 5 seconds.

 DD_LTimO=<number of seconds>—specifies the time in seconds that the
Coordinator Database should wait when trying to establish a lock on the
requested data in a Participant Database. The default value is 5 seconds.

 DD_GTSVR=<0/1>—enables the global transaction recovery daemon
(GTRECO). The default value is 1, which means the global transaction
recovery daemon is enabled.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 15-6

 DD_GTItv=<YYYY/MM/DD hh:mm:ss>—specifies the time interval that the
global transaction recovery daemon (GTRECO) should wait when processing

pending global transactions.

DBMaker supports an automatic recovery mechanism for distributed transactions that
have failed due to network problems or errors on the Participant Database. The

automatic recovery mechanism is handled by the GTRECO daemon, which will
check whether a distributed database server has any problems with pending global
transactions. If any problems are detected, the GTRECO daemon will attempt to

recover the pending global transactions. The GTRECO daemon is enabled using the
DD_GTSVR keyword in the dmconfig.ini file.

To better understand how DBMaker manages distributed databases, refer to the

following example.

Â Example

The ABC Bank has two branch offices. One branch office is in Los Angeles, and the
other one is in Seattle. Each branch maintains their own customer and business data,
but the government and financial database is under the central control of the Los

Angeles branch.

The LA branch database server dmconfig.ini file:
[BankTranx] ;LA branch business database
DB_DBDIR = c:\database
DB_SVADR = 192.168.0.1
DB_PTNUM = 21000
DD_DDBMD = 1

[BankMIS] ;government and financial database
DB_DBDIR = c:\database
DB_SVADR = 192.168.0.1
DB_PTNUM = 30000
DD_DDBMD = 1

[BankTranx@Seattle] ;Seattle branch business database
DB_SVADR = 192.168.0.2
DB_PTNUM = 21000

1Distributed Databases 15

©Copyright 1995-2003 CASEMaker Inc. 15-7

DD_CTIMO = 20
DD_LTIMO = 10

The Seattle branch database server dmconfig.ini file:
[BankTranx] ;Seattle branch business database
DB_DBDIR = c:\database
DB_SVADR = 192.168.0.2
DB_PTNUM = 21000
DD_DDBMD = 1

[BankMIS] ;government and financial database
DB_SVADR = 192.168.0.1
DB_PTNUM = 30000
DD_CTIMO = 20

[BankTranx@La] ;LA branch business database
DB_SVADR = 192.168.0.1
DB_PTNUM = 21000
DD_CTIMO = 20
DD_LTIMO = 10

The LA client application server dmconfig.ini file:
[BankTranx] ;LA branch business database
DB_SVADR = 192.168.0.1
DB_PTNUM = 21000

The Seattle client application server dmconfig.ini file:
[BankTranx] ;Seattle branch business database
DB_SVADR = 192.168.0.2
DB_PTNUM = 21000

In the files shown above, set DD_DDBMd =1 in the configuration section for the
local database to enable distributed database support. In these examples, place the

keywords in the BankTranx configuration section of the Los Angeles and Seattle
dmconfig.ini files.

In addition, include a database configuration section for the Participant Database in

the Coordinator Database configuration file, and for the Coordinator Database in the
Participant Database configuration file. In this case, both the Los Angeles branch
database and the Seattle branch database use the same database name. If you use the

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 15-8

remote database name for the name of the database configuration section, it will cause
a conflict with the local database name in the dmconfig.ini file.

To avoid this type of problem when using distributed databases, DBMaker can
distinguish the remote database name from the local database name by appending a
server host description to the remote database name in the local dmconfig.ini file.

The remote database name would look like:
database_name@server_host_description

The server host description can be any identifying name, such as the IP address or host
name of the database server, the domain name, or almost any other descriptive text. In

this example, the Los Angeles branch client application would use
BankTranx@Seattle when it wants to access data in the Seattle branch database, and
the Seattle branch client application would use BankTranx@La when it wants to

access data in the Los Angeles branch database.

Also, set up the server address and port name for both the local database and the
remote database in their respective configuration sections in the configuration files at

both the Los Angeles and Seattle branches.

In this example, the Los Angeles branch configuration file would contain the local
server address in the BankTranx configuration section, and would contain the Seattle

branch server address in the BankTranx@Seattle configuration section. Similarly, the
Seattle branch configuration file would contain the Los Angeles branch server address
in the BankTranx configuration section, and would contain the Seattle branch server

address in the BankTranx@La configuration section.

You should also set the DD_CTimO and DD_LTimO remote connection
parameters. These parameters go in the configuration section for the Participant

Database in the Coordinator Database configuration file, and for the Coordinator
Database in the Participant Database configuration file.

Every database server in the network can operate on distributed database objects. Any

of these database servers can be accessed through the Coordinator Database, in a
manner similar to the normal client/server architecture. The SQL commands that
reference a remote database will be passed to the remote database server through the

Coordinator Database. The Coordinator Database will decompose this SQL

1Distributed Databases 15

©Copyright 1995-2003 CASEMaker Inc. 15-9

command into the local and remote portions, and send the appropriate commands to
the remote database server. The Coordinator Database will wait for the remote

database to return results, and then merge all local and remote data and return the
combined results.

15.4 Distributed Database Objects
DBMaker provides several different methods to access a Participant Database:

 Specify the Participant Database name directly.

 Using database links defined in the Coordinator Database.

 Through remote object mapping such as views or synonyms.

The difference between the first two approaches is that database links contain security
information in addition to the remote database name. This allows you to specify the
user name and password that you want to use in the database link when you access the

remote database.

There is no obvious difference between the statements of a distributed query and a
normal query, except in the way database objects are specified. However, when using a

remote database, the only remote database objects that can be accessed are tables,
views, or synonyms. To access a remote database object, provide the remote database
name or database link when specifying the name of the database object. This provides

two ways to identify a remote database object:

 remote_database_name:object_owner.object_name

 database_link:object_owner.object_name

Â Example 1

To specify a remote database object in a query:
dmSQL> SELECT * FROM Bank:EmpTaple;
dmSQL> DELETE FROM Bank:EmpTable WHERE id = 101;
dmSQL> INSERT INTO Link1:mis.account VALUES (2003,’Kevin Liu’,’2327-0021’);

 Database Administrator’s Guide1

Â Example 2

To access remote database objects in two different Participant Databases:
dmSQL> SELECT * FROM ABCBank@La:account a,
 ABCBankMIS@Seattle:account b
 WHERE a.name = b.name;

Remote Database Connections-Using Names

Users can connect to remote databases with the database name of the Coordinator

Database Server. Users must know the remote database name, which is defined in the
dmconfig.ini file in the Coordinator Database Server.

Â Example 1

A client application in the Los Angeles ABC bank branch accesses the database located
in the Taipei ABC bank branch. It appears that the user is connecting to the Taipei

branch with the user name SYSADM and the password aa. In reality, the user is
connecting to the Coordinator Database, which is the Los Angeles branch database.
The Coordinator Database then connects to the remote database with the account and

password used.
dmSQL> CONNECT TO BankTranx SYSADM aa;
dmSQL> SELECT * FROM BankTranx@Taipei:SYSADM.Account ORDER BY AccID;

Â Example 2

Using joins to access remote database objects:
dmSQL> SELECT * FROM BankMIS:SYSADM.Personnel ORDER BY PID;
dmSQL> SELECT Personnel.* FROM BankTranx@Taipei:Account A,
 BankMIS:Personnel B
 WHERE A.CustID = B.CustID;

Remote Database Connections-Using Links

A database link creates a connection to a remote database, and contains the login
information and password necessary for connecting. The link permits users to connect

to a remote database with a different user name than in the Coordinator Database, or
to connect to a remote database with no account. It also makes data in a distributed

©Copyright 1995-2003 CASEMaker Inc. 15-10

1Distributed Databases 15

©Copyright 1995-2003 CASEMaker Inc. 15-11

database environment location transparent. The link definition, which also contains
the login information and password, is stored in the Coordinator Database.

CREATING DATABASE LINKS

CREATE link_nameDATABASE LINK

CONNECT TO remote_db_name

PRIVATE

PUBLIC

user_nameIDENTIFIED BY
password

Figure 15-4 Syntax for creating a database link

Only database administrators can create public links to be used by all users in a
database. Any user can create private links for themselves. Users may create private

links using the same name. A private link will override a public link with an identical
name.

DBMaker will create a private link by default if the user does not specify the type of

link desired. If the user does not specify the login account and password in the
IDENTIFY BY clause, the user’s current login name and password will be used by
default.

REMOTE DATABASE OBJECTS & DATABASE LINKS

Â Example 1

The following shows how to access remote database objects using database links. In
this example, the SYSADM connects to the database and creates a public link named
Bank_Seattle that connects to the Seattle branch database using the SYSADM

 Database Administrator’s Guide1

account. The SYSADM updates some values and disconnects. Then user1 connects
and performs a query on the Account table.
dmSQL> CONNECT TO BankTranx SYSADM;
dmSQL> CREATE PUBLIC DATABASE LINK Bank_Seattle CONNECT TO BankTranx@Seattle
 2> IDENTIFIED BY SYSADM;
dmSQL> UPDATE Bank_Seattle:Account SET balance = balance + 100
 2> WHERE id = 1001;
dmSQL> DISCONNECT;
dmSQL> CONNECT TO BankTranx user1 pwd1;
dmSQL> SELECT * FROM Bank_Seattle:Account;

Â Example 2

The SYSADM does not specify the account to use when connecting to the public link.

This means that when user1 uses the public link to connect to the Bank_Seattle
database, there must be an account for user1 in the remote database, and the user1
account must have the authority to query the SYSADM.Account table. Otherwise, an

error will occur.
dmSQL> CONNECT TO BankTranx SYSADM;
dmSQL> CREATE PUBLIC DATABASE LINK Bank_Seattle CONNECT TO BankTranx@Seattle;
dmSQL> SELECT * FROM Bank_Seattle:Account;
dmSQL> DISCONNECT;
dmSQL> CONNECT TO BankTranx user1 pwd1;
dmSQL> SELECT * FROM Bank_Seattle:SYSADM.Account;

If a database link name is the same as the remote database name, DBMaker will use
the database link name in preference to the remote database name. If you want to

access the remote database directly, you must specify the remote database name in the
form of dbname@ to force DBMaker to access the remote database directly instead of
through the database link.

The following 2 examples show different ways to access a remote database, one
through a database link and the other by specifying the remote database name in the
form of dbname@””.

Â Example 1

SYSADM connects to a remote database with a link.
dmSQL> CONNECT TO BankTranx SYSADM;

©Copyright 1995-2003 CASEMaker Inc. 15-12

1Distributed Databases 15

©Copyright 1995-2003 CASEMaker Inc. 15-13

dmSQL> CREATE PUBLIC DATABASE LINK BankMIS CONNECT TO BankMIS
 2> IDENTIFIED BY SYSADM;
dmSQL> DISCONNECT;

Â Example 2

user1 connects to a remote database using the BankMIS@””:SYSADM.Personnel
form.
dmSQL> CONNECT TO BankTranx user1 pwd1;
dmSQL> SELECT * FROM BankMIS:Personnel; //using database link
dmSQL> SELECT * FROM BankMIS@””:SYSADM.Personnel; //using remote db name

DELETING DATABASE LINKS

DROP link_name

PRIVATE

PUBLIC

DATABASE LINK

Figure 15-5 Syntax for deleting a database link

Only database administrators can delete public links, and only the owner of a private
link can delete it. Ensure to specify the public link to be deleted when it has the same
name as a private link or DBMaker will delete the private link by default.

Â Example

To delete a public database link named BankMIS:
dmSQL> DROP PUBLIC DATABASE LINK BankMIS;

Database Object Mapping

Database Object Mapping provides better location transparency in a distributed
database environment. There is no difference between the way a user accesses remote
database objects with Database Object Mapping and local database objects. This type

of Database Object Mapping includes using views and synonyms.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 15-14

SYNONYMS

Using a synonym to define a remote database object is done by assigning the remote
database object an alias name. The privileges you have in the remote database when

using a synonym are the same as in a local database.

Â Example

To access a remote database object using a synonym:
dmSQL> CONNECT TO BankTranx user1;
dmSQL> CREATE DATABASE LINK LK1 CONNECT TO BankMIS IDENTIFIED BY user2;
dmSQL> CREATE SYNONYM s1 FOR BankTranx:Account;
dmSQL> CREATE SYNONYM s2 FOR LK1:user2.Personnel;
dmSQL> SELECT * FROM s1;
 // SELECT * FROM BankTranx:user1.Account; (BankTranx, user1)
dmSQL> SELECT * FROM s2;
 // SELECT * FROM LK1:user2.Personnel; (BankMIS, user2)
dmSQL> DISCONNECT;
dmSQL> CONNECT TO BankTranx user3;
dmSQL> CREATE DATABASE LINK LK1 CONNECT TO BankMIS IDENTIFIED BY user4;
dmSQL> SELECT * FROM s1;
 // SELECT * FROM BankTranx:user3.Account; (BankTranx, user3)
dmSQL> SELECT * FROM s2;
 // SELECT * FROM LK1:user2.Personnel; (BankMIS, user4)

The comments indicate the equivalent SQL expression, the database being connected
to, and the account used to connect.

VIEWS

Using a view to define a remote database object is a bit different than using a
synonym. The view is not just an alias, but includes the database name, user account,

password, object owner, and object name as part of the definition. The privileges a
user has in the remote database depend on the privileges of the user that created it.

Â Example

To access a remote database object using a view:
dmSQL> CONNECT TO BankTranx user1;
dmSQL> CREATE DATABASE LINK LK1 CONNECT TO BankMIS IDENTIFIED BY user2;

1Distributed Databases 15

©Copyright 1995-2003 CASEMaker Inc. 15-15

dmSQL> CREATE VIEW v1 FOR BankTranx:Account;
dmSQL> CREATE VIEW v2 FOR LK1:user3.Personnel;
dmSQL> SELECT * FROM v1;
 // SELECT * FROM BankTranx:user1.Account; (BankTranx, user1)
dmSQL> SELECT * FROM v2;
 // SELECT * FROM BankMIS:user3.Personnel; (BankMIS, user2)
dmSQL> DISCONNECT;
dmSQL> CONNECT TO BankTranx user3;
dmSQL> CREATE DATABASE LINK LK1 CONNECT TO BankMIS IDENTIFIED BY user4;
dmSQL> SELECT * FROM v1;
 // SELECT * FROM BankTranx:user1.Account; (BankTranx, user1)
dmSQL> SELECT * FROM v2;
 // SELECT * FROM LK1:user3.Personnel; (BankMIS, user2)

The comments indicate the equivalent SQL expression, the database being connected
to, and the account used to connect.

Closing Links

Once a user accesses a remote database with an SQL command, the Coordinator
Database will build a remote connection to the Participant Database. The remote
connection will remain open until all users disconnect from the Coordinate Database

or until the link is closed with the CLOSE DATABASE LINK command. DBMaker
provides up to eight remote connections for each database; it is a good idea to close
remote connections that are no longer in use to free the connections for other users.

CLOSE DATABASE LINK
remote_database_name

NONACTIVE

link_name

ALL

Figure 15-6 Syntax for closing a database link

Â Example 1

To close a database link using the remote database name BankMIS:
dmSQL> close database link BankMIS;

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 15-16

Â Example 2

To close a database link using the remote database link BankLink1:
dmSQL> close database link BankLink1;

When a user issues a CLOSE DATABASE LINK command, DBMaker will decrease

the remote connection counter by one. When the counter reaches zero, the
connection is fully closed and the occupied resources freed. Otherwise, the connection
remains open.

Â Example 3

To close all database links and free the connections and resources:
CLOSE DATABASE LINK ALL

Â Example 4

To close all NONACTIVE remote connections no longer being used:
CLOSE DATABASE LINK NONACTIVE

Link System Catalog Tables

Two system catalog tables relate to database links: SYSDBLINK and
SYSOPENLINK. SYSDBLINK records all database link names and their definitions,
while SYSOPENLINK, records open connections between databases.

15.5 Distributed Transaction Control
DBMaker supports a distributed transaction mechanism that is transparent to users.
Participant Databases do not commit only a part of a distributed transaction;
DBMaker handles it.

Â Example

The following shows how distributed transaction control works.
dmSQL> CONNECT TO BankTranx user1; // ABC Bank in Taipei
dmSQL> SET AUTOCOMMIT OFF;
dmSQL> UPDATE BankTranx:Customer SET money=money-1000 where id=123;
dmSQL> UPDATE BankTranx@”Bank_in_Seattle”:Customer SET money=money+1000

1Distributed Databases 15

©Copyright 1995-2003 CASEMaker Inc. 15-17

 2> WHERE id=123;
dmSQL> COMMIT;

Since the Coordinator Database handles all database operations from the client
application, the Coordinator Database knows the scope of the instructions via the

Distributed System Catalog Manager. The Coordinator Database will handle
transactions belonging to the local site in the same manner as a regular client/server
transaction. Transactions belonging to remote sites need to reference the appropriate

remote database. The Coordinator Database will exchange information with every
Participant Database and coordinate the whole transaction until it is either rolled back
or committed.

Two-Phase Commit

Database management systems need to maintain data integrity, and this requires that
all transactions be atomic. All operations in the transaction must commit or roll back
together. In the traditional client/server architecture, a journal is used to make sure

that the changes are either rolled back or committed.

In the distributed database architecture, a two-phase commit protocol with presumed
abort is used as the mechanism for controlling distributed transactions that span

multiple database servers. A transaction that modifies data on two or more databases
must complete the two-phase commit protocol before it is committed. The two-phase
commit mechanism guarantees that all sites commit or roll back globally. It also

protects data manipulation operations performed by remote synonyms, integrity
constraints, and triggers. To commit a transaction, a user has to ensure every sub-
transaction has finished; otherwise, the transaction will be aborted. For the same

reason, if any sub-transaction cannot commit, the other sub-transactions must be
aborted as well.

Distributed Transaction Recovery

DBMaker uses the two-phase commit protocol to inform all Participant Databases to

commit a global transaction. Before entering the commit phase, the Coordinator
Database will check the status of the Participant Databases to ensure there are no
server or network problems. If the Coordinator Database finds a problem with any of

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 15-18

the Participant Databases, it informs the other Participant Databases to roll back their
part of the transaction, and returns an error indicating the global transaction has

failed. If the two-phase commit protocol has finished the preparation phase, but there
is a server or network problem with a Participant Database, the global transaction is
regarded as a success. DBMaker records which Participant Database server cannot

commit its part of the transaction in the SYSGLBTRANX system catalog table, and
records which database contains a pending transaction in the SYSPENDTRANX
system catalog table for the crashed database.

DBMaker also provides an automatic recovery mechanism to handle network or site
failure during the execution of a distributed transaction. In the Coordinator Database,
you start the global transaction recovery daemon (GTRECO). This daemon scans the

SYSGLBTRANX system catalog table and periodically recovers any pending global
transactions. Then it tries to connect to the crashed Participant Database and informs
it to commit or roll back its part of the global transaction.

Heuristic End Global Transaction

After a network or site failure occurs during the two-phase commit, pending
transactions continue to hold some resources such as locks or journal blocks. The
pending transaction will occupy these resources until the problem is solved by the

global recovery daemon (GTRECO). If the network or site failure cannot be solved
immediately, then the held resources may block some of the users in the Participant
site. To solve this problem, DBMaker supports heuristic end global transaction. A

heuristic end transaction is an independent action taken by the database administrator
to force a pending transaction in a Participant Database to commit or roll back. The
database administrator can use JDBATool to solve this problem. Refer to the JDBA
Tool User’s Guide for more information.

Â To resolve a pending transaction manually, perform the following:

1. In the Participant Database, browse the SYSPENDTRANX table to find out
whether there are transactions that have been pending for a long time.

2. In the Coordinator Database, determine the commit status of the pending
transaction from SYSGLBTRANX. Also determine the commit status of the
pending transaction from the Participant Database. For example, if there are two

1Distributed Databases 15

©Copyright 1995-2003 CASEMaker Inc. 15-19

pending transactions "DB_1-3376aafd" and "DB_2-3376aafd:DB_3-
3376ab0f#1", the administrator of the coordinator database should ask the
administrator of DB_1 to determine the status of "DB_1-3376aafd" and ask the
administrator of DB_3 to determine the status of "DB_2-3376aafd:DB_3-
3376ab0f#1".

3. In the Coordinator Database, when the administrator receives the transaction
status query he can examine SYSGLBTRANX to determine the transaction status.
If the STATE is 2 (COMMIT) or 3 (PENDCOM), reply “commit”. If the
STATE is 4 (PENDABO), reply ‘abort’. But if the STATE is 1 (PREPARE), this
transaction branch is pending in this site too, and ask the administrator of the
parent site to determine its status.

4. In the Participant Database, the administrator uses JServer Manager to perform a
heuristic commit or abort the pending transaction based on the reply.

If the administrator initiates a heuristic end transaction on a pending transaction that
is different from action taken in the Coordinator Database, the distributed data will be

inconsistent.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 15-20

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-1

16 Data Replication

Data Replication, in the broadest sense of the term, refers to the process of
representing objects in more than one database.

Only a few years ago, corporate data resided in a central location. Remote departments
accessed the information they needed by establishing direct connections to the central
sites, or by requesting printed reports from central MIS. The connections however

were expensive, unreliable, and limited in number, while the reports were inflexible
and untimely.

Open systems brought inexpensive and powerful computing resources to all corners of

an enterprise. The ability to share corporate information effectively using these new
resources became an important competitive advantage for organizations. The question
enterprises face today is not “Why distribute and share corporate data?” but rather

“How can one distribute information effectively?” Replication is quickly becoming the
architecture of choice for a majority of distributed corporate applications.

16.1 Table Replication

What is Table Replication?

Table replication creates a full or partial copy of a table to a destination location. This

allows users in remote locations to work with a local copy of data. The local copy
remains synchronized with the databases in other locations. This way each database
can service data requests immediately and more efficiently, without having to go to

 Database Administrator’s Guide1

another machine over a slower wide area network connection. This kind of request
happens frequently between the headquarters and area companies or branch offices.

For example, after creating a replication from table A on Taipei’s database server to
table B on Tokyo‘s database server, modifications made to table A will replicated to
table B. Clients in Tokyo can then access Tokyo’s database rather than connecting to

Taipei’s database to acquire the same data.

Destination tables may also reside on databases on the same server. This situation may
occur if data must be shared between two databases designed for different functions,

or in the case of sharing data between databases of different types (for example,
Oracle, Sybase, etc.). Tables that are receiving data from another database through
replication will be referred to as destination tables rather than remote tables, even

though the destination tables may reside on a remote database.

Differences Between Database and Table Replication

The major difference between database and table replication is that the replicated data
object is different: one is the whole database; the other one is a table. Users can choose

one of them depending on their demands. If you choose database replication, since the
unit to replicate is the whole database, the target (or slave) database is read-only.

Two Types of Table Replication

There are two types of table replication. One is synchronous. ‘Synchronous’ means the

modification to the destination site shows up immediately; the destination table is
modified at the same time as the local table. DBMaker uses a ‘two phase commit’ and
triggers to perform synchronous table replication. Thus, after establishing a

replication, any update on the source table will become a DDB (distributed database)
action. This will affect the local database’s behavior. If the destination database server
is unreachable, updates on the local database will fail.

The other table replication type is asynchronous. Modifications to the destination site
are delayed. The delay between source and destination database depends on a user-
defined schedule. Asynchronous table replication stores changes to the local table and

modifies the destination table based on a schedule. In this type of replication, two

©Copyright 1995-2003 CASEMaker Inc. 16-2

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-3

databases of a replication pair are independent and can work as normal even if the
network is not available.

Term Definitions

SOURCE TABLE

The table on the source database that the data is replicated from.

DESTINATION TABLE

The table on the destination database that the data is replicated to.

PUBLICATION

A data set on the source table that is available for replication.

SUBSCRIPTION

The data set on the destination table to receive a publication.

FRAGMENT

Also called a horizontal partition, a fragment is the replication of a given range of data.

PROJECTION

The selected columns from a base table chosen for replication.

REPLICATION DOMAIN

A replication fragment (horizontal partition) and projection (vertical partition) are
called a replication domain. It is the range of a table's data to be replicated.

There is a problem when replicating a domain change. It may occur when replicating
an UPDATE statement.

Â Example
CREATE REPLICATION rp2 WITH PRIMARY AS t1 WHERE c2 > 0 REPLICATE TO db2:t1;
CREATE REPLICATION rp3 WITH PRIMARY AS t1 WHERE c2 < 0 REPLICATE TO db2:t1;

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-4

UPDATE t1 SET c2=-7 WHERE c2=7;

The rp2 replication domain is c2>0, and the rp3 replication domain is c2<0. When
replicating, it is not only replicating the UPDATE statement. The updated tuples

replication domain is changed from rp2 to rp3, subsequently the replication performs
a DELETE statement for rp2 (DELETE c2=-7) and performs an INSERT statement
for rp3 (INSERT c2=7).

DATA INITIALIZATION

When creating replications, users can specify how to initialize the data on both sides
automatically. After creating a table replication, any modification (insertion, deletion,

update), to a source table will affect the destination tables.

DBMaker provides 4 options:

 Clear data — DBMaker will delete all data from the destination table while

performing table replication.

 Flush data — DBMaker will insert all data tables that satisfy the fragment for
the source table into the destination tables.

 Clear and flush data — DBMaker will ‘clear data’ and then ‘flush data’.

 Do nothing — Keeps the destination tables.

Creating Table Replication

The following syntax diagram describes both asynchronous and synchronous table

replication.

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-5

local_table_name

REPLICATE TO

CREATE

WITH PRIMARY AS

column_name

,
)(

WHERE search_condition

,

remote_table_name

column_name

,
)(

CLEAR DATA

FLUSH DATA

CLEAR AND FLUSH DATA

ASYNC
REPLICATION replication_name

Figure 16-1 Syntax for the CREATE REPLICATION Statement

Â Example 1

Suppose there is a table TB1 in database DB30A, a table TB2 in DB30B. We want to
replicate TB1’s data to TB2 and do not want to modify TB2’s current data.
dmSQL> CREATE REPLICATION r1 WITH PRIMARY AS TB1
 REPLICATE TO DB30B:TB2;

In the above example, we use a database session name to specify the destination

database. Alternatively, a database link name could be used.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-6

Table Replication Rules

 Schemas of source and destination tables must exist. This means DBMaker does
not create tables when performing table replication.

 Replication names for a table must be unique.

 The subscriber name for a replication must be unique using the
<link_name|database_session_name>+ <table_owner_name> + <table_name>
syntax.

 Projected columns for every table must contain primary key columns.

 Primary key columns must be included with fragment columns.

 Only the table owner of the source table or a user with DBA or higher authority

has the privilege to create, drop, or alter replications.

 If no column-identifier exists with the destination table, the destination column
names must be the same as the base table names.

 Number of primary key columns must be equal in the base table and
destination tables.

Â Example 1

The following statement will create a publication that will replicate table t1 from the
local database to table usr1.t2 on db1. Without specifying column names, all columns

in table t1 must exist in t2 and column types must be compatible. If t1 contained 3
columns c1, c2, and c3, it would replicate c1, c2, and c3 from table t1 to columns c1,
c2, and c3 on table usr1.t2.
dmSQL> CREATE REPLICATION r1 with
 PRIMARY AS t1
 REPLICATE TO db1:usr1.t2;

Â Example 2

The following statement will create a publication used to replicate tuples where c1 >

100 with columns (c1, c2) to (column1, column2) in t2 on db1, and (c1, c2) in t3 on

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-7

db2. After issuing this command, all data where c1 > 100 on t1 will be replicated to t3
on db2 and column1 and column2 of t2 on db1:
dmSQL> CREATE REPLICATION r2 with
 PRIMARY AS t1 (c1,c2) where c1 > 100 ,
 REPLICATE TO db1:t2 (column1, column2),
 db2:t3 flush data;

Â Example 3

The first function of this command is to delete all data from t2 on db1 and then to

create a publication used to replicate the records where c1 > 100 with only column
(c1, c2) to (column1, column2) in t2 on db1:
dmSQL> CREATE REPLICATION r2 with
 PRIMARY AS t1 (c1,c2) where c1 > 100 ,
 REPLICATE TO
 db1:t2 (column1, column2) clear data;

Drop Replication

This command will drop a replication from a source table.

DROP REPLICATION replication_name FROM table_name

Figure 16-2 Syntax for the DROP REPLICATION Statement

Â Example

To drop the replication r1 from the t1 table:
dmSQL> DROP REPLICATION r1 FROM t1;

Alter Replication

Users may add destination tables to or drop destination tables from an existing table
replication. The following syntax diagrams and examples demonstrate how.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-8

ALTER REPLICATION replication_name

ADD REPLICATE TO

,

remote_table_name

column_name

,
)(

CLEAR DATA

FLUSH DATA

CLEAR AND FLUSH DATA

ON local_table_name

Figure 16-3 Syntax for the ALTER REPLICATION … ADD REPLICATE TO
Statement

Â Example 1

The first command creates a replication to replicate table t1 on the local database to
table t on database dbX. The second command adds 2 subscribers, t3 on db1 and

tableA on db4, to the replication of r3 in table t1.
dmSQL> CREATE REPLICATION r3 WITH PRIMARY AS t1
 REPLICATE TO dbX:t;
dmSQL> ALTER REPLICATION r3 ON t1
 ADD REPLICATE TO db1:t3,
 db4:tableA (col1, col2) clear data;

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-9

ALTER REPLICATION replication_name ON local_table_name

remote_table_name

,
DROP REPLICATE TO

Figure 16-4 Syntax for the ALTER REPLICATION … DROP REPLICATE TO
Statement

Â Example 2

To drop subscriber t3 on db1 from the replication of r3 for table t1:
dmSQL> ALTER REPLICATION r3 ON t1
 DROP REPLICATE TO db1:t3;

16.2 Synchronous Table Replication
Two-phase commit allows the synchronization of distributed data. A transaction will
only be accepted if all interconnected distributed sites agree. A ‘handshake’ mechanism

across the network allows distributed sites to coordinate their acceptance for each
transaction. Therefore, using synchronous table replication guarantees that data will
be synchronous whenever an update occurs.

Synchronous Table Replication Setup

DBMaker uses two-phase commits to perform synchronous table replication. Source
and destination databases must be in distributed database (DDB) mode. Therefore,
the first step is to start the databases in DDB mode (DD_DDBMd =1) and add

database sessions to the dmconfig.ini file. Refer to Chapter 15, Distributed Databases
for more information.

After creating a table replication, any modifications (insertion, deletion, updates) to

source a table will affect the destination tables.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-10

16.3 Asynchronous Table
Replication
Synchronous table replication modifies the destination table at the same time it
modifies the local table, while asynchronous table replication stores changes to the

local tables and modifies the destination table based on a schedule.

DBMaker uses a file known as a replication log to store changes to local tables.
Modifications to local tables are stored in replication logs, and are replicated to the

destination table according to a predefined schedule. Using replication logs enables
DBMaker to treat the local transaction and the destination transaction independently,
allowing you to update local tables normally even if the remote connection is not

available. This allows asynchronous table replications to tolerate network and
destination database failures, since DBMaker will keep trying until failures are
corrected.

Figure 16-5: Architecture of asynchronous table replication

Asynchronous table replication uses a replication log system and the distributor server
to handle data replication. Replication logs are not DBMaker journal files. The level

of the replication log is higher than the journal, and it is only for replicating tables.
The content of a journal is physical data modification, but the replication log consists
of commands that are applied to the destination tables.

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-11

When the source database is running, DBMaker logs the modification of source tables
into the replication log files. When the distributor server activates, it will redo all

changes made to the source tables to the destination tables according to the replication
log.

Normally the distributor server uses ODBC function calls to communicate with the

destination database servers, so it is possible to replicate tables to heterogeneous
database servers such as Oracle, SQL Server, Informix, etc. Heterogeneous table
replication will be covered later in this chapter. Express asynchronous table replication

is another type of asynchronous table replication that does not use ODBC function
calls. It will also be covered later in this chapter.

Â There are three main steps to building an asynchronous table replication:

1. Enable asynchronous table replication.

2. Create a schedule to the destination database.

3. Based on the schedule, create the asynchronous table replication.

Enabling Asynchronous Table Replication

The distributor server resides in the source database. The distributor connects to the
destination databases periodically and performs the table replication.

The DB_AtrMd keyword in the dmconfig.ini file in the source database specifies
whether to start the distributor server for a database. If you do not start the distributor
server, the database cannot be the source for asynchronous table replications.

The RP_LgDir keyword in the dmconfig.ini of the source database specifies the
directory where DBMaker will place replication log files for asynchronous table
replication. The replication log files are binary and users should not manually remove

them. The default directory of RP_LgDir is the subdirectory named /TRPLOG in the
database home directory.

When creating table replications with schema checking, the distributed database mode

in the source and the destination database must be enabled (DD_DDBMd = 1). If the
schedule is set to NO CHECK, DBMaker will not check the schema, and the

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-12

distributed database mode can be set to OFF (DD_DDBMd = 0). See the following
section for more information about creating replication schedules.

Â Example 1

To replicate a table from the SRCDB database to the destination DESTDB database,

add the following lines to the dmconfig.ini file on the source database server:
[SRCDB]
DB_DBDIR = /disk1/DBMaker/src
DB_USRBB = /disk1/DBMaker/src/SRCDB.BB 2
DB_USRDB = /disk1/DBMaker/src/SRCDB.DB 150
RP_LGDIR = /disk1/DBMaker/src/trplog
DB_ATRMD = 1
DD_DDBMD = 1
DB_SVADR = srcpc
DB_PTNUM = 22222

[DESTDB]
DB_SVADR = destpc
DB_PTNUM = 33333

The dmconfig.ini file on the destination database:
[SRCDB]
DB_SVADR = srcpc
DB_PTNUM = 22222

[DESTDB]
DB_DBDIR = /disk3/DBMaker/dest
DB_USRBB = /disk3/DBMaker/dest/DESTDB.BB 2
DB_USRDB = /disk3/DBMaker/dest/DESTDB.DB 150
DD_DDBMD = 1
DB_SVADR = destpc
DB_PTNUM = 33333

Due to the way distributor server makes use of the ODBC driver manager to perform

asynchronous table replication, the ODBC data source name (DSN) of the
destination database must be set if the source database is running under the Microsoft
Windows environment.

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-13

Schedule (Creating and Dropping)

Before creating asynchronous replication to one or more destination tables, a user with
DBA privilege or higher needs to define a schedule. A schedule defines the starting
time, the period, and the account and password used to connect to the destination

database. The user can create several schedules for different destination databases on
the same source database, but cannot build more than one schedule to the same
destination database.

CREATE SCHEDULE FOR REPLICATION TO remote_database_name

BEGIN AT yyyy/mm/dd hh:mm:ss

EVERY d DAYS AND hh:mm:ss

EVERY d DAYS

EVERY hh:mm:ss

STOP ON ERROR

RETRY n TIMES
AFTER s SECONDS

,

user_nameIDENTIFIED BY
password

(

ORACLE

SYBASE
INFORMIX

MICROSOFT

)

WITH NO CHECK

Figure 16-6 Syntax for the CREATE SCHEDULE Statement

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-14

Â Example 1

To create a schedule for the DESTDB database:
dmSQL > CREATE SCHEDULE FOR REPLICATION TO destdb
 BEGIN AT 2000/1/1 00:00:00
 EVERY 12:00:00
 IDENTIFIED BY User Password;

From January 1, 2000, the distributor server will activate every 12 hours to perform

an asynchronous replication. The ATRP.LOG distributor message log in the database
home directory will record the starting time and status of the distributor server.

The IDENTIFIED BY keyword specifies the destination account used by the

distributor server to connect to the destination database and execute the table
replication. The account must have privilege to insert, delete, and update on the
destination tables.

If the schedule is not necessary and there is no replication associated with it, users
having the DBA privilege on the source database can drop it.

DROP SCHEDULE FOR REPLICATION TO remote_database_name

Figure 16-7 Syntax for the DROP SCHEDULE Statement

Â Example 2

To drop a schedule:
dmSQL> DROP SCHEDULE FOR REPLICATION TO destdb;

Creating Asynchronous Table Replication

All asynchronous table replications depending on the same schedule will be done at

the same time. The asynchronous table replication mechanism supports all data types,
including LONG VARCHAR, LONG VARBINARY, and FILE types.

The action to create an asynchronous table replication is similar to creating a

synchronous table replication. Add a keyword (ASYNC, CREATE ASYNC,
REPLICATION command), to create table replication based on one schedule to a
destination database.

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-15

Â Example 1

To create a replication named rp1 for the SRCDB database, based on the schedule to
the DESTDB destination database:
dmSQL> CREATE ASYNC REPLICATION rp1
 WITH PRIMARY AS t1
 REPLICATE TO destdb:t2;
 CLEAR AND FLUSH DATA;

Users can specify CLEAR DATA, FLUSH DATA, or CLEAR AND FLUSH DATA
to perform data initialization for a destination site. When creating replication,
DBMaker may use a database link to connect to the destination database for checking

and initialization. The action is performed through the current user account or the
destination account using the DESTDB destination database or database link name.

After the asynchronous table replication has been created, the job of replicating is

moved to the distributor server. The account used to connect to the destination
database will be changed to the one specified by the IDENTIFIED option defined in
the CREATE SCHEDULE statement.

Any transactions resulting from the asynchronous table replication will be recorded in
the distributor message log ATRP.LOG under the source database home directory.
The distributor message log is a pure text file, and records the start-up and actions of

the distributor server.

Â Example 2

Typical content of an ATRP.LOG file:
2000/02/09 10:02:30 : start up
2000/02/09 10:02:33 : replicate transactions before 2000/02/09
 10:02:29 (log:1.856152) to DESTDB

NO CASCADE OPTION

The NO CASCADE keywords are optional. It only functions when the replication

type is asynchronous. The keyword specifies cascade replication. Commands flow in
most organizations from the highest level to lower levels; for example, replicating data
from A to B, and then B to C. This is a typical kind of cascade replication. A typical

no-cascade model replicates data to B and B replicates data to A. If your data model

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-16

works like this, you can turn on the NO CASCADE option. The default is setting is
CASCADE.

The NO CASCADE option causes table replication to occur only across one site.

Â Example

Replication Rp1 is from DB1:t1 to DB2:t2, and Rp2 is from DB2:t2 to DB3:t3. If
Rp1 has the NO CASCADE option set, the changes for DB1:t1 will be replicated to
DB2:t2, but DB2 will stop replicating the same changes to DB3:t3. If Rp1 has the

CASCADE option, the changes of DB1:t1 will be replicated to DB2:t2, and then
from DB2:t2 to DB3:t3.

Error Handling

In the process of data replication, the distributor may face five kinds of errors:

warning, connection, data, statement, and transaction.

WARNING

For example, if a CHAR(10)data type is replicated to a CHAR(5) column type, there

will be a data truncation warning. The distributor server will ignore these kinds of
errors.

CONNECTION ERRORS

If the distributor server fails to connect to the destination database server, it will
abandon the schedule and wait until the next time. All jobs will be kept until then.

DATA ERRORS

Because asynchronous table replication is loosely coupled, it is possible that someone
else will update the destination data first. For example, the distributor server wants to
insert a record to a destination database, but it already exists. Another situation could

be that the distributor server wants to delete a record, but it does not exist. Users can
use the STOP ON ERROR option to make the distributor server stop when it incurs
such errors. The default behavior of the distributor is to ignore these kinds of errors.

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-17

NOTE The data error mentioned above includes an integrity violation error and affected

row error. The integrity violation error calls function SQLError() and returns the

‘23000’error state. The affected row error calls function SQLRowCount(), the result

is not one. For more information on ODBC functions, refer to the “ODBC

Programmer's Guide”.

STATEMENT ERRORS

When the distributor server faces lock time-out errors when executing a statement, it
needs to wait and retry using the RETRY <n> TIMES option. The AFTER <s>

SECONDS option specifies how long to wait before the next try.

TRANSACTION ERRORS

For example, a dead lock causes transactions belonging to transaction errors to be

rolled back. If the distributor server faces errors that rollback transactions, it will retry
once for each whole transaction. If the outcome still fails, the distributor will leave
these actions for the next schedule.

Users can check a text file named ATRERROR.LOG for error records that occurred
during replication. This file is located in the home directory of the database.

Schedule (Suspending and Resuming)

If we replicate data to a database located in Tokyo, and we know that the database will

be shut down on traditional holidays, we can suspend the schedule until the database
is ready.

Users with the DBA privilege can suspend and resume schedules. After a schedule is

suspended, the distributor server will stop trying to connect for replications.

Â Example 1

To suspend the schedule to the DESTDB destination database:
dmSQL> SUSPEND SCHEDULE FOR REPLICATION TO destdb;

Â Example 2

To restart the schedule for the DESTDB destination database:

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-18

dmSQL> RESUME SCHEDULE FOR REPLICATION TO destdb;

Synchronizing a Replication

Users will need synchronized data sometimes; to achieve this DBMaker provides
synchronized schedules. The synchronized schedule forces the distributor server to

perform local changes to the specified database immediately. Users do not need to
wait until the schedule activates the distributor server.

REPLICATION TO remote_database_name

NO WAIT

WAIT

SYNC

SYNCHRONIZE

Figure 16-8 Syntax for the SYNCHRONIZE REPLICATION Statement

Â Example 1

To synchronize schedule to the DESTDB destination database:
dmSQL> SYNC REPLICATION TO destdb WAIT;

The default WAIT option causes the distributor server to wait until all changes have

been made. The command returns only after the completion of replication. The NO
WAIT option instructs the distributor server to perform its job immediately, and the
SYNC command will return immediately.

Â Example 2

Using SYNC REPLICATION TO with NO WAIT:
dmSQL> SYNC REPLICATION TO destdb NO WAIT;

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-19

Altering Schedule

After creating a schedule, users having the DBA privilege can alter the attributes of a
schedule, including the distributor's activation interval, the account used to connect to
the destination database, the RETRY option and STOP/IGNORE ON ERROR

option.

ALTER SCHEDULE FOR REPLICATION TO remote_database_name

user_nameIDENTIFIED BY
password

IGNORE

STOP
ON ERROR

BEGIN AT yyyy/mm/dd hh:mm:ss EVERY hh:mm:ss

EVERY d DAYS AND hh:mm:ss

EVERY d DAYS

RETRY n TIMES
AFTER s SECONDS

Figure 16-9 Syntax for the ALTER SCHEDULE Statement

Â Example 1

To alter the schedule for replications to the DESTDB destination database by adding
the IGNORE ON ERROR option:
dmSQL> ALTER SCHEDULE FOR REPLICATION TO destdb IGNORE ON ERROR;

Â Example 2
dmSQL> ALTER SCHEDULE FOR REPLICATION TO destdb
 IDENTIFIED BY User2 Password2;
dmSQL> ALTER SCHEDULE FOR REPLICATION TO destdb STOP ON ERROR;
dmSQL> ALTER SCHEDULE FOR REPLICATION TO destdb RETRY 5 TIMES AFTER 3
 SECONDS;

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-20

Heterogeneous Asynchronous Table Replication

DBMaker not only allows asynchronous table replication to other DBMaker
databases, but also to Oracle, Informix, Sybase, and Microsoft SQL Server databases.
This type of replication allows DBMaker to coexist with other databases in a

heterogeneous environment, and is known as heterogeneous table replication.

DBMaker needs to preprocess the replicated data before sending it to a third-party
destination database; users must specify the type of DBMS they are replicating to

when creating a schedule in a heterogeneous environment using the ORACLE,
INFORMIX, SYBASE, and MICROSOFT keywords.

Due to the way DBMaker makes use of the ODBC Driver Manager to perform

asynchronous table replication, the DBMaker server must be located on a computer
running Windows NT or Windows 2000, and the definition of the destination
database name cannot include a link name. The third-party destination databases may

be located on either Windows, UNIX, or Linux platforms.

When creating a schedule for heterogeneous table replication, use the WITH NO
CHECK keywords to prevent DBMaker from performing schema checking. The user

creating the replication must take responsibility for schema checking, and ensure that
columns and data types in the destination table are compatible with the columns and
data types in the local table.

Â Example 1

To connect to an Oracle database with an ODBC data source name of orcdb, user
orcuser with password mypassword enters:
dmSQL> CREATE SCHEDULE FOR REPLICATION TO orcdb (ORACLE)
 BEGIN AT 2000/01/01 00:00:00 EVERY 2 DAYS
 WITH NO CHECK
 IDENTIFIED BY orcuser mypassword;

The CLEAR DATA, FLUSH DATA, or CLEAR AND FLUSH DATA keywords
cannot be used when creating a heterogeneous table replication. Data in the third-

party destination database must be manually deleted or inserted to put the table in its
initial state before the replication begins. Heterogeneous replication schedules use the
same syntax as homogeneous schedules.

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-21

Â Example 2

The following shows the heterogeneous replication of table t1:
dmSQL> CREATE ASYNC REPLICATION rp1
 WITH PRIMARY AS t1
 REPLICATE TO orcdb:orcuser.t1;

Express Asynchronous Table Replication

Asynchronous table replication uses ODBC function calls to communicate with

destination databases, which might cause poor performance in a WAN environment.
To achieve better performance on a WAN, DBMaker provides another mechanism
named express asynchronous table replication. DBMaker packs commands into a

package to travel the network.

Since other database management systems do not support this protocol, express
asynchronous table replications cannot work with on heterogeneous replications. It

also does not support the STOP ON ERROR option when creating express schedules.

Figure 16-10: Architecture of express asynchronous table replication

There is a distributor server on the source database and a subscriber daemon on the

destination database. They co-operate to do the work for express asynchronous table
replication. The distributor does not directly apply the changes from the source table
to the destination table via ODBC calls. Instead, it only packages the SQL commands

and related data applied on the source table, and sends the packet out to the subscriber

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-22

daemon on the destination database. After getting the packet on the destination
database, the subscriber daemon applies the commands to the destination tables.

Express Replication Setup

Â To build an express replication:

1. Enable the distributor server on the source database and subscriber daemon on the
destination database(s).

2. Create an express schedule to the destination database(s).

3. Based on the schedule, create the asynchronous table replication(s).

ENABLING SUBSCRIBER DAEMON

In order to start the subscriber daemon, the DB_EtrPt keyword in the dmconfig.ini
file for the destination (subscriber) database should be set. It specifies the port number
of the communicating channel between the distributor server and the subscriber

daemon.

Â Example 1

To replicate a table from the SRCDB source database to the DESTDB destination
database by express replication, the subscriber daemon should be started on the
destination database.

A sample dmconfig.ini file in a destination database follows:
[SRCDB]
DB_SVADR = srcpc ; tell the target database where the source
DB_PTNUM = 22222 ; database is
[DESTDB]
DB_DBDIR = /disk3/DBMaker/dest
DB_USRBB = /disk3/DBMaker/dest/DESTDB.BB 2
DB_USRDB = /disk3/DBMaker/dest/DESTDB.DB 150
DD_DDBMD = 1
DB_SVADR = destpc
DB_PTNUM = 33333
DB_ETRPT = 44444 ; port number used by Subscriber Daemon

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-23

In the source database, the DB_AtrMd keyword is used to start the distributor server.
It is not necessary to let the distributor know which port number the subscriber

daemon uses for the destination database.

A sample dmconfig.ini file from the source database follows:
[SRCDB]
DB_DBDIR = /disk1/DBMaker/src
DB_USRBB = /disk1/DBMaker/src/SRCDB.BB 2
DB_USRDB = /disk1/DBMaker/src/SRCDB.DB 150
RP_LGDIR = /disk1/DBMaker/src/trplog
DB_ATRMD = 1
DD_DDBMD = 1
DB_SVADR = srcpc
DB_PTNUM = 22222
[DESTDB]
DB_SVADR = destpc
DB_PTNUM = 33333

SCHEDULE FOR EXPRESS ASYNCHRONOUS TABLE REPLICATION

Express asynchronous table replication uses the EXPRESS option specified in the
CREATE SCHEDULE command.

Â Example

To build a schedule for express asynchronous table replication:
dmSQL> CREATE SCHEDULE FOR EXPRESS REPLICATION TO destdb
 BEGIN AT 2000/1/1 00:00:00
 EVERY 12:00:00
 IDENTIFIED BY User Password;

CREATING EXPRESS ASYNCHRONOUS TABLE REPLICATION

The steps are the same as for creating asynchronous table replications. Refer to the
section Creating Asynchronous Table Replication, or the SQL Command and Function
Reference for more information.

 Database Administrator’s Guide1

16.4 Database Replication
Most enterprises or companies had to put all data in one file server or database in their
headquarters, and all terminals needed to connect to the server directly. Under this

architecture, the application system might work smoothly if all terminals are in the
same building or area. However, the performance was much slower if the remote
branch wanted to access the database, because of transmitting speed and network

bandwidth.

To share data and increase access speed, DBMaker provides database replication. The
database replication will replicate the primary database to the slave database during a

set time frame. In other words, when there are changes happening to the primary
database like newly added, modified, or deleted data, DBMaker will replicate the
changed data into the slave database automatically. There are three advantages to

using database replication. First, the performance of application systems will increase
since it can access data from the local side directly. Second, the destination database
will have the same data modification as the local one; thus, the goal of data sharing

can be achieved efficiently. Third, if it fails to connect to the local database for an
application, it still could connect to the remote database and continue to work.
Although there are advantages to using data replication, more storage for data and

more processes to handle the replication are required.

Database Replication Basics

In this section, we will use Figure 16-11 to explain the flow of database replication.
Database replication will work with the journal backup server, if you are not familiar

with database backup and restoration, please read Chapter 14, “Database Recovery,
Backup, and Restoration”.

©Copyright 1995-2003 CASEMaker Inc. 16-24

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-25

Figure 16-11: Flow of database replication

Database replication is accomplished with 4 servers: journal backup server, RP_Send

server, RP_Recv server, and RP_Apply server. The journal backup server and the
RP_Send server are started from the primary database. The RP_Recv server and the
RP_Apply server are started from the slave database.

The initial step of database replication is to make the slave database the same as the
primary. All subsequent changes, data insertion, deletion, creating schema, etc., have
to be made in the primary database first. Then the journal backup server running on

the primary database regularly writes changes to the backup journal.

The RP_Send server periodically sends the backup journal of the primary database to
the slave- RP_Recv server. The RP_Recv gives notice to the RP_Apply to apply the

received backup journal to the slave database.

The slave database is read-only for all users, only RP_Apply can update the slave
database.

Database Replication Setup

Â To manually set up database replication:

1. Duplicate the primary database to the slave database.

2. Set up the journal backup server and RP_Send server on the primary database.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-26

3. Set up the RP_Recv server and RP_Apply server on the slave database.

4. Start the primary and slave databases.

5. Verify the replication log (RP.LOG) and error log (ERROR.LOG).

FULL BACKUP

As mentioned earlier, the first step of database replication is to make the slave database

identical to the primary. Please note the byte ordering of primary and slave database
machines must be the same. For example, if the primary database is running on a x86
machine, the slave database machine must be byte ordering-compatible with x86; Sun

Sparc’s byte ordering is different from x86’s, so the slave database cannot run on a
Sparc machine and vice versa.

Â To duplicate the primary database:

1. Shut down the primary database.

2. Make a copy of the primary database’s data files, BLOB files, and journal files.

3. Move the copy of files to the machine that will run the slave database.

4. Modify the slave database’s dmconfig.ini configuration file to reflect the
corresponding file directory changes.

Step 1 and step 2 combined make an offline full backup. Refer to Section Offline Full
Backups for more detailed information.

Here we will illustrate how to perform an offline full backup manually. In this section,
all examples assume an x86 processor and the primary database running on Linux or
FreeBSD.

Â Example 1

To copy the primary database’s files, query the SYSFILE system table to get the logical

names:
dmSQL> SELECT * from SYSFILE;

An excerpt from the dmconfig.ini file to view the physical file names:
[MYDB] ;; Primary Database Configuration, CPU：x86, OS: FreeBSD
DB_DBDIR = /home/dbmaker/mydb

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-27

DB_USRBB = /home/dbmaker/mydb/MYDB.BB 2
DB_USRDB = /home/dbmaker/mydb/MYDB.DB 150
FILE1 = /home/dbmaker/mydb/data/FILE1.DB 50
FILE2 = /home/dbmaker/mydb/data/FILE2.DB 50
DB_JNFIL = JN1.JNL JN2.JNL
...

After shutting down the primary database, copy the primary database files to the
machine to run the slave database. Here, the slave machine is an x86 running

Windows NT. In the above example, the files to copy include system files
MYDB.SDB and MYDB.SBB, default user files MYDB.DB and MYDB.BB, journal
files JN1.JNL and JN2.JNL, and user-defined files FILE1.DB, FILE2.DB, etc.

Next, copy the primary database section in the dmconfig.ini configuration file into
the dmconfig.ini on the computer serving the slave database. Then modify the slave
database dmconfig.ini to ensure physical file names logically match, since the actual

paths and path name conventions may be different for different machines.

An excerpt from the dmconfig.ini of the slave database may look like this:
[MYDB] ;; Slave Database Configuration, CPU：x86, OS: MS Windows NT
DB_DBDIR = d:\dbmaker\db\mydb
DB_USRBB = d:\dbmaker\db\MYDB.BB 2
DB_USRDB = d:\dbmaker\db\MYDB.DB 150
FILE1 = d:\dbmaker\db\mydb\FILE1.DB 50
FILE2 = d:\dbmaker\db\mydb\FILE2.DB 50
DB_JNFIL = JN1.JNL JN2.JNL
...

DBMaker supports up to eight slave databases; if there is more than one slave

database, the database administrator will have to repeat the above steps for each slave
database.

SET UP PRIMARY DATABASE’S JOURNAL BACKUP SERVER

All changes to a database are logged to the journal files. DBMaker therefore uses
backup journal files as the source data for replication. After the journal backup server
performs an incremental backup, the RP_Send server sends backup journal files to the

slave database. All the transactions logged on the journal files are then committed to

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-28

ensure that all the changes to the primary database will also take place on the slave
side.

Â Example

Only the primary database needs to start the journal backup server. The dmconfig.ini
file settings on the primary database server specify the backup directory and schedule:
DB_BMODE = 1 ; Database start up in BACKUP-DATA mode
DB_BKSVR = 1 ; Start up journal backup server
DB_BKDIR = /home/dbmaker/mydb/bkdir ; Directory of backup journal files
DB_BKTIM = 00/01/01 00:00:00 ; The initial backup time
DB_BKITV = 0-12:00:00 ; Perform journal backup evey 12 hours

DB_BMode can be BACKUP-DATA (1) or BACKUP-DATA-AND-BLOB (2)
mode. However, even if DB_BMode is BACKUP-DATA-AND-BLOB mode, the

BACKUP BLOB ON option still must be set for all tablespaces to be replicated,
otherwise BLOB data will not be replicated to the slave database.

DATA TRANSMITTED AND RECEIVED

In the process of database replication, there are three resident servers RP_SEND,
RP_RECV and RP_APPLY involved (as illustrated in Figure 16-11). RP_SEND is
located on the primary database and is responsible for sending backup journal files to

the slave side. The RP_RECV and RP_APPLY are on the slave database side.
RP_RECV receives backup journal files from the primary database, and RP_APPLY
executes the changes according to the journal files. RP_SEND is started and shut

down automatically whenever the primary database is started or shut down.
RP_RECV and RP_APPLY also start and end simultaneously with the slave database.

After the journal backup server completes an incremental backup, RP_SEND will

send all the backup files that have not been sent to the slave database yet from the
backup directory (DB_BkDir) to the slave database. Meanwhile, RP_RECV on the
slave database will receive all the backup files transferred from the primary database,

and put these files under the backup directory (DB_BkDir) on the slave database.
After the files have been received, RP_APPLY will execute the changes recorded in the
backup journal files to the slave database, and the flow of database replication will be

complete.

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-29

SET UP RP_SEND SERVER ON THE PRIMARY SIDE

RP_SEND and RP_RECV are responsible for backup journal file transferal and
reception, respectively. Thus, RP_SEND must know the IP address and port number

of the machine where RP_RECV is located. Note that the port number is specifically
for communication between RP_SEND and RP_RECV for data replication, and must
be different from the one used by database server. RP_SEND uses the keyword

RP_SlAdr in dmconfig.ini on the primary database to determine where to send
replication data.

Syntax for RP_SlAdr:
RP_SLADR = {address[:port number]}

The default port number is 23001.

Â Example 1

The primary database can support up to eight slave databases. A comma or a white
space can separate information for slave databases. The following uses 3 slave
databases, 192.168.9.222 (with port number 5100), Mars (with port number 5101),

and Scorpio (with default port number 23001):
RP_SLADR = 192.168.9.222:5100, Mars:5101, Scorpio

Since the destination to replicate data to is known, the initial time and the time
interval for RP_SEND to execute database replication can be set. After deciding the

schedule, RP_SEND will execute data replication periodically.

Â Example 2

To set the initial time to 01/01/2000 AM 01:00 and set the time interval to one day,
use the following dmconfig.ini settings:
DB_SMODE = 4 ; Start as primary database,
 ; and also start up RP_SEND server
RP_BTIME = 00/01/01 01:00:00 ; Initial replication time
RP_ITERV = 1-00:00:00 ; Replicate everyday
RP_SLADR = 192.168.9.222:5100, Mars:5101, Scorpio ; Replicate to 3 machines
RP_RETRY = 3 ; Times to retry if network connection fails
RP_CLEAR = 1 ; Clear backup journal files after sending
 ; to the slave side

 Database Administrator’s Guide1

In the configuration file, RP_BTime and RP_Iterv are used to specify the schedule for
data replication. RP_BTime is the starting time of sending the backup journal files to

the slave side. The format of RP_BTime is <year/month/day hour:minute:second>. If it
is not given, the system will set RP_BTime to be the starting time of primary
database. The RP_Iterv specifies the time interval at which RP_SEND is activated. Its

format is <day-hour:minute:second>. The default value is one day. The valid value
ranges from 0 to 24855.

©Copyright 1995-2003 CASEMaker Inc. 16-30

NOTE These values must be set before starting the database.

RP_ReTry sets how many times to retry if network connection fails. The value of
RP_Clear determines whether the backup journal files should be cleared after being
sent to the slave. Setting RP_Clear to 1 clears up the backup journal files. The default

value is 0. If backup journal files are used for database replication only, clearing those
files can reclaim some storage space. However, if a hardware crash occurs, the data
from backup journal files is irretrievable and will not be able to be restored. In this

case, a full backup against the slave database must be made to restore the primary
database. Therefore, if backup journal files will be used for primary database backup as
well, RP_Clear should be set to 0.

SETUP RP_RECV AND RP_APPLY SERVERS ON A SLAVE

In order to start up RP_RECV and RP_APPLY servers, the start-up mode
DB_SMode of the slave database should be set to 5.

Â Example 1

A slave database can receive replication data only from one primary database; hence, it

needs RP_Primy to specify the primary database’s machine name or address.
RP_PRIMY = FreeBSD ; Receive replication data from machine ‘FreeBSD'

Â Example 2

RP_RECV server uses a different port number from DB_PtNum to receive data from
RP_SEND. For example, suppose there is a slave database located on machine NTPC,
with the RP_PtNum keyword setting.
RP_PTNUM = 5100 ; Port number for RP_SEND and RP_RECV connection
DB_PTNUM = 3333 ; Port number for user database access

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-31

Â Example 3

The primary database uses the RP_SlAdr keyword to retrieve the slave database’s
machine name or address and port number.
RP_SLADR = NTPC:5100 ; Slave-side machine name and address

In addition, the slave database has to set the DB_BkDir backup directory to keep
backup journal files received from the primary database. After RP_APPLY has applied
changes to the slave database with the backup journal files, DBMaker will

automatically remove them.

SLAVE DATABASE IS READ-ONLY

Data in the slave database must be the same as the primary. It cannot accept data

definitions (DDL, such as Create Table and Alter Table) and update data (such as
INSERT, UPDATE, and DELETE). Thus, we can say that the slave database is read-
only.

During the process of database replication, the slave database uses the backup journal
files received from the primary database to restore data. The system will not lock data
on the primary database during the process of restoring data. Therefore, queries to the

slave database are a kind of dirty read. In other words, at any given point in time, the
same query on both the primary and slave databases may return different values
because RP_APPLY is restoring data.

START THE PRIMARY AND SLAVE DATABASES

The start mode of the primary database is different from the slave. If you want to set a
database to be a primary, set the start mode to be in primary database mode. On the

other hand, if you want to set a database to be a slave, set the start mode to be in slave
database mode. Using the DB_SMode located in the dmconfig.ini file can specify all
of the setup options. The start mode DB_SMode for the primary database mode is 4.

The DB_SMode for a slave database mode is 5.

You can start the primary and slave databases separately, in no particular order.

A summary of all dmconfig.ini keywords, for replication, mentioned in this section

follows.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-32

Â Example 1

In the following dmconfig.ini file, the primary database name is FreeBSD, and the
slave database is NTPC, using the minimum settings for the primary database.
[MYDB] ;; Primary Config, CPU：x86, OS：FreeBSD, Name：FreeBSD
;; Database related settings
DB_DBDIR = /home/dbmaker/mydb
DB_USRBB = /home/dbmaker/mydb/MYDB.BB 2
DB_USRDB = /home/dbmaker/mydb/MYDB.DB 150
FILE1 = /home/dbmaker/mydb/data/FILE1.DB 50
FILE2 = /home/dbmaker/mydb/data/FILE2.DB 50
DB_JNFIL = JN1.JNL JN2.JNL
DB_SVADR = FreeBSD ; Machine name of primary database
DB_PTNUM = 3333 ; Port number of primary database
;; journal backup server related settings
DB_BMODE = 1 ; Database start up in BACKUP-DATA mode
DB_BKSVR = 1 ; Start up journal backup server
DB_BKDIR = /home/dbmaker/mydb/bkdir ; Directory of backup journal files
DB_BKTIM = 00/01/01 00:00:00 ; The initial backup time
DB_BKITV = 0-12:00:00 ; Perform journal backup evey 12 hours
;; RP_SEND server related settings
DB_SMODE = 4 ; Start as primary database
 ; and also start up RP_SEND server
RP_BTIME = 00/01/01 01:00:00 ; Initial replication time
RP_ITERV = 1-00:00:00 ; Replicate everyday
RP_SLADR = NTPC:5100 ; Replicate to NTPC with port no. 5100
RP_RETRY = 3 ; retry 3 timesif network connection fails
RP_CLEAR = 1 ; Clear backup journal files after sending

The following is the minimum settings for the slave database:
[MYDB];; Slave Config., CPU：x86, OS：MS Windows NT, Name：NTPC
;; Database related settings
DB_DBDIR = d:\dbmaker\db\mydb
DB_USRBB = d:\dbmaker\db\MYDB.BB 2
DB_USRDB = d:\dbmaker\db\MYDB.DB 150
FILE1 = d:\dbmaker\db\mydb\FILE1.DB 50
FILE2 = d:\dbmaker\db\mydb\FILE2.DB 50
DB_JNFIL = JN1.JNL JN2.JNL
DB_SVADR = NTPC
DB_PTNUM = 3333

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-33

;; RP_RECV and RP_APPLY servers related settings
DB_SMODE = 5 ; Start as primary database,
 ; also start up RP_RECV and RP_APPLY servers
RP_PRIMY = FreeBSD ; Receive replication data only from this machine
RP_PTNUM = 5100 ; Port number for RP_SEND and RP_RECV connection
DB_BKDIR = e:\mydb\bkdir ; Directory of temporary backup journal files

EXECUTE DATABASE REPLICATION IMMEDIATELY

We mentioned that the resident server for database replication will detect whether

there are changes to data and will replicate the data automatically.

Â Example

Use the dmSQL tool to enter a SQL command to have DBMaker execute the
database replication immediately.
dmSQL> Set Flush;

Use this command when you need to synchronize the data between a primary and

slave database.

When you execute this command, the journal backup server will immediately execute
the incremental backup and backup the current journal files. Then three resident

servers (RP_SEND, RP_RECV, and RP_APPLY) will follow the procedure and
replicate data.

VERIFY REPLICATION LOG (RP.LOG) AND ERROR LOG
(ERROR.LOG)

In the process of database replication, if there are any network failures or any error
messages, the system will generate a log file, ERROR.LOG, in the current database
directory. Error log entries follow the following syntax:
yy/mm/dd hh:mm:ss Daemon name:Error number:Error message

Â Example 1

An ERROR.LOG:
97/12/31 11:40:59 - RP_SEND:rc = 1503, cannot connect to server 192.72.116.130
97/12/31 11:43:36 - RP_SEND:rc = 1503, cannot connect to server 192.72.116.130
97/12/31 11:45:00 - RP_SEND:rc = 1503, cannot connect to server 192.72.116.130

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-34

97/12/31 11:50:00 - RP_SEND:rc = 1503, cannot connect to server 192.72.116.130
97/12/31 11:50:45 - RP_SEND:rc = 1503, cannot connect to server 192.72.116.130

Both primary and slave databases may generate the ERROR.LOG.

If the replication succeeds, the system will also generate a log file named RP.LOG.

The format is:

On the primary database:
RP_SEND:RPID id ~ id sent at yy/mm/dd hh:mm:ss

On the slave database:
RP_RECV:RPID id ~ id sent at yy/mm/dd hh:mm:ss
RP_APPLY:RPID id ~ id applied at yy/mm/dd hh:mm:ss

The replication log, RP.LOG, will be on the primary and slave database servers. Every
backup journal file has an ID, the RPID. In the above format, RPID indicates which
journal file is being processed – RPID in the RP_SEND lines indicate which one is

being sent, in the RP_RECV lines they indicate which one is being received, and in
the RP_APPLY they indicate which one is being restored. Normally the RPID is the
same as the incremental backup file ID.

Â Example 2

RP.LOG on a primary database:
RP_SEND : RPID 7 ~ 10 sent to 192.72.116.130 at 97/12/16 15:36:17
RP_SEND : RPID 11 ~ 11 sent to 192.72.116.130 at 97/12/16 15:59:42
RP_SEND : RPID 12 ~ 12 sent to 192.72.116.130 at 97/12/31 11:52:28

Â Example 3

RP.LOG on a slave database:
RP_RECV : RPID 7 ~ 10 received at 97/12/16 15:35:53
RP_APPLY : RPID 7 ~ 10 applied at 97/12/16 15:35:55
RP_RECV : RPID 11 ~ 11 received at 97/12/16 15:59:18
RP_APPLY : RPID 11 ~ 11 applied at 97/12/16 15:59:18
RP_RECV : RPID 12 ~ 12 received at 97/12/31 11:52:01
RP_APPLY : RPID 12 ~ 12 applied at 97/12/31 11:52:02

RP.LOG is used to record all actions performed by three resident servers, RP_SEND,
RP_RECV, and RP_APPLY. The file is located in the database directory, DB_DbDir,

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-35

on all replication participant databases. Database administrators should monitor these
files periodically to ensure that the replication is running smoothly.

For example, if the connection to a remote database always fails, check whether the
network works normally or if the remote database was engaged at the time of failure.

JServer Manager Environment Settings

To replicate a database, you need to establish the initial database environment. Use a

text editor to modify the dmconfig.ini file directly, as shown in the previous section.
In this section, DBMaker’s JServer Manager will be used to set up the database
replication environment.

PRODUCE A FULL BACKUP

First, produce an offline full backup of the primary database, and then copy the
backup to the slave database. For more information on offline full backup, refer to

Section 14.5, Offline Full Backups.

PRIMARY DATABASE SETUP

To allow the database replication server to function, first set up the database so that

incremental backups are being made. Refer to Chapter 14, Database Recovery, Backup,
and Restoration for more information. Next, set up the environment for the primary
database.

Â To setup for the primary database environment:

1. Start the JServer Manager application on the primary database server.

2. Click on the Setup button in the Start Database window.

3. Click the Replication tab in the Start Database Advanced Settings window.

4. To enable database replication:

a) Enter slave database IP and port numbers into the IP and Port Number of
Target Database.

b) Enter a date and time into the Begin Time of Database Replication time
fields.

c) Enter a value into the Times to Retry upon Failure field

 Database Administrator’s Guide1

d) If desired, enable Remove Backup Journal Files after Replication

e) Enter the number of days, hours, minutes, and seconds between each
successive database replication in the Time Interval to Start Database
Replication time fields.

5. Click the Save button.

6. Click the Cancel button to return to the Start Database window.

SLAVE DATABASE SETUP

After copying a full backup of the primary database to the slave database, use JServer
Manager to setup the configuration of the slave database.

1. Start the JServer Manager application on the slave database server.

2. Click on the Setup button in the Start Database window.

3. Click the Replication tab in the Start Database Advanced Settings window.

4. To enable database replication:

a) Enter the IP Address of Source Database.

b) Enter a port number for RP_RECV in the Port Number of Receive
Daemon on Target DB.

5. Click the Save button.

6. Click the Cancel button to return to the Start Database window

Database Configuration File

This section is a summary of database replication related keywords used in the
dmconfig.ini file.

PRIMARY DATABASE CONFIGURATION

Primary database keywords for data replication:

 DB_SMode — 1Setting DB_SMode to 4 means that this database will start in
primary mode.

 RP_BTime — 1Sets the beginning time for the primary database full backup
files to be sent to the slave database. The format is yr/mon/day hr:min:sec. The

©Copyright 1995-2003 CASEMaker Inc. 16-36

1Data Replication 16

©Copyright 1995-2003 CASEMaker Inc. 16-37

default value is the starting time of the primary database. For example, 97/12/31
12:00:00.

 RP_Iterv — 1Sets the time interval to send the backup journal files. The format
is day-hr:min:sec. For instance, 1-12:00:00 means to send the backup files every
one and half day. The valid range of days is 0~24855.

 RP_ReTry — 1Sets the number of times to retry a connection when the
network fails.

 RP_Clear — 1Setting to clear journal backup files after sending them. The

value 1 clears the files, a value of 0 does not clear them. The default value is 0. If
the value is set to 1, the primary database cannot be restored if there are
hardware damages unless the slave database is used to restore it.

 RP_SlAdr — 1This value will set the address (or machine number) and the port
number of the slave database. DBMaker supports 1 to 8 slave databases for each
primary database.

Syntax for RP_SlAdr:

RP_SLADR = {Address[:Port Number]}

The primary database needs to start up the journal backup server to perform

incremental backups:

 DB_Bmode — 1 (BACKUP-DATA) or 2 (BACKUP-DATA-AND-BLOB).

 DB_BkSvr — Set DB_BkSvr to 1 to start the journal backup server.

 DB_BkDir — The directory to store backup journal files.

 DB_BkTim — The starting time of the journal backup server. The format is
<yr/mon/day hr:min:sec>. The default value is the starting time of the primary

database.

 DB_BkItv — The time interval to perform incremental backups, and the
format is <day-hr:min:sec>. For instance, 0-12:00:00 means to backup every 12

hours.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. 16-38

SLAVE DATABASE CONFIGURATION

The slave database keywords for data replication:

 DB_Smode — Setting DB_SMode to 5 means that this database will start in

slave mode.

 RP_Primy — The address or machine name of the primary database.

 RP_PtNum — The port number used by RP_RECV. The value must be

different from DB_PtNum, and it has to be the same as the port number
specified in RP_SlAdr of the primary database.

 DB_BkDir — The directory to store the temporary backup journal files

received from the primary database. The default directory is <database
directory>/backup.

Database Replication Limitations

Summary of database replication limitations:

 Byte ordering must be the same on the primary and slave machines.

 Slave database is read-only.

 One primary database supports up to eight slave databases.

 Databases for database replication cannot perform online full backups.

 Currently replication of FILE data type is not supported.

 To replicate BLOB data, i.e. columns of LONG VARCHAR or LONG

VARBINARY data type, set DB_BMode to 2 (BACKUP-DATA-AND-BLOB)
and remember to set the BACKUP BLOB ON option while creating
tablespaces.

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-1

17 Performance Tuning

DBMaker is a highly tunable database system. Tuning DBMaker will increase its
performance level to satisfy individual needs. This chapter presents the goals and

methods used in the tuning process, and demonstrates how to diagnose a system’s
performance.

17.1 The Tuning Process
Before tuning DBMaker, you must define goals for improving performance. Keep in

mind that some goals may conflict. You must decide which of the conflicting goals are
most important.

The following outlines some of the goals for tuning DBMaker:

 Improving the performance of SQL statements.

 Improving the performance of database applications.

 Improving the performance of concurrent processing.

 Optimizing resource utilization.

After determining the goals, you are ready to begin tuning DBMaker.

Start by performing the following steps:

 Monitor database performance

 Tuning I/O.

 Tuning memory allocation.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-2

 Tuning concurrent processing.

 Monitor database performance and compare with previous statistics

The methods used to perform tuning in each of these steps may have a negative
influence on other steps. Following the order shown above can reduce this influence.
After performing all of the tuning steps, monitor the performance of DBMaker to see

whether the best overall performance has been achieved.

Before tuning DBMaker, make certain that the SQL statements are written efficiently
and the database applications employ good design. Inefficient SQL statements or

badly designed applications can have a negative influence on database performance
that tuning cannot improve. To write efficient statements and applications, refer to
the SQL Command and Function Reference and the ODBC Programmer’s Guide.

17.2 Monitoring a Database
This section shows how to monitor information about the status of a database,
including resource status, operation status, connection status, and concurrency status.
This section also shows how to kill a connection.

The Monitor Tables

DBMaker stores the database status in four system catalog tables: SYSINFO,
SYSUSER, SYSLOCK, and SYSWAIT.

The SYSINFO table contains database system values including total DCCA size,

available DCCA size, number of maximum transactions, and the number of page
buffers. It also includes statistics on system actions such as the number of active
transactions, the number of started transactions, the number of lock and semaphore

requests, the number of physical disk I/O, the number of journal record I/O, and
more. Use this table to monitor the database system status, and use the information to
tune the database.

The SYSUSER table contains connection information, including connection ID, user
name, login name, login IP address, and the number of DML operations that have
been executed. Use this table to monitor which users are using a database.

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-3

The SYSLOCK table contains information about locked objects, such as the ID of the
locked object, lock status, lock granularity, ID of the connection locking this object,

and more. Use this table to monitor which objects are being locked by which
connection, and which users are locking which objects.

The SYSWAIT table contains information on the wait status of connections,

including the ID of the connection that is waiting and the ID of the connection it is
waiting for. Use this table to monitor the concurrency status of connections. Once a
connection is waiting for those resources locked by an idle or dead connection, you

can determine which connection is locking those objects from this table. Then you
can kill the idle or dead connection to release the resources.

Browse these four system catalog tables in the same way ordinary tables are browsed.

Â Example

SQL SELECT command used to browse the SYSUSER table:
dmSQL> SELECT * FROM SYSUSER;

Refer to Appendix B for more information on these four system catalog tables.

Killing Connections

A connection should be killed when the connection is holding resources and is idle for
a long time, or when the resources are urgently required. In addition, all active

connections should be killed before shutting down a database. Before killing a
connection, browse the SYSUSER table to determine its connection ID.

Â Example 1

To kill the connection for Eddie, retrieve the connection ID first:
dmSQL> SELECT CONNECTION_ID FROM SYSUSER WHERE USER_NAME = ‘Eddie’;

CONNECTION_ID
=============
352501

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-4

Â Example 2

Then to kill the connection for Eddie use:
dmSQL> KILL 352501;

17.3 Tuning I/O
Disk I/O requires the most time in DBMaker.

To avoid disk I/O bottlenecks, perform the following:

 Determine data partitions.

 Determine journal file partitions.

 Separate journal files and data files onto different disks.

 Use raw devices.

 Pre-allocate space in an autoextend tablespace.

 Turn I/O and checkpoint daemon on.

Determining Data Partitions

You can use tablespaces to partition data instead of storing all of the data together. If
tablespaces are used properly, DBMaker will have greater performance when

performing space management functions or full table scans. Small tables that contain
data of a similar nature can be grouped in a single tablespace, but very large tables
should be placed in their own tablespace.

You can achieve speed improvement in disk I/O by using disk striping. Striping is the
practice of separating consecutive disk sectors so they span several disks. This can be
used to divide the data in a large table over several disks. This helps to avoid disk

contention that may occur when many processes try to access the same files
concurrently.

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-5

Determining Journal File Partitions

DBMaker gives the flexibility to use one or more journal files. A single journal file is
easier to manage, but using multiple journal files has some advantages as well. If you
run DBMaker in backup mode and use the backup server to perform incremental

backups, using multiple journal files can improve the performance of incremental
backups. Only full journal files will be backed up. In addition, spreading multiple
journal files across different disks can increase disk I/O performance.

You may determine the size of journal files by examining the needs of transactions.
However, if you run DBMaker in backup mode and perform backups according to
the journal full status, the journal size will also affect the backup time interval. A larger

journal file increases the interval between backups.

Separating Journal Files and Data Files

Separating the journal files and data files onto different disks will increase disk I/O
performance, permitting files to be accessed concurrently to some degree. If the disks

have different I/O speeds, consider which files to put on the faster disks. In general, if
you run on-line transaction processing (OLTP) applications often, put the journal files
on the faster disks. However, if you run applications that perform long queries, such as

a decision support system, put data files into faster disks.

Using Raw Devices

If you run DBMaker on a UNIX system, construct raw device files to store DBMaker
data and journal files. Since DBMaker has a good buffer mechanism, it is much faster

to read/write from a raw device than a UNIX file. For more information on how to
create a raw device, refer to the operating system manual or consult your system
administrator. The one disadvantage of using raw devices is that DBMaker cannot

extend tablespaces on them automatically; so more planning is required when using
raw device files.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-6

Pre-Allocating Autoextend Tablespaces

DBMaker supports autoextend tablespaces to simplify tablespace management.
However, if you are able to estimate the required size of a tablespace, it is better to fix
the size when creating the tablespace. This improves performance, as extending pages

takes a lot of time. You can extend the pages of a file later by using the alter file
command. Pre-allocating the size of a tablespace can also avoid disk full errors when
DBMaker attempts to extend a tablespace that already occupies all available disk space.

I/O and Checkpoint Daemons

I/O DAEMON

DBMaker has an I/O daemon to periodically write dirty pages from the least recently
used page buffers to disk. This helps reduce the overhead incurred when swapping

data pages into the page buffers, and increases performance. One configuration
parameter in the dmconfig.ini file is used to control the I/O daemon.

DB_IOSvr—enables and disables the I/O daemon. Setting this keyword to a value of

1 enables the I/O daemon, and setting it to a value of 0 disables the I/O daemon.

Â Example

A typical excerpt from the dmconfig.ini file:
[MYDB]
…
DB_IOSVR = 1

MYDB database has 400 (DB_NBufs) page buffers in DCCA. Every 10 minutes, the
I/O daemon will perform the following steps:

 Scan the least recently used page buffers.

 Collect the dirty pages during scan processing.

 Write these collected dirty pages to disk.

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-7

CHECKPOINT DAEMON

DBMaker has a checkpoint daemon (based on the I/O daemon) that periodically takes
a checkpoint. This helps reduce the time spent waiting for a checkpoint that occurs

during a command, when a journal is full, or when starting or shutting down a
database. The checkpoint daemon is actually a sub-function of the I/O daemon,
which can perform I/O alone, checkpoints alone, or both together. There is one

keyword for use in the dmconfig.ini file, which is used to control the checkpoint
daemon.

DB_ChTim—specifies the first time a checkpoint daemon should run. The format

for this keyword is yyyy/mm/dd hh:mm:ss.

To turn on the checkpoint daemon, turn on the I/O daemon using the DB_IOSrv
keyword. If the I/O daemon is activated without setting DB_ChTim, it will

automatically take a checkpoint every hour by default after the database starts
successfully.

Â Example 2

To start checkpoint daemon and stop the I/O daemon in the dmconfig.ini:
[MYDB]
…
DB_IOSVR = 1 ; may enable I/O or checkpoint daemon
DB_CHTIM = 2000/1/1 00:00:00 ; the first time the daemon should run

In fact, the I/O and checkpoint daemon will expend some I/O resources. After

starting the database server, any error messages generated by the I/O and checkpoint
daemon are written to the file ERROR.LOG.

17.4 Tuning Memory Allocation
DBMaker stores information temporarily in memory buffers and permanently on

disk. Since it takes much less time to retrieve data from memory than disk,
performance will increase if data can be obtained from the memory buffers. The size
of each of DBMaker’s memory structures will affect the performance of a database.

However, performance becomes an issue only if there is not enough memory.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-8

This section focuses on tuning the memory usage for a database. It includes
information on how to calculate the required DCCA size, and how to monitor and

allocate enough memory for the page buffers, journal buffers and system control area.

Â To achieve the best performance, follow the steps in the order shown:

1. Tune the operating system.

2. Tune the DCCA memory size.

3. Tune the page buffers.

4. Tune the journal buffers.

5. Tune the SCA.

DBMaker’s memory requirement varies according to the applications in use; tune
memory allocation after tuning application programs and SQL statements.

Tuning an Operating System

The operating system should be tuned to reduce memory swapping and ensure that

the system runs smooth and efficiently.

Memory swapping between physical memory and the virtual memory file on disk
takes a significant amount of time. It is important to have enough physical memory

for running processes. Measure the status of an operating system with the operating
system utilities. An extremely high page-swapping rate indicates that the amount of
physical memory in a system is not large enough. If this is the case, remove any

unnecessary processes or add more physical memory to the system.

Tuning DCCA Memory

The Database Communication and Control Area (DCCA) is a group of shared memory
allocated by DBMaker servers. Every time DBMaker is started, it allocates and

initializes the DCCA.

The UNIX client/server model of DBMaker allocates the DCCA from the UNIX
shared memory pool. Ensure that the size of the DCCA is not larger than the

maximum-shared memory size permitted by the operating system. If the requested size

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-9

for the DCCA is larger than the operating system limit, refer to the operating system
administration manual for information on how to increase the maximum size of

shared memory.

CONFIGURING THE DCCA

The DCCA contains the process communication control blocks, concurrency control

blocks, and the cache buffers for data pages, journal blocks, and catalogs. DBMaker
maintains the concurrency control blocks and communication status of each
DBMaker process in the DCCA. Each DBMaker process accesses the same disk data

through the cache buffers in the DCCA.

Setting the appropriate parameters in dmconfig.ini before starting the database
configures the size of each of the DCCA components.

Â Example 1

A sample configuration for the DCCA in the dmconfig.ini file:
DB_NBUFS = 200
DB_NJNLB = 50
DB_SCASZ = 50

DB_NBufs specifies the number of data page buffers (4096 bytes per buffer),
DB_NJnlB specifies the number of journal block buffers (4096 bytes per buffer), and
DB_ScaSz specifies the size of the SCA in pages (4096 bytes per page). DBMaker

reads these DCCA parameters only when starting a database. To adjust the
parameters, terminate the database, modify the values in the dmconfig.ini file, and
restart the database. For more information on setting these parameters, refer to

Appendix A.

The total memory allocation for the DCCA is the sum of the size of DB_NBufs,
DB_NJnlB and DB_ScaSz.

Â Example 2

To calculate the total size of the DCCA:
size of DCCA = (200 + 50 + 50) * 4 KB
 = 1200 KB

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-10

ALLOCATING SUFFICIENT DCCA PHYSICAL MEMORY

The DCCA is the resource most frequently accessed by DBMaker processes. It is
important to ensure there is enough physical memory to prevent the operating system

from swapping the DCCA to disk too often or it will seriously degrade the
performance of a database. The page-swapping rate can be measured by using
operating system utilities.

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-11

Â Example

To determine the size of memory allocated for the DCCA from the system table
SYSINFO:
dmSQL> select INFO, VALUE from SYSINFO where INFO = DCCA_SIZE
 or INFO = FREE_DCCA_SIZE;

 INFO VALUE
============================= ===============================
DCCA_SIZE 1228800
FREE_DCCA_SIZE 189024

DCCA_SIZE—the memory size, in bytes, of the DCCA.

FREE_DCCA_SIZE—the size, in bytes, of free memory remaining in the DCCA.

The free memory in the DCCA is reserved for use by dynamic control blocks, such as
lock control blocks.

Usually a larger number of buffers is better for system performance. However, if the
DCCA is too large to fit in physical memory, the system performance will degrade.
Therefore, it is important to allocate enough memory for the DCCA but still fit the

DCCA in physical memory.

Tuning Page Buffer Cache

DBMaker uses the shared memory pool for the data page buffer cache. The buffer
cache allows DBMaker to speed up data access and concurrency control. DBMaker

automatically configures the number of page buffers by default. Setting the
dmconfig.ini keyword DB_Nbufs to zero allows DBMaker to automatically set the
number of page buffers. DBMaker can dynamically adjust the number of page buffers

on systems that allow DBMaker to detect physical memory usage. The number will be
no less than 500 pages on Windows 95/98, or no less than 2000 pages for Windows
NT/2000/ or Unix. If DBMaker cannot detect the system’s physical memory usage, it

will allocate the minimum amount.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-12

 Adjusting the size of the page buffers will have the greatest effect on performance.
The next sections show how to monitor the buffer cache performance and calculate

the buffer hit ratios.

Â To improve buffer cache performance:

1. Update statistics on schema objects.

2. Set NOCACHE on large tables.

3. Reorganize data in poorly clustered indexes.

4. Enlarge cache buffers.

5. Reduce the effect of checkpoints.

MONITORING PAGE BUFFER CACHE PERFORMANCE

DBMaker places buffer cache access statistics in the SYSINFO system table.

Â Example

To get buffer cache values use the following SQL statements:
dmSQL> select INFO, VALUE from SYSINFO where INFO = 'NUM_PAGE_BUF';

 INFO VALUE
================================ ================================
NUM_PAGE_BUF 4000

1 rows selected

dmSQL> select INFO, VALUE from SYSINFO where INFO = 'NUM_PHYSICAL_READ'
 2> or INFO = 'NUM_LOGICAL_READ'
 3> or INFO = 'NUM_PHYSICAL_WRITE'
 4> or INFO = 'NUM_LOGICAL_WRITE';

 INFO VALUE
================================ ================================
NUM_PHYSICAL_READ 64
NUM_PHYSICAL_WRITE 1
NUM_LOGICAL_READ 509
NUM_LOGICAL_WRITE 0

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-13

4 rows selected

NUM_PAGE_BUF—number of pages used for data buffer cache.

NUM_PHYSICAL_READ—number of pages read from disk.

NUM_LOGICAL_READ—number of pages read from the buffer cache.

NUM_PHYSICAL_WRITE—number of pages written to disk.

NUM_LOGICAL_WRITE—number of pages written to the buffer cache.

Calculate the page buffer read/write hit ratio with the following formulas:

)
L_READNUM_LOGICA

AL_READNUM_PHYSIC(1ratiohit read −=

)
L_WRITENUM_LOGICA

AL_WRITENUM_PHYSIC(1ratiohit write −=

Using the example above, can calculate the read/write hit ratio:

%0.96
960.0

)
331595
13207(1ratiohit read

=
=

−=

%2.94
942.0

)
127423

7361(1ratiohit write

=
=

−=

Based on the read/write hit ratio, determine how to improve the buffer cache
performance. If the hit ratio is too low, tune DBMaker with the methods described in

the following subsections.

If the hit ratio is always high, for example higher than 99%, the cache is probably
large enough to hold all of the most frequently used pages. In this case, try to reduce

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-14

the cache size to reserve memory for applications. To ensure good performance,
monitor the cache performance before and after making the modifications.

STATISTICS VALUES ARE OUTDATED

If the read/write hit ratio is too low, it may be that the statistics values of schema
objects (tables, indexes, columns) are out of date. The wrong statistics may cause the

DBMaker optimizer to use an inefficient plan for SQL statement. If users have
inserted large amounts of data into the database after the last time the statistics values
were updated, update the values again.

Â Example 1

To update the statistics values for all schema objects:
dmSQL> update statistics;

If a database is extremely large, it will take a lot of time to update statistical values for
all of the schema objects. An alternative method is to update statistics on specific
schema objects that have been modified since the last update, and set the sampling

rate.

Â Example 2

To update specific schema objects:
dmSQL> update statistics tabel1, table2, user1.table3 sample = 30;

After successfully updating the statistical values for schema objects, monitor the
performance of the page buffer cache with the method specified in Monitoring Page
Buffer Cache Performance.

SWAP OUT CACHE

DBMaker determines which page buffers to swap with the Least Recently Used (LRU)
rule. This keeps the most frequently accessed pages in the page buffers and swaps
pages that are used less frequently. However, if a large table is browsed all page buffers
may be swapped out just to perform one table scan.

For example, in a database with 200 page buffers, if a table with 250 pages is browsed,
DBMaker might read all 250 pages into the page buffers and discard the 200 most

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-15

frequently used pages. In the worst case, DBMaker must read 200 pages from disk
when accessing other data after a full table scan. However, if the table cache mode is

set to NOCACHE, DBMaker will place the retrieved pages at the end of the LRU
chain when a full table scan is performed. Therefore, 199 of the 200 most frequently
used pages are still kept in the buffer cache.

Normally the tables with page numbers that exceed the page buffers should be set to
NOCACHE. Tables that are not used frequently or with page numbers close to the
number of page buffers should also be set to NOCACHE.

Â Example 1

To determine the number of pages and cache mode for a table:
dmSQL> select TABLE_OWNER, TABLE_NAME, NUM_PAGE, CACHEMODE from SYSTEM.SYSTABLE
where TABLE_OWNER != 'SYSTEM';

TABLE_OWNER TABLE_NAME NUM_PAGE CACHEMODE
=========== ================== =========== =========
 BOSS salary 5 T
 MIS asset 45 T
 MIS department 3 T
 MIS employee 29 T
 MIS worktime 450 T
 TRADE customer 350 T
 TRADE inventory 167 T
 TRADE order 112 T
 TRADE transaction 1345 F

9 rows selected

NUM_PAGE—the number of pages in a table.

CACHEMODE—cache mode of full table scan, 'T' means table scan is cacheable,
and 'F' means table scan is non-cacheable.

In the above sample, the table TRADE.transaction is already set to NOCACHE. The
other tables still are cacheable. If there are 200 page buffers, the MIS.worktime and
TRADE.customer tables should be set to NOCACHE, and the TRADE.order and

TRADE.inventory tables should be set to NOCACHE if they are rarely used.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-16

Â Example 2

To set the cache mode for a table to NOCACHE:
dmSQL> alter table MIS.worktime set nocache on;

If there are no valid indexes for a table, or the predicate in a query references non-

indexed columns, DBMaker may also perform a full table scan. To prevent this, try to
write SQL statements as efficiently as possible, and make use of indexed columns
when possible.

POOR CLUSTERING OF RECORDS

When fetching many records that must be ordered by an index key, or when the
predicate references an indexed column, index clustering becomes an important factor

that affects the buffer cache performance.

Â Example 1:

To select all columns from the customer table and sort it using the custid primary key:
dmSQL> SELECT * FROM customer ORDER BY custid;

Suppose there are 3500 records in the customer table distributed over 350 pages, and
there are 200 page buffers in the system. If the records are clustered using custid and

the clustering is very good (arranged sequentially on all pages), DBMaker only needs
to read 350 pages from disk. On the other hand, if the clustering is poor (no
sequential records on the same page), DBMaker may have to read 3500 pages from

disk in the worst case (every record needs a disk read)! To determine the state of an
index cluster, update statistics on the table first.

Â Example 2

To build an index called custid_index on the custid column for the customer table:
dmSQL> select CLSTR_COUNT from SYSTEM.SYSINDEX
 where TABLE_OWNER = 'TRADE'
 and TABLE_NAME = 'customer'
 and INDEX_NAME = 'custid_index';

Result:
CLSTR_COUNT
===========

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-17

 385

1 rows selected

CLSTR_COUNT—cluster count, the number of data pages that will be fetched by a
fully indexed scan with few buffers. DBMaker performs 385 page reads from disk at

most, when the full customer table is scanned and results ordered by the custid
column.

Â Example 3

To fetch the number of pages and rows:
dmSQL> select NUM_PAGE,NUM_ROW from SYSTEM.SYSTABLE
 where TABLE_OWNER = 'TRADE'
 and TABLE_NAME = 'customer';

Result:
NUM_PAGE NUM_ROW
=========== ===========
 350 4375

1 rows selected

NUM_PAGE—the number of pages allocated by a table.

NUM_ROW—the number of records in a table.

With CLSTR_COUNT, NUM_PAGE and NUM_ROW, estimate the clustering

factor with the following formula:

NUM_ROW
NUM_PAGE) - NT(CLSTR_COU factor clustering =

In the above example, the clustering factor is 1.7%.

%7.1
0017.0
9375

350)-(385 =factor clustering

=
=

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-18

The clustering factor will be between 0 and 100%. In cases where CLSTR_COUNT
is only a little less than NUM_PAGE, it can be treated as zero. If the clustering factor

is zero, it means that the data is fully clustered for the index. If the clustering factor is
too high, for example larger than 20% (what determines a high rate depends on the
table size, average record size, etc.), the index has poor clustering. When DBMaker

finds an index that has poor clustering, the DBMaker optimizer may use a full table
scan when an SQL statement executed, even if an index scan seems more appropriate.

Â To improve poor clustering for a frequently used index:

1. Unload all data from the table (ordered by the index).

2. Rearrange the unloaded data by order.

3. Drop indexes on the table.

4. Delete all data in the table.

5. Reload the data into the table.

6. Recreate indexes on the table.

After data reloading, the index should be fully clustered. Note however, a table can
only be clustered with one index. If one table has many indexes, maintain clustering

on the most important index. Usually, the most important index is the primary key.
Since unloading and reloading data takes a great deal of time and storage, tune index
clustering only on the tables that are very large and frequently browsed.

LOW DATA PAGE BUFFERS

If allocated data page buffers are not enough for database access, add page buffers to
the DCCA.

Â To modify the number of page buffers:

1. Terminate the database server.

2. Reset DB_NBufs in dmconfig.ini to a larger value.

3. Restart the database.

After successfully enlarging the data buffers, run the database for a period and then

monitor the buffer cache performance again. If the buffer hit ratio has gone up,

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-19

adding buffer pages has resulted in a performance improvement. If not, add more
pages to the buffer cache or check for other reasons why system performance may be

reduced.

CHECKPOINTS OCCURRING TOO OFTEN

If the write hit ratio is much lower than the read hit ratio, the checkpoints may be

processed too often.

When a checkpoint is processed, DBMaker will write all dirty page buffers to disk.
Since checkpoints require a lot of CPU time, specify the checkpoint daemon to

perform a checkpoint on a regular schedule. Another advantage of performing
checkpoints periodically is to reduce the recovery time taken by DBMaker to start a
database after a system crash.

Except when the checkpoint daemon makes checkpoints regularly, DBMaker will
perform checkpoints automatically when running out of free journal space in NON-
BACKUP mode or when an incremental backup is performed in BACKUP mode. To

increase the time interval between these kinds of checkpoints, enlarge the journal size.

Â Example 1

To determine how many checkpoints have been processed:
dmSQL> select INFO, VALUE from SYSINFO where INFO = 'NUM_CHECKPOINT';

 INFO VALUE
================================ ================================
NUM_CHECKPOINT 26

1 rows selected

RE-MONITOR THE BUFFER CACHE PERFORMANCE

After tuning a system with the above methods, monitor the cache buffer performance.

Â To monitor cache buffer performance:

1. Run the database for a period to ensure the information in the database is in a
stable state.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-20

2. Reset the statistics values in the SYSINFO system table with the following:

dmSQL> set SYSINFO clear;

3. Run the database for a period time.

4. Get the read/write counter from the SYSINFO table and check the hit ratio.

Tuning Journal Buffers

The journal buffers store the most recently used journal blocks. With enough journal

buffers, the time required to write journal blocks to disk when updating data and
reading journal blocks from disk when rolling back transactions is reduced.

If you seldom run a long transaction that modifies (inserts, deletes, updates) many

records, you may skip this section. Otherwise, should determine whether there are
sufficient journal buffers for the system. The optimum number of journal buffers is
the sum of journal blocks needed by the longest running transactions at the same

time.

Â To estimate the number of journal buffers, perform the following:

1. Make sure there is only one active user in the database.

2. Clear the counters in the SYSINFO table with the following command:

dmSQL> set SYSINFO clear;

3. Run the transaction that will update the most records.

4. Run the following SQL statement to determine the number of used journal blocks:

dmSQL> select INFO, VALUE from SYSINFO where INFO =

'NUM_JNL_BLK_WRITE';

 INFO VALUE

================================ ================================

NUM_JNL_BLK_WRITE 626

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-21

1 rows selected

NOTE NUM_JNL_BLK_WRITE—the blocks used in this transaction. The journal

block size used in this example is 512 bytes. In the above example, you need

approximately 41 journal buffer pages (1 page=4KB).

Another measurement that can be used to determine the journal buffer utilization is

the journal buffer flush rate. The journal buffer flush rate is the percentage of journal
buffers flushed to disk when DBMaker writes to the journal. If the journal buffer flush
rate is too high (for example, more than 50%), increase the number of journal buffers.

Â Example 1

To calculate the journal buffer flush rate:
dmSQL> select INFO, VALUE from SYSINFO where INFO = 'NUM_JNL_BLK_WRITE'
 2> or INFO = 'NUM_JNL_FRC_WRITE';

 INFO VALUE
================================ ================================
NUM_JNL_BLK_WRITE 41438
NUM_JNL_FRC_WRITE 159

2 rows selected

NUM_JNL_BLK_WRITE—number of journal blocks written to the buffer.

NUM_JNL_FRC_WRITE—number of times a forced write of the journal buffers to
disk occurred.

Suppose DB_NJnlB is set to 50 pages (i.e. there are 400 journal buffers). In the
example below, the journal flush rate (0.65) is a little too high. Add journal buffers to
improve the journal buffer performance.

65.0
)850(

)159/41438(

8)(DB_NJNLB
_WRITE)UM_JNL_FRCLK_WRITE/N(NUM_JNL_B rateflush journal

=
×

=

×
=

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-22

Tuning the System Control Area (SCA)

Cache buffers and some control blocks, such as session and transaction information,
have a fixed size, and are pre-allocated from the DCCA when a database is started.

However, some concurrency control blocks are allocated dynamically from the DCCA
while the database is running, their size is specified by DB_ScaSz.

If a database application gets the error message “database request shared memory exceeds
database startup setting”, it means that DBMaker cannot dynamically allocate memory
from the SCA area. Usually, this error is due to a long transaction using too many
locks. If this situation happens often, solve it with the methods illustrated below.

AVOID LONG TRANSACTIONS

A long transaction will occupy many lock control blocks and journal blocks. If there is
a long transaction in progress when the above error occurs, analyze whether the

transaction can be divided into multiple small transactions.

AVOID EXCESSIVE LOCKS ON LARGE TABLES

Selecting many records from a large table using an index scan requires many lock

resources. To decrease the amount of lock resources used by the transaction, escalate
the lock mode before performing the table scan.

For example, if the table’s default lock mode is row, escalate the default lock mode to

page or table. Although this will reduce the resources used, it will also sacrifice
concurrency to some degree.

INCREASE THE SCA SIZE

If both of the above conditions have not occurred, increase the size of the SCA. Reset
the value of DB_ScaSz in dmconfig.ini to a larger value and then restart the database.

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-23

Tuning the Catalog Cache

DBMaker stores the catalog cache in the SCA. If schema objects are seldom modified,
turn on the data dictionary turbo mode by setting DB_Turbo=1 in the dmconfig.ini
file. When turbo mode is on, DBMaker will extend the lifetime of the catalog cache.

This can improve the performance of on-line transaction processing (OLTP)
programs.

17.5 Tuning Concurrent Processing
Resource contention occurs in a multi-user database system when more than one

process tries to access the same database resources simultaneously. This can also lead to
a situation known as a deadlock, which occurs when two or more processes wait for
each other. Resource contention causes processes to wait for access to a database

resource, reducing system performance.

DBMaker provides the following methods to detect and reduce resource contention:

 Reducing lock contention.

 Limiting the number of processes.

Reducing Lock Contention

When accessing data in a database, DBMaker processes will lock the target objects
(records, pages, tables) automatically. When two processes want to lock the same

object, one must wait. If more than two processes wait for the other processes to
release the lock, a deadlock occurs. When a deadlock occurs, DBMaker will sacrifice
the last transaction that helped cause the deadlock by rolling it back. Deadlock reduces

system performance. Monitor lock statistics to avoid a deadlock in DBMaker.

Â Example 1

To view deadlock statistics:
dmSQL> select INFO, VALUE from SYSINFO where INFO = 'NUM_LOCK_REQUEST'
 2> or INFO = 'NUM_DEADLOCK'
 3> or INFO = 'NUM_STARTED_TRANX';

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-24

 INFO VALUE
================================ ================================
NUM_STARTED_TRANX 33
NUM_LOCK_REQUEST 173
NUM_DEADLOCK 0

3 rows selected

NUM_LOCK_REQUEST—the number of times a lock was requested.

NUM_DEADLOCK—the number of times deadlock occurred.

NUM_STARTED_TRANX—the number of transactions that have been issued.

In the above example, on average one transaction is in deadlock per 51 (9287/181)
transactions and one transaction requests approximately 83 (772967/9287) locks.

If the deadlock frequency is high, examine the schema design, SQL statements, and
applications. Setting the table default lock mode lower, such as ROW lock, could
reduce the lock contention, but it will require more lock resources.

Another method is to use the browse mode to read a table on a long query if the data
does not need to remain consistent after the point in time that it was retrieved. This is
useful when viewing the data or performing calculations using the data while not

performing any updates. It provides a snapshot of the requested data at a particular
point in time, but with the benefit of increased concurrency and fewer lock resources
consumed, because locks are freed as soon as the data is read.

Limiting the Number of Processes

DBMaker allows up to 1200 simultaneous session connections to a server. If server
resources, (such as memory, CPU power) are not sufficient, limit the maximum
number of connections to avoid resource contention. The configuration parameter

DB_MaxCo affects the maximum number of connections in the database.

When a database is initially created, the journal file is formatted for a specific number
of connections. The journal file needs to be able to preserve a transaction information

array for each connection. The number of connections available according to the

1Performance Tuning 17

©Copyright 1995-2003 CASEMaker Inc. 17-25

journal file is also known as the hard connection number. This value is determined by
the value of DB_MaxCo when the database is created. The hard connection number
has a minimum value of 240, a maximum value of 1200, and must be a multiple of
40. If DB_MaxCo is set to a value that is not a multiple of 40, then the hard
connection number is rounded up to a value that is a multiple of 40. The hard

connection number is a limitation of the journal file, therefore, to change it the
database must be started in new journal mode.

The hard connection number does not directly affect the size of the DCCA. This is

determined by a value known as the soft connection number. The soft connection
number is exactly the value of DB_MaxCo. The soft connection number determines
the number of connections that the DCCA will support, and consequently the

memory usage of the DCCA. The soft connection may be any value less than or equal
to the hard connection value. To change the soft connection number, restart the
database normally after changing DB_MaxCo.

Â Example 1

In the following configuration file, the hard connection number for DB1 is 240. For

database DB2, it is 1120.
[DB1]
DB_MaxCo = 50 ;; the hard connection number = 240
 ;; the soft connection number = 50
[DB2]
DB_MaxCo = 1100 ;; the hard connection number is 1120
 ;; the soft connection number = 1100

Â Example 2

After starting the database successfully, the new hard connection number for DB1
becomes 280.
[DB1]
DB_SMode = 2 ;; startup with new journal file
DB_MaxCo = 280 ;; the new hard connection number = 280

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 17-26

Â Example 3

Assuming DB2 has already been created as in example 1, the following entry in the
dmconfig.ini file will result in a hard connection number of 1120 and a soft

connection number of 20.
[DB2]
DB_SMode = 1 ;; normal start
DB_MaxCo = 20 ;; the new soft connection number = 20

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-1

18 Query Optimization

This chapter is an introduction to the query optimizer for DBMaker. The query
optimizer makes a query on SQL commands much faster and efficient by choosing the

best internal execution method.

The contents in this chapter cover the following topics:

 What is query optimization and why do we need it? When you understand the

goal of query optimization, you will find the role it plays in a SQL query.

 What is the Query Execution Plan (QEP) and how do you read a QEP? When
you know the QEP, you will learn how DBMaker executes a SQL query

command.

 How does the query optimizer operate? When you understand the way the
query optimizer searches for a QEP, you can help it to find a more efficient

QEP by rewriting an equivalent SQL query.

 What is the cost function? When you know how much time it takes for an
operation in QEP, you will learn how the query optimizer chooses a proper

operation. Use some commands provided by DBMaker to help the query
optimizer find a better operation.

 What are the statistics values and where have these values been used? When you

understand the usage of statistics values in query optimization, you will see the
reason why the query optimizer chooses a particular execution plan.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-2

 How can the execution speed of a query be accelerated? When you know how to
write an efficient query, you can enhance the execution efficiency by rewriting

the query command.

18.1 What is Query Optimization?
Data Manipulation Language (DML) commands, such as SELECT, INSERT,
DELETE, and UPDATE, are a very important stage in query optimization. DBMaker

may have several execution methods for one SQL query. The goal of query
optimization is to find the most efficient execution plan. The main job of the query
optimizer is to decide each operation, and the order in which it operates.

Â To find the most efficient operation:

1. Read the data from a table -- can be read with a sequential or index scan.

2. Join tables -- tables can be joined with a nested loop or a sort merge join.

3. Sort -- when is a sort needed, before an operation or after it - or can sorting be
avoided with an alternative solution?

The query optimizer must estimate the number of rows affected by outer joins in

order to optimize the sequence of the tables to be joined. Some database users get
familiar enough with the data characteristics that they become more efficient than the
query optimizer at executing a query.

Query optimizer for DBMaker will estimate all possible execution plans for each plan,
compute the number of rows, how many disk page I/O required, and CPU time it
takes for a single table. From the above factors mentioned, find a plan with the lowest

cost.

When DBMaker seeks for a query execution plan, it will consider some major
operations:

 Table scan -- or called sequential scan, which means receiving each row from
data pages from a database in sequential order.

 Index scans -- the order to retrieve data is referenced by the address of the data

page that is pointed to by the index page.

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-3

 Nested join -- compare two or more tables, row by row, to achieve the goal of
merging.

 Merge join -- sort two tables and compare row by row to achieve merging.

 Sort -- executes sort.

 Temporary table -- in the process of query execution, establish a temporary

table.

Â Example 1

Using the ORDER BY clause to sort:
dmSQL> SELECT * FROM t1, t2 WHERE t2.c2=3 AND t1.c1=t2.c1 ORDER BY
t1.c2;

Â Example 2

Query Execution Plan 1:
sort t1.c2
 merge join t1.c1=t2.c1
 index scan t1 on idx1(c1)
 sort t2.c1
 table scan t2, filter t2.c2=3

Â Example 3

Query Execution Plan 2:
nested join
 index scan t1 on idx2(c2)
 table scan t2, filter t2.c2=3 and t1.c1=t2.c1

18.2 How Does the Optimizer
Operate?
When the optimizer for DBMaker performs the optimization process for a query, it
will use the following rules:

 Analyze the query, then cut the WHERE predicate into several factors.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-4

 Search all possible execution sequences and the join sequence.

 Decide whether to use a nested or sort merge join.

 Decide whether to use a table or index scan.

 Decide the sort order.

Input of Optimizer

The precision of estimation is the critical factor deciding whether the optimizer will be

successful or not. However, there is only finite information for the optimizer to
estimate the time required for an operation, only a small part compared with the
actual execution time. All the information needed by the optimizer comes from the

system catalog tables. To make sure that this information is useful and not out of date,
use the UPDATE STATISTICS command. Refer to section 18.4, Statistics for more
information.

The data listed in system catalog tables includes:

 Number of rows in a table.

 Number of data pages used by a table.

 Average bytes for a row in a table.

 Average bytes that a column uses.

 The distinct value of each index column.

 The second maximum and minimum value for each column; the reason that we
do not choose the maximum and minimum value is to avoid special large and
small values from affecting precision.

 Number of index scan pages occupied by the B-tree index.

 Number of levels (height) in the B-tree index.

 Number of leaf pages in the B-tree index.

 Cluster count for the B-tree index.

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-5

The premise for the optimizer to use this information is that that the data values are
distributed uniformly. If the distribution of data is askew, not uniform, the optimizer

will choose a poor plan.

Factors

The first job of the optimizer is to examine all expressions in the WHERE predicate.
We can decompose these expressions into several smaller independent expressions

called factors.

Â Example 1

The optimizer will decompose the WHERE predicate into two factors t1.c1=t2.c1
and t1.c2=3:
dmSQL> select * from t1, t2 where t1.c1=t2.c1 and t1.c2=3;

Â Example 2

Using the WHERE predicate for one factor t1.c1=t2.c1 or t1.c2=3:
dmSQL> select * from t1, t2 where t1.c1=t2.c1 or t1.c1=3;

Â Example 3

Using the WHERE predicate for two factors t1.c1=t2.c1, and t1.c2=3 or t2.c2=5:
dmSQL> select * from t1, t2 where t1.c1=t2.c1 and (t1.c2=3 or t2.c2=5);

Â Example 4

Using the WHERE predicate for one factor t1.c1=t2.c1 and t1.c2=3 or t2.c2=5:
dmSQL> select * from t1, t2 where t1.c1=t2.c1 and t1.c2=3 or t2.c2=5;

From the above example, we find that when the expression contains the binary

operation “and” that it can be divided into different factors. However, when it
contains the binary operation “or”, the decomposition is not allowed.

To find the factors, the optimizer needs to estimate the selectivity of each factor. The

selectivity is the ratio of data filtered by each factor, its value is between 0 and 1.
Table1 contains 100 rows.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-6

Â Example 5

Using 5 rows for query on table t1, t1.c1=3 is 5/100, that is 0.05
dmSQL> select * from t1 where t1.c1=3;

If there is more than one factor in an expression, then the selectivity of this expression

is the product of these factors because they are independent of each other.

Join Sequence

The join sequence is the access order of the original table to be merged. Different join
sequences will produce different execution sequences and different execution times.

However, no matter how we execute, we will always retrieve the correct result.

Â Example 1
dmSQL> select * from t1, t2 where t1.c1=t2.c1;

Query Execution Plan 1:
nested join
 table scan t1
 table scan t2, filter t1.c1=t2.c1

Query Execution Plan 2:
nested join
 table scan t2
 index scan t1 on t1(c1), filter t1.c1=t2.c1

Â Example 2
dmSQL> select * from t1, t2, t3 where t1.c1=t2.c1 and t2.c1=t3.c1;

Query Execution result, there will be 3! (=6) join sequences:
(t1, t2), t3
(t1, t3), t2
(t2, t1), t3
(t2, t3), t1
(t3, t1), t2
(t3, t2), t1

DBMaker will search all these join sequences, then compute the cost, and choose the

best one.

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-7

Nested Join and Merge Join

Nested and merge joins are the two join methods supported by DBMaker.

 Nested join uses nested loop over two layers to accomplish the join purpose.
The analysis algorithm for its time complexity is “n2 “.

 Merge join will sort two tables in advance, and then merge these two tables with
the sorted order row by row. The time complexity for sort is “n x log(n)”. The
data that has already been sorted has the time complexity to perform a join of

“n”. Sort merge join can only be used for equal joins.

From the view of the time complexity, merge join is better than a nested join.
However, there are still exceptions, for example, the difference in the number of rows

in two tables is great. Regardless, the optimizer will decide the best way to perform a
join with cost functions and statistical values.

Table Scan and Index scan

Table scans acquire rows from a table sequentially, row by row. For instance, if a user

wants to find all rows in a table that match the condition age > 50, then it will receive
each row from each data page, then compare each row with the matched condition to
retrieve the desired one.

Another scan type is called an index scan, which builds the index on columns in a
table, then finds all required data by referencing the index. The index method used by
DBMaker is a B-tree, and the precondition to use an index scan is to build an index

on the column for use with the predicate.

Sort

Another important operation of the query optimizer is to determine how to sort,
before or after a join or to try avoiding a sort.

Â Example:

Creating a sort:
dmSQL> select * from t1, t2 where t1.c1=t2.c1 order by t1.c2;

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-8

Query Execution Plan 1, the optimizer performs sorting after merging:
sort t1.c2
 merge join t1.c1=t2.c1
 index scan t1 on idx1(c1)
 sort t2.c1
 table scan t2

Query Execution Plan 2, the optimizer performs sorting before merging
 nested join
 index scan t1 on idx2(c2)
 table scan t2, filter t1.c1=t2.c1

18.3 Time Cost of a Query
Time to read data from disk and time to compare the column values are two major
parts in performing a query.

CPU Cost

The database server must process data in memory. It has to read a row into memory,

and then use a filter expression for testing. It needs to load data from two tables into
memory first and then test their join condition. In addition, the database server has to
collect data for the selected columns from each row. More time is required for sorting

when wild cards such as “like” and “match” are used in SQL statements.

I/O Cost

It takes much more time to read a row from the disk than to check a row in memory,
so one of the main purposes of the optimizer is to reduce disk I/O.

The basic unit of disk storage that a database server processes is called a page. A page is
composed of clustered blocks, and the size of a page is related to the database server.
The size is 4096 bytes for DBMaker. The row capacity of a page is related to the size

of a row. There are usually 10 to 100 rows in a data page. The entity of an index page
contains a key value and a four-byte pointer. There are usually 100 to 1000 entries in
an index page.

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-9

The database server needs memory to store copies of disk page reads from the disk for
processing. Due to memory limitations, some pages might be reread. The memory is

called a page buffer. If the page needed happens to be in the page buffer, the server
will not read the row from the disk anymore, and it will increase performance. The
database server and the operating system decide the size of a disk page and the number

of page buffers. The real cost to read a page is a variable and hard to estimate.

Buffers are combinations of the following factors:

 Buffers – It is possible for the target page to be in the page buffer. The access

cost can be almost omitted in this condition.

 Contention – If there is more than one application program attempting to use
hardware devices, such as a disk, requests from the database server will be

delayed.

 Seek time – This is the most time-consuming operation for a disk. It means the
elapsed time to move the read/write head to the location of the desired data. It

is affected by the speed of the disk and the initial position of the disk
read/write head. The variation also depends largely on seek time.

 Latency time – Also known as the rotation delay time, is related to the speed of

the disk and location of the read/write head.

Cost of Table Scan

The time spent to scan all data in a table. Whether there are predicates in the query or
not, it needs to compare all data contained in the pages. The cost of a table scan equals

to the number of data pages.

Cost of Index Scan

Index scans read data through B-tree index pages. There are two kinds of index scans:
one will read data pages referenced by the B-tree, and the other will read data directly

from the index leaf; known as a leaf scan.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-10

Â Example 1

Using table t1 with columns c1 and c2, and scanning an index built on c1:
 dmSQL> select * from t1 where c1 > 0;

Alternatively use:
 dmSQL> select c1 from t1 where c1 > 0;

We can use a leaf scan and there will be no need to read data from the data pages
because the leaf pages contain all desired data.

 When all data is read, the cost of an index scan is:

cost = B tree level I/O + no. of leaf page I/O + cluster count.

 When all data is read but only a leaf scan required, the cost of the index scan
is:

cost = B tree level I/O + no. of leaf page I/O.

 When a row is read, the cost of an index scan is:

cost = B tree level I/O + one leaf page I/O + one data page I/O.

 When a row is read but only a leaf scan required, the cost of an index scan is:

cost = B tree level I/O + one leaf page I/O.

 When partial data is read, the cost of an index scan is:

cost = B tree level I/O + (no. of leaf page x S) + (cluster count x S),

where S stands for selectivity.

Cost of Sort

Reading data from disk into memory is the only thing that takes more time. The

computing cost is proportional to “c x w x n x log2(n)”, where c is the number of
columns being sorted, w is the bytes of the sorted key, and n is the number of rows
being sorted.

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-11

Cost of Nested Join

More than two loops are required to access data pages for a nested join. In a nested
join, the outer table is different from the inner. Generally, the cost of a nested join is

 outer table I/O + inner table I/O x number of rows in outer table

Cost of Merge Join

It is necessary to sort tables before performing a merge join. Suppose two tables have
already been sorted for merging with the merge keys. The cost of the merge join is the
sum of the I/O for these two tables. If sorting is not performed on the merge keys, the

cost of the sorting will still need to be added.

18.4 Statistics
Statistics represent the amount and distribution of data for a table. They provide the
information for the cost functions to find the best access plan. However, the statistics

will be out of date if data in the table is being inserted, deleted, or updated. The
UPDATE STATISTICS command should be used to update statistical values and
find real time statistics to enhance the efficiency of a query.

Types of Statistics

DBMaker will collect the following statistics:

FOR A TABLE

 nPg – number of data pages

 nRow – number of data rows

 avLen – average bytes for a row

FOR A COLUMN

 distVal – number of distinct values

 avLen – average bytes for each column

 Database Administrator’s Guide1

 loVal – the second minimum value for a column

 hiVal – the second maximum value for a column

FOR AN INDEX

 nPg – number of index pages

 nLevel – number of levels in an index tree

 nLeaf – number of leaves in an index tree

 distKey – number of distinct keys

 distC1 – number of distinct keys for the first index column

 distC2 – number of distinct keys for the first two index columns

 distC3 – number of distinct keys for the first three index columns

 nPgKey – number of index pages for each key

 cCount – number of clusters counted; the number of data pages accessed
through an index

UPDATE STATISTICS Syntax

UPDATE STATISTICS
object_list SAMPLE = number

The object_list Clause

© Copyright 1995-2003 CASEMaker Inc. 18-12

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-13

column_name

,
COLUMN

index_name

,
INDEXTABLE

()

table_name

,

Figure 18-1 Syntax for the UPDATE STATISTICS Statement

 SAMPLE-- means the sampling rate expressed as a percentage of the whole, an
integer between 1 and 100.

Â Example 1:

To update statistics for all tables including columns, indexes, and system tables with
the default sampling rate value of 100:
dmSQL> UPDATE STATISTICS;

Â Example 2:

To update statistics for all tables including columns, indexes, and system tables with

the default sampling rate value of 30:
dmSQL> UPDATE STATISTICS sample=30;

Â Example 3:

To update statistics for the jeff.emp table:
dmSQL> UPDATE STATISTICS jeff.emp;

Â Example 4:

To update statistics for columns name, age and index idx1 for the jeff.emp table:
dmSQL> UPDATE STATISTICS jeff.emp (TABLE COLUMN(name, age) INDEX(idx1));

Â Example 5:

To update statistics for the jeff.emp, and jeff.dept tables:
dmSQL> update statistics jeff.emp, jeff.dept;

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-14

Alternatively, DBMaker provides a date setup to update statistics automatically. Refer
to Chapter 6, Managing Schema Objects for more information about updating statistics

automatically.

Auto Update Statistics Daemon

DBMaker also provides a daemon to automatically update statistics for the entire
database. Not all statistics on all tables are regenerated, but rather an optimum sample

rate based on how recently statistics were updated for a table and how much the table
has been changed since the last time its statistics were updated. Statistics are updated
daily at 3:00 AM according to the system clock.

Setting the configuration parameter DB_StSvr equal to 1 in the dmconfig.ini file
activates the Auto Update Statistics Daemon. The keyword must be set before
database startup.

Load and Unload Statistics

Users can use the UNLOAD STATISTICS command to dump the statistics values
into an external text file. Users can also use the LOAD STATISTICS command to
copy statistics values to a database from an external text file.

Â Example 1

To use UNLOAD STATISTICS:
dmSQL> unload statistics to file1;//dump statistics from database to file1

Â Example 2

To use LOAD STATISTICS:
dmSQL> load statistics from file1;//read statistics from external text file

An experienced user can enhance the efficiency of query by means of modifying files
with statistics, and input it into database.

Â Example 3

An external text file generated from UNLOAD STATISTICS:
DBname = TESTDB

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-15

TBowner = jeff
TBname = emp
TBpage = 5
TBrows = 30
Tbavlen = 50

COname = age
COtype = INTEGER
COdist = 12
COavlen = 4
COlow = 25
COhigh = 42

IXname = idxage
IXpages = 5
IXlevel = 2
IXleaf = 3
IXdist = 12
IXdistC1 = 12
IXdistC2 = 12
IXdistC3 = 12
IXpgkey = 8
IXcount = 7

18.5 Accelerating Execution of
Query
The execution of a query can be accelerated by making the following modifications:

 Read fewer data rows

 Avoid sorting or sort on fewer data rows and columns

 Read data sequentially

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-16

Data Model

The definition of a data model includes all tables, views, and indices on the database,
especially the existence of indices. It describes whether an index should be used in the
conditions such like join, sort, and views.

Query Plan

Use the “Set Dump Plan ON” command to check the query execution plan for
DBMaker.

Characteristics of an execution plan:

 Index-- checks the output data to see whether an index has been used or not and
if so, how to use it.

 Filter-- checks the predicate factors to see how much data the predicate can

filter.

 Query—checks the query after completion to see whether the access plan is the
best.

Â Example

Use the following to see the execution plan:
dmSQL> set dump plan on;

Index Check

Check whether proper indexes on query columns exist. Use methods mentioned in the
following sections to improve query efficiency.

Filter Columns

It only takes a small part of source information to make an efficient query. Users can

use the WHERE predicate in a SELECT command to control the amount of output
information, known as a data filter.

Following are some methods for using the advanced WHERE predicate:

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-17

AVOIDING CORRELATED SUB-QUERIES

Correlated sub-queries occur when duplicate columns appear in the main and the sub-
query of a WHERE predicate. A different result is returned for a duplicate sub-query

for each data row contained in the main query. If the data for columns in each row is
different from the one in the previous row in a sub-query, then it is the equivalent to
executing a new query for each row gained from the main query.

If you have found a time-consuming sub-query, first check whether it is a correlated
sub-query. If so, rewrite the query to avoid the condition. If it is not easy to rewrite
the query, try another method to reduce the number of data rows.

AVOIDING DIFFICULT REGULAR EXPRESSIONS

The keyword LIKE provides a comparison of wild cards, known as a regular
expression. When a wild card is used at the beginning of an expression, a database

server will check each row because it cannot use an index filter. This will instruct
DBMaker to sequentially access and check every row in a table.

Â Example:

Using the LIKE keyword with the “*” wildcard:
dmSQL> SELECT * FROM emp WHERE name LIKE ‘*st’;

Query Results

When you understand what a query really does, you can find another equivalent query

to get the same result. We give some suggestions for users to rewrite queries that are
more efficient.

 Rewrite joins using views

 Avoid or reduce sorting

 Avoid accessing a large table sequentially

 Use unions to avoid sequential access

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-18

Temporary Tables

It is useful to create a temporary, ordered table to accelerate a query. It also can help to
avoid sorting operations on multiple columns to simplify the operation of the
optimizer.

 Use a temporary table to avoid sorting on multiple columns

 Replace sorting on non-sequential access

18.6 Syntax-Based Query Optimizer
Optimizer chooses a query execution plan with the cost function and statistics

automatically. In some special cases when data distribution is skewed, the optimizer
may choose a poor query execution plan. To solve the problem, DBMaker supports an
optimizer mechanism called the syntax based query optimizer.

You can now manually specify the type of scan to use in a query, and the indexes to be
used in an index scan. In addition, the DBMaker query optimizer automatically
determines the most efficient type of scan to use, even if you have not recently

updated the database statistics. There are five different cases where the type of index to
be used.

Forced Index Scans

General syntax used to force an index scan:
tablename (INDEX [=] idxname [ASC|DESC])

Â Example 1

To force a table scan specify the value 0:
SELECT * FROM t1 (INDEX=0)

Â Examples 2:

To force an index scan on a primary key specify the value 1:
SELECT * FROM t1 (INDEX=1)

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-19

Â Example 3

To force an index scan on the index idx1:
SELECT * FROM t1 (INDEX idx1)

Â Example 4

Allows the query optimizer to decide what type of scan to use on table t1, but forces
an index scan on the idx1 index for table t2:
SELECT * FROM t1, t2 (INDEX idx1)

Forced Index Scan and “Alias”

General syntax used to force an index scan and provide an alias for the table:
tablename (INDEX [=] idxname) aliasname

Â Example

To force an index scan on the idx1index, and provides an alias for the table:
SELECT * FROM t1 (INDEX idx1) a, t1 b WHERE a.c1 = b.c1

Forced Index Scan and “Synonym”

General syntax used to force an index scan using a synonym:
synonymname (INDEX [=] idxname)

Â Example

To force an index scan on the idx1 index using synonym s1:
SELECT * FROM s1 (INDEX idx1)

Forced Index Scan and “View”

General syntax used to force an index scan when creating a view:
viewname (INDEX [=] idxname)

Â Example 1

To force an index scan on the idx1 index when creating view v1:
CREATE VIEW v1 as SELECT * FROM t1 (INDEX idx1)

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-20

You cannot force an index when selecting a view.

Â Example 2

A wrong usage that will return errors:
SELECT * FROM v1 (INDEX idx1)

Forced Text Index Scans

General syntax used to force a text index scan:
tablename (TEXT INDEX [=] idxname)

Â Example

To force a text index scan on the tidx1index:
SELECT * FROM t1 (TEXT INDEX tidx1)

18.7 How to Read a Dump Plan
The first step to check a slow query is to read the execution plan. DBMaker supports a
dump and read execution plan function.

There are three dmSQL commands for dump plans:
dmSQL> Set dump plan on:

Turns on the dump plan option. The latter queries will dump plan and then execute
commands.
dmSQL> Set dump plan off:

Turns off the dump plan option. The latter queries will only execute commands but

not dump. This is the default option.
dmSQL> Set dump plan only:

Turns on the dump plan only, but does not execute commands.

At first glance, it appears that a dump plan is composed of several blocks called ON.

Query optimizer divides a query into several ON blocks, and each block is a logical
optimization unit. The optimizer will then optimize every ON block. Simple and
joined queries usually have only one ON block, but a complex query like a sub query

may generate more than one ON block, including a main block and sub blocks.

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-21

Optimizer finds the best execution method based on cost for every ON block. It will
divide an ON block into several PL blocks, where each PL block represents an

operation, such as scan, join etc.

Be familiar with the terms introduced in previous sections of this chapter:

 table scan

 index scan

 nested join

 merge join

 factor

Table Scan

Â Example:

To set the dump plan for a table scan of t1:
dmSQL> set dump plan on;
dmSQL> select * from t1 where c1>1;

Result, the dump plan for the table scan of t1:
----- begin dump plan -----

{ON Block 0}
ON Type : SCAN

[PL Block 0]
Method : Scan
Table Name : t1
Type : Table Scan
Order : <none>
Factors : (1) t1.c1 > 1
I/O Cost : 101.0
CPU Cost : 25.3
Sub Cost : 0.0
Result Rows: 330.0

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-22

----- end dump plan -----

The first two lines give the information for an ON block:

{ON Block 0} -- an ON block with a block ID of 0

ON Type: SCAN -- ON block type is a scan.

The ON block contains one PL block:

[PL Block 0] -- A PL block with a block ID of 0.

Method: Scan -- This PL block will perform a scan operation.

Table Name: t1 -- Scan on table t1 defined.

Type: Table Scan -- Scan type is a table scan.

Order: <none> -- Scan order, there is no use for a table scan.

Factors: (1) t1.c1 > 1 -- This scan will use the filter t1.c1 > 1.

I/O Cost: 101.0 -- Estimated I/O cost is 101.0 pages.

CPU Cost: 25.3 -- Estimated CPU cost is 25.3 pages.

Sub Cost: 0.0 -- Estimated sum of costs for the PL block's sub-block. In this example,
there is no PL sub-block.

Result Rows: 330.0 - Estimated result rows after the scan and filter.

Index Scan

Â Example:

To set the dump plan for c1 and c2 from table t2 using WHERE:
dmSQL> set dump plan on;
dmSQL> select c1,c2 from t2 where c1>1 and c2=2;

Result, the dump plan for c1 and c2 from table t2 using WHERE:
----- begin dump plan -----

{ON Block 0}
ON Type : SCAN

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-23

[PL Block 0]
Method : Scan
Table Name : t2
Scan Type : Index Scan on idx21(c2, c1)
Order : ASC
Index EQFA#: 1
Index FA# : 2
Index FACOL: 1, 2
Index Cost : 2
Factors : (1) t2.c2 = 2
 : (2) t2.c1 > 1
I/O Cost : 2.0
CPU Cost : 0.6
Sub Cost : 0.0
Result Rows: 13.0

----- end dump plan -----

The first two lines give the information for an ON block:

{ON Block 0} – An ON block with a block ID of 0.

ON Type: SCAN -- An ON block type of scan. The ON block also contains one PL
block: [PL Block 0] -- A PL block with a block ID of 0.

Method: Scan -- The block executes a scan.

Table Name : t2 -- Scan of table t2.

Scan Type: Index Scan on idx21(c2, c1) -- Scan type is an index, applying an index to
idx12 using the index columns c2 and c1.

Order: ASC -- Ascending index scan order.

Index EQFA#: 1 -- Equal factor number applied in the index scan, in this example
using t2.c2 = 2.

Index FA#: 2 -- Factor number that applied in the index scan, in this example using
t2.c2 = 2 and t2.c1 > 1.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-24

Index FACOL: 1, 2 -– Factor ID mapping from index columns. In this example, it
maps the first index column, c2, to factor, (1) t2.c2=2, and the second index column,

c1, maps to factor, (2) t2.c1 > 1.

Index Cost: 2 -- Estimated index page cost of 2.

Factors: (1) t2.c2 = 2

 (2) t2.c1 > 1 - Applies filters t2.c2 = 2 and t2.c1 > 1.

I/O Cost: 2.0 -- Estimated I/O cost of 2.0 pages.

CPU Cost: 0.6 -- Estimated CPU cost of 0.6.

Sub Cost: 0.0 -- Estimated sum of costs for the PL block's sub-block.

Result Rows: 13.0 -- Estimated result of rows after the scan and filter.

Equal Join

Â Example:

To set the dump plan from t1 and t2 using WHERE:
dmSQL> set dump plan on;
dmSQL> select * from t1, t2 where t1.c2=t2.c2;

Result, the dump plan from t1 and t2 using WHERE:
----- begin dump plan -----

{ON Block 0}
ON Type : JOIN

[PL Block 0]
Method : Join
Type : Merge Join
Factors : (1) t1.c2 = t2.c2
I/O Cost : 8.5
CPU Cost : 573.8
Sub Cost : 231.6
Result Rows: 500.0
Sub Block 1: [PL Block 1]

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-25

Sub Block 2: [PL Block 2]

[PL Block 1]
Method : Sort
I/O Cost : 4.2
CPU Cost : 274.4
Sub Cost : 120.0
Result Rows: 1000.0
SUB Block : [PL Block 3]

[PL Block 3]
Method : Scan
Table Name : t2
Type : Table Scan
Order : <none>
Factors : <none>
I/O Cost : 101.0
CPU Cost : 25.3
Sub Cost : 0.0
Result Rows: 1000.0

[PL Block 2]
Method : Sort
I/O Cost : 4.2
CPU Cost : 274.4
Sub Cost : 120.0
Result Rows: 1000.0
SUB Block : [PL Block 4]

[PL Block 4]
Method : Scan
Table Name : t1
Type : Table Scan
Order : <none>
Factors : <none>
I/O Cost : 101.0
CPU Cost : 25.3
Sub Cost : 0.0
Result Rows: 1000.0

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-26

----- end dump plan -----

In this example, there is more than one PL block. The PL block relationship is
combined using the sub-block information.

A simple tree representing blocks Replace each node with the names

Descriptions of Join blocks:

[PL Block 0] -- A PL block with a block ID of 0.

Method: Join -- The block is a Join.

Type: Merge Join -- Join type is merge.

Factors: (1) t1.c2 = t2.c2 -- Apply Join filter t1.c2 = t2.c2 using a Join block.

I/O Cost: 8.5-- Estimated I/O cost is 8.5 pages.

CPU Cost: 573.8 -- Estimated I/O cost is 573.8 pages.

Sub Cost: 231.6 -- Estimated sum of costs for the PL block's sub-block.

Result Rows: 500.0 -- Estimated result rows after the Join block.

Sub Block 1: [PL Block 1] – The block's first child links to [PL Block 1].

Sub Block 2: [PL Block 2] -- The block's second child links to [PL Block 2].

Description for a sort block:

[PL Block 1] -- A PL block with a block id of 1.

Method: Sort -- A sort block.

I/O Cost: 4.2 -- Estimated I/O cost is 4.2 units.

1Query Optimization 18

©Copyright 1995-2003 CASEMaker Inc. 18-27

CPU Cost: 274.4 -- Estimated CPU cost is 274.4 units.

Sub Cost: 120.0 -- Estimated sum of costs for the PL block's sub-block.

Result Rows: 1000.0 -- Estimated result rows after the sort block.

SUB Block: [PL Block 3] -- This block's child block link to [PL Block 3].

Listed above are the most common dump plan cases that users will encounter. Many

changes will be evident in dump plans, but they all consist of the same elements, I/O
cost, CPU cost, and Result Rows. If a dump plan is too complex, use the syntax-based
optimizer discussed previously to try other methods.

 Database Administrator’s Guide1

© Copyright 1995-2003 CASEMaker Inc. 18-28

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-1

A Keywords in
dmconfig.ini

A.1 General Concept

When the DBMaker database engine is started or when a user wants to connect to a
database server, DBMaker must initialize several parameters to configure itself. These
parameters are read from an ASCII text configuration file named dmconfig.ini. This
text file contains the keywords and corresponding values that will be used by for
configuration. Since this file is in ASCII format, a DBA can edit it with a text editor
to change the parameters as required.

In most cases, the keywords are required when a database starts. Keywords changed
after the database has been started will not take effect until the database has been shut
down and restarted.

However, some of the keywords are only required when users connect to database
servers. Users can change these keywords after the server has started, but before the
connect command has been issued, if they want the new values to be used during the
current session.

The configuration parameters play an important role in the performance of DBMaker.
To ensure DBMaker will run smoothly, be aware of the effects of each configuration
parameter and estimate the best values to use. It is recommended that the database

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-2

administrator back up the dmconfig.ini file as well as the database files on a regular
basis.

A.2 dmconfig.ini File Format

The dmconfig.ini file is an ASCII text file. It can be edited with any text editor
capable of opening and saving ASCII text files. The dmconfig.ini file consists of many
sections, each section is made up of the configuration information used to start a
particular database. Each section begins with the section name, followed by a list of
keywords and their values.

Â Example

The format of a dmconfig.ini file:
[section_name_1]
keyword1 = value1 ; here is a comment
keyword2 = value2
 .
 .
[section_name_2]
keyword3 = value3 value4 ; spaces or commas may be used
keyword4 = value5 ; as delimiters
 .
 .

Section Names

The name of each section corresponds to the name of the database that will use the
configuration options found in that section when it starts up. The section name
begins with a left square bracket ([) followed by the name of the database, and ends
with a right square bracket (]). The brackets are required to enclose the section name,
and the left bracket must be the first character on that line.

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-3

Keywords

Following each section name is a list of keywords and their values. These values will be
used by the database that corresponds to the section heading for configuration when it
starts. The statement keyword=value assigns the specified value to a keyword. The
value of a keyword can be an integer or a string, depending on the keyword itself.

Comments

Any string or symbol that is written after the semi-colon (;) will be considered a
comment and ignored by DBMaker.

Â Example,

dmconfig.ini file using (;) to include comments:
[SDB]
DB_DbFil=SDB.DB
DB_JnFil=SDE.JNL
DB_SMode=1 ;normal start mode
DB_UMode=0 ;single-user
DB_BMode=1
DB_BkSvr=1
DB_BkTim=96/03/19 00:00:00
DB_BkItv=7-00:00:00
DB_NBufs=100
DB_NJnlB=200
DB_MaxCo=100
DB_JnlSZ=20000
file1=SDE.FIL 40

[EMP]
DB_DBFIL=EMP.DB
DB_JNFIL=EMP.JNL
DB_SMode=1 ;normal start mode
DB_UMode=1 ;multi-user
DB_NBufs=100
DB_NJnlB=400
DB_MaxCo=100

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-4

DB_DbfSz=50
DB_JnlSZ=20000
file1=EMP.FL1 100
file2=EMP.FL2 200

In the example, the dmconfig.ini contains two sections one for the SDB database and
the other for the EMP database.

A.3 Search Path for dmconfig.ini

Another issue for dmconfig.ini is where to locate this file. For UNIX systems,
DBMaker will search in three locations for the dmconfig.ini file.

Â The locations and the search order are:

1. The current directory.

2. The directory specified in the environment variable DBMAKER.

3. UNIX systems: the subdirectory data in the home directory for the user dbmaker
(~dbmaker/data).

In Microsoft Windows systems, the dmconfig.ini file must be placed in the
installation directory ;usually the WINDOWS directory, unless you changed the
default when installing Windows.

When starting a database, DBMaker will scan the above UNIX directories or the
WINDOWS directory in the order listed to locate a dmconfig.ini file with a section
name that corresponds to the database. If a dmconfig.ini file is found and the section
name exists, the keywords defined in the section will be used. If the section name
cannot be found in that file, DBMaker will continue searching for a dmconfig.ini file
sequentially in the directories until the section name is found.

A.4 Default Values for Keywords

Whenever DBMaker needs a parameter, it will search the corresponding keywords in
the proper section of the dmconfig.ini file. The pattern matching for section names or
keywords in a search are case insensitive, except for user-defined files. If a keyword

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-5

cannot be found in the dmconfig.ini file, a default value will be used. Most of the
keywords have their own default values. Refer to the last section in this appendix for
more information.

A.5 Creating dmconfig.ini

Normally a database administrator creates the corresponding section in the
dmconfig.ini file with a text editor before a database is created and the parameters
take effect while creating that database. However, if DBMaker cannot find the section
in dmconfig.ini while creating a database, it will automatically create a section in the
first dmconfig.ini file found or in a new dmconfig.ini file, if not found. Therefore, a
section for each database should always be found at startup time, if not found,
DBMaker will return an error.

A.6 Keyword Reference

DB_AtCmt=<value>

This keyword specifies whether auto-commit mode is on or off. Setting this value to 1
turns auto-commit mode on and setting it to 0 turns auto-commit mode off. When
auto-commit mode is on, DBMaker will automatically issue a COMMIT
TRANSACTION after each SQL command is successfully executed. This keyword is
set from the client side.

default value: 1

valid range: 0, 1

see also: DB_LTimO

where to use: client side

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-6

DB_AtrMd=<value>

This keyword specifies whether the database is a source database of asynchronous table
replication. Setting this value to 1 turns on the logging of base table operations and
also enables the Distributor Daemon. Therefore, it can be a source database of a
replication.

default value: 0

valid range: 0, 1

see also: DB_EtrPt, RP_LgDir

where to use: server side

DB_BbFil=<string>

This keyword specifies the name of the system BLOB file. It will expand as necessary
as more BLOB data is inserted into this file.

default value: database name with the file extension .SBB. For example, db.SBB.

valid range: string with length < 256

see also: DB_DbDir, DB_DbFil, DB_UsrBb, DB_UsrDb

where to use: server side

DB_BfrSz=<value>

This keyword specifies the size of each BLOB frame in kilobytes. This keyword is used
when the database is created.

default value: 16 (KB) for UNIX, Windows 98, Windows NT

valid range: 8~256 for UNIX, Windows 98,Windows NT

see also: DB_BbFil

where to use: server side (only for creating a database)

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-7

DB_BkDir=<string>

This keyword specifies the directory where the backup server puts the database backup
files. This directory must already exist and can be different from DB_DbDir. See also
Chapter 9 - Database Backup, Recovery and Restoration.

valid range: string with length < 256

see also: DB_BkSvr, DB_BMode

where to use: server side

DB_BkFoM=<value>

This keyword specified the file object (FO) backup mode. File objects will only be
backed up during a full backup of the database. DB_BkFoM has three possible values;
0, 1, and 2. Setting DB_BkFoM equal to one disables the FO backup feature; file
objects will not be backed up during a full backup. Setting DB_BkFoM equal to one
enables system file objects to be backed up during a full backup. Setting DB_BkFoM
equal to two enables both system file objects and user file objects to be backed up.

default value: 0

valid range: 0: File objects are not backed up

 1: System file objects are backed up

 2: System and user file objects are backed up.

see also: DB_BkSvr, DB_FBKTm, DB_FBKTV, DB_BkDir.

where to use: server side

DB_BkFrm=<value>

The keyword allows you to specify the format Backup Server used to name
incremental backup journal files. The backup filename format may include both text
constants and format sequences (escape sequences), that represent special character
strings.

 Database Administrator’s Guide1

You can use the format sequences to represent the year, month, or date the backup
was performed, the name of the database, or the backup identification number. You
may combine format sequences and text constants in any way, provided the result is a
valid filename supported by the operating system. The format sequences have three
parts: the escape character, the length value, and the format character. The valid
format sequences are:

%[n]Y—The backup year of the journal file was.

%[n]M—The backup month of the journal file was.

%[n]D—The backup day of the journal file was.

%[n]B—The backup identification number.

%[n]N—The name of the database the journal file belongs to.

Â Example

DB_BkFrm = %N.%B

If the database is test1, the incremental backup files will be named: test1.1, test1.2…

Also, see Chapter 9 –on “Database Backup, Recovery, and Restoration”.

©Copyright 1995-2003 CASEMaker Inc. A-8

 default value: %4N%4B.jnl

see also: DB_BkSvr, DB_BkTim, DB_BkItv

where to use: server side

DB_BkFul=<value>

This keyword specifies the percentage that all journal files must be filled to before the
backup server is triggered to do an incremental backup. Setting this value to 0 will
trigger the backup server whenever a journal file is full. Setting this value between 50-
100 will trigger the backup server whenever the total space used in all of the journal
files exceeds the specified percentage. For example, if there are two journal files of 500
journal blocks each and DB_BKFUL is set to 80, then after every

 blocks are used, the backup server will automatically do an 8000.82500 =××

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-9

incremental backup. Also, see Chapter 9 on- “Database Backup, Recovery, and
Restoration”.

default value: 0

valid range: 0, 50 ~ 100

see also: DB_BkSvr, DB_BkTim, DB_BkItv

where to use: server side

DB_BkItv=<string>

This keyword specifies the backup time interval. Please refer to DB_BkTim described
later.

default value: none (no backup schedule if DB_BkItv is not set)

see also: DB_BkSvr, DB_BkTim, DB_BMode

where to use: server side

DB_BkCmp=<value>

This keyword specifies whether the compact backup mode is used. Not every journal
block in a journal file is needed to perform a backup. If this keyword is set to 1 the
backup server will only back up those journal blocks that require back up to save disk
space. Also see the chapter Database Backup, Recovery, and Restoration.

default value: 1

valid range: 0,1

see also: DB_BkSvr

where to use: server side

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-10

DB_BkOdr=<string>

This keyword specifies the directory where the backup server puts the pervious version
of full backup files. Also, refer to Chapter 14, “Database Backup, Recovery, and
Restoration”.

default value: none.

valid range: string with length < 256

see also: DB_BkSvr, DB_BMode, DB_FBkTm, DB_FBkTv

where to use: server side

DB_BkSvr=<value>

This keyword specifies whether or not a backup server will be started when a database
is started. Setting this value to 1 will start a backup server for that database. Also, refer
to Chapter 14, “Database Backup, Recovery, and Restoration”.

default value: 0

valid range: 0,1

see also: DB_BkCmp, DB_BkDir, DB_BkFul, DB_BkTim, DB_BkItv

where to use: server side

DB_BkTim=<string>

This keyword along with DB_BkItv specifies the schedule of the backup server.
DB_BkTim specifies the first time a backup server will perform an incremental
backup. Incremental backup will then be performed after every time interval specified
in DB_BkItv.

Â Example
DB_BkTim = 96/05/01 00:00:00 ;backup begins from May 1, 1996.
DB_BkItv = 1-12:30:00 ;interval is every one day, 12 hours
 and 30 minutes.

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-11

The keywords DB_BkTim and DB_BkItv are meaningful only when the backup
server is started. Also, see the chapter on “Database Backup, Recovery, and
Restoration”.

default value: none (no backup schedule if DB_BkTim is not set)

see also: DB_BkItv, DB_BkSvr, DB_BMode

where to use: server side

DB_BMode=<value>

This keyword specifies the backup mode of a database. Setting the value to 0 enables
NON-BACKUP mode, 1 enables BACKUP-DATA mode, and 2 enables BACKUP-
DATA-AND-BLOB mode. Also see the chapter Database Backup, Recovery, and
Restoration.

default value: 0

valid range: 0 ~ 2

see also: DB_BkSvr

where to use: server side

DB_Brows=<value>

This keyword specifies the lock behavior of a select statement. Setting the value to 0
denotes DBMaker will take S lock on the result set of select statement, and 1 denotes
DBMaker will not lock the result set of select statement. This value is required while
connecting to a database.

default value: 1

valid range: 0,1

where to use: client side

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-12

DB_CBMod=<value>

This keyword specifies the behavior of the cursor after the end of a transaction. A
value of 1 indicates all still open cursors will be closed after any transaction is
committed. A value of 2 or 3 indicates all still open cursors will be kept open after a
transaction is committed. 2 indicates that all locks would be released after the end of
the transaction. A 3 indicates that all locks would be reserved but all exclusive ones
would become shared. In those cases (1, 2 or 3), the cursor will be closed if any
transaction is aborted.

default value: 2

valid range: 1 ~ 3

where to use: client side

DB_ChTim=<value>

This keyword specifies the first time the checkpoint daemon should run. The format
for this keyword is YYYY/MM/DD hh:mm:ss, e.g. 2000/1/1 00:00:00. This keyword
is used when the database and checkpoint daemon are started. Refer to DB_IOSvr for
more information about starting the checkpoint daemon.

Â Example, to start the checkpoint daemon:
DB_IOSvr = 1 ; start checkpoint daemon
DB_ChTim = 96/05/01 00:00:00 ;begins from May 1, 1996.

default value: the time of database starting

valid range: YYYY/MM/DD hh:mm:ss (e.g. 2000/1/1 00:00:00)

see also: DB_IOSvr

where to use: server side

DB_CmChe=<value>

This keyword specifies whether client command cache is turned on or off. Setting this
value to 1 turns on client command cache and setting it to 0 turns it off. When client

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-13

command cache is turned on, the related information of previous executed SQL
command can be kept in cache and reused in the following command execution if the
SQL command is the same. By this way, better performance is gained. This keyword
is set from the client side.

default value: 1

valid range: 0, 1

where to use: client side

DB_CTimO=<value>

This keyword specifies the connection time-out value in seconds when a client is
trying to connect to the database server. If a database has not been started or the server
IP address is wrong, users may be forced to wait a long time until the connection
times out. Users can set the value of this keyword to shorten the waiting time. This
parameter is set from the client side.

default value: 5 (seconds)

valid range: 5 ~ 1:00:00 (1 hour)

where to use: client side

DB_DaiFm=<value>

This keyword specifies the date input format for SQL statements. Refer to “Appendix
B” in the “ODBC Programming Guide” for more information.

default value: none (accept all date input formats)

valid range: mm/dd/yy

 mm-dd-yy

 dd/mon/yy

 dd-mon-yy

 mm/dd/yyyy

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-14

 mm-dd-yyyy

 yyyy/mm/dd

 yyyy-mm-dd

 dd/mon/yyyy

 dd-mon-yyyy

 dd.mm.yyyy

see also: DB_DaoFm

where to use: client or server side (client has higher priority)

DB_DaoFm=<value>

This keyword specifies the date output format in SQL statements. Refer to the
“ODBC Programmer’s Guide”, Appendix B for more information.

default value: yyyy-mm-dd

valid range: same as valid range of DB_DaiFm

see also: DB_DaiFm

where to use: client or server side (client has higher priority)

DB_DbDir=<string>

This keyword specifies the directory that the database files reside in. The directory
string can be a relative or a full path name.

There are seven types of files in DBMaker;

 system database file defined by DB_DbFil

 default user data file defined by DB_UsrDb

 system journal file defined by DB_JnFil

 system BLOB file defined by DB_BbFil

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-15

 default user BLOB file defined by DB_UsrBb

 system temporary files defined by DB_TpFil

 user defined files

When defining full path names for these keywords, relative path names or simple file
names can be used. If a path name is used in defining the keywords, DBMaker will
use that name to reference the defined file. If a simple file name is used, DBMaker will
search for the DB_DbDir keyword. If this keyword is found, DBMaker will prefix the
simple file name with the string specified in DB_DbDir to reference the file. If it is
not found, DBMaker will use the file name and assume it is located in the current
directory.

Â Example 1
[DB1]
DB_DbDir = /disk1/db
DB_DbFil = mydb1
DB_JnFil = /disk2/usr/DB1.JNL

Using the physical file names:
DB_DbFil -- /disk1/db/mydb1
DB_JnFil -- /disk2/usr/DB1.JNL
DB_BbFil -- /disk1/db/DB1.BB (using default file name)

Â Example 2
[DB2]
DB_DbFil = mydb2
DB_JnFil = /disk2/usr/DB2.JNL

Using the physical file names:
DB_DbFil -- mydb2 (in current directory)
DB_JnFil -- /disk2/usr/DB2.JNL
DB_BbFil -- DB2.BB (in current directory)

default value: (current directory)

valid range: string with length < 256

see also: DB_DbFil, DB_JnFil, DB_BbFil, DB_TpFil, DB_UsrDb, DB_UsrBb

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-16

where to use: server side

DB_DbFil=<string>

This keyword specifies the physical name of the system database file used by the
operating system.

default value: database name with the file extension .SDB. For example, db.SDB.

valid range: string with length < 256

see also: DB_BbFil, DB_DbDir, DB_UsrBb, DB_UsrDb

where to use: server side

DB_DifCo=<value>

This keyword specifies the connection behavior of an application connecting to the
same database more than once. Setting the value to 1 instructs DBMaker to treat each
duplicate connecting action as a separate connection. Setting this value to 0 instructs
DBMaker to merge all duplicate connecting actions as one connection. This setting is
used while connecting to a database.

default value: 1

valid range: 0,1

where to use: client side

DB_DtClt=<value>

This keyword specifies the time interval DBMaker uses to automatically detect the
existence of a client. Setting this keyword to 0 disables this feature. Sometimes when a
client machine is suddenly powered off or the network is not working properly, the
server cannot release the resources allocated to the client. Turning this keyword on
will solve the problem because the server will auto-detect the client. If the server finds
a dead client, it will release all of its resources.

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-17

default value: 300 (seconds)

valid range: 0, 5 ~ 1:00:00 (1 hour)

see also: DB_ITimO

where to use: client side

DB_ERMRv=<string>

This keyword specifies recipients for e-mail that is generated when the database
experiences an error. Up to eight recipient e-mail addresses may be specified; a comma
must separate each address string. If no recipient is specified, the error report system is
disabled and no e-mail will be generated.

default value: null

see also: DB_ ERMSv

where to use: server side

DB_ERMSv=<string>

This keyword specifies the SMTP server to use for relaying e-mail messages. Only one
SMTP server may be specified. If no SMTP server is specified but recipients are
specified, then DBMaker will assign the ‘localhost’ value to this keyword.

default value: localhost

see also: DB_ERMRv

where to use: server side

DB_EtrPt=<value>

This keyword is an integer, which specifies the TCP/IP port number that the
Subscriber Daemon for the database server is attached to. This is used for express
asynchronous table replication. In the source database, this keyword instructs how to

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-18

connect to the subscriber of the destination database. In the destination database, this
keyword will start the Subscriber Daemon.

default value: none

valid range: 1024~65535

see also: DB_AtrMd, RP_LgDir

where to use: server side (both for the source and destination of databases)

DB_ExtNp=<value>

This keyword specifies a size for DBMaker to extend autoextend tablespace. When an
autoextend tablespace is exhausted, DBMaker will automatically extend. The value
specifies how many pages/frames to extend.

default value: 20 (pages/frames)

valid range: 1 or higher

where to use: server side

DB_FBkTm=<string>

This keyword combined with DB_FBkTv, specifies the schedule of the Backup Server
to perform an on-line full backup. DB_FBkTm specifies the first time the Backup
Server will perform a full backup. On-line full backup will be performed after every
time interval specified in DB_FBkTv.

Â Example
DB_FBKTm = 96/05/01 00:00:00 ;begins from May 1, 1996.
DB_FBkTv = 1-12:30:00 ;interval is every one day, 12 hours
 and 30 minutes.

The keywords DB_FBkTm and DB_FBkTv are only used with the Backup Server.

default value: none

see also: DB_FBkTv, DB_BkSvr, DB_BkOdr

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-19

 where to use: server side

DB_FBkTv=<string>

This keyword specifies the full backup time interval. Refer to DB_FBkTm for more
information.

default value: none (no full backup schedule if DB_FBkTv is not set)

see also: DB_BkSvr, DB_FBkTm, DB_BkOdr

where to use: server side

DB_FoDir=<string>

This keyword specifies the path for system file objects or system file object
subdirectories (depending on the setting of DB_FoSub). You must specify a full path
name for DB_FoDir.

Â Example 1
DB_FoDir = /usr/DBMaker/fileobj ;for UNIX

Â Example 2 :
DB_FoDir = c:\dbmaker\fileobj ;for DOS

Â Example 3
DB_FoDir = \\NTMachine\dbmaker\fileobj ;for Microsoft UNC name

You can insert data into a new system file object only when you have set DB_FoDir.
This keyword is used when a database is started.

default value: null string (the system file object cannot be inserted)

valid range: string with length < 256

see also: DB_UsrFo, DB_FoSub

where to use: server side

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-20

DB_ForcS=<value>

This keyword instructs DBMaker to force start a database even if an error occurs.
Setting the value to 1 enables forced startup.

default value: 0

valid range: 0,1

see also: DB_SMode

where to use: server side

DB_ForUX=<value>

This keyword specifies the lock behavior of “select … for update” statement in server
site.

DBMaker takes S locks on result sets of “select … for update” statements. Special
applications that set this value to 1 instruct DBMaker to take X locks on result sets of
“select … for update” statements. This setting is required while starting the database.

default value: 0

valid range: 0,1

where to use: server side

DB_FoSub=<value>

This keyword specifies the maximum number of file objects that may be stored in
each system file object subdirectory. Subdirectories are created in the directory
specified by DB_FoDir. A new file object subdirectory will be automatically created
when the number of file objects in a subdirectory exceeds the threshold value.

Â Example 1

To set the number of files per file object subdirectory to 500,
DB_FoSub = 500

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-21

You can insert data into a new system file object only when you have set DB_FoDir.
This keyword is used when a database is started.

default value: 0 (file objects are stored directly in the directory specified by
 DB_FoDir)

valid range: 100 ~ 10000 or 0 (FO directory has no sub-directories)

see also: DB_FoDir

where to use: server side

DB_FoTyp=<value>

This keyword specifies what ODBC type the FILE type maps. ODBC does not
define FILE type that is supported only by DBMaker, development tools, such as
Borland Delphi or Microsoft Visual Basic do not know about FILE type. If you want
to allow tools to access data of the FILE type, DBMaker should internally map the
FILE type to LONG VARBINARY by setting DB_FoTyp to 1. There is no mapping
if DB_FoTyp is 0.

default value: 1

valid range: 0 (not mapping)

 1 (FILE type mapping to LONG VARBINARY)

where to use: client side

DB_GcChk=<value>

This keyword is used to set the minimum number of transaction per second (TPS)
that will initiate the group commit transaction protocol.

DBMaker always checks the current number of transactions. The number of
transactions per second is equivalent to the number of sync requests per second.
DBMaker uses DB_GCCHK as the TPS threshold. When the server TPS reaches this
threshold, the group-commit protocol is activated. When TPS is below the threshold,

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-22

the group-commit is turned off. For example, if DB_GCCHK = 20, the group-
commit protocol will be turned on if there are over 20 transactions per second.

DB_GCCHK allows DBMaker to dynamically switch between activating and
deactivating the group-commit protocol. Since transaction activity is not constant, e.g.
sometimes very high, sometimes low, DBMaker will switch the protocol to avoid
unnecessary waiting.

default value: 20

valid range: >0

see also: DB_GcWtm, DB_GcMxw

where to use: server side

DB_GcMxw=<value>

This keyword specifies the maximum number of a transactions waiting to do group-
commit allowed. It works in conjunction with DB_GcWtm, which affects the
maximum waiting time for group-commit.

If the group-commits protocol is activated (refer to DB_GcChk for details), DBMaker
will check for every sync request. If it is meets one of the following conditions, tube
sync process will proceed, otherwise it will wait for another sync request before
performing the group-commit.

 Transactions reach the maximum waiting time specified by DB_GcWtm
keyword;

 The numbers of transactions waiting to do group-commit exceeds the value
specified by DB_GcMxw keyword.

Â Example

The max waiting time is 30 milliseconds and the number of transactions waiting is 5.
DBMaker will perform the sync operation when there is at least one transaction
waiting over 30 milliseconds or when there are 5 transactions waiting.

default value: 5 (number of transactions)

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-23

valid range: > 0

see also: DB_GcChk, DB_GcWtm

where to use: server side

DB_GcWtm=<value>

This keyword specifies the maximum waiting time when any transaction waits for
group-commit. The longer waiting time may reduce the respond time of the
transaction, but may increase the whole throughput for group-commit.

This keyword works with DB_GcMxw. Refer to DB_GcMxw for detail.

default value: 30 (milliseconds)

valid range: > 10

see also: DB_GcChk, DB_GcMxw

where to use: server side

DB_IFMem=<value>

This keyword specifies the maximum amount of memory in MB that DBMaker will
allocate for use by the IVF text index search routine. DBMaker dynamically manages
the amount of memory by allocating half the memory the operating system
determines is available. If DBMaker cannot determine the amount of memory
available, or detects that more than 128 MB are available, it will set the maximum
amount of memory to allocate at 64 MB. Manually adding this keyword and entering
a value ensures that DBMaker will never use more than the specified amount. This is
recommended if your operating system does not provide memory usage information,
or if you want to allocate a larger maximum cache size for improved IVF text index
query performance.

Â Example 1

To specify a maximum amount of 256 MB to use for the IVF text index buffer:
DB_IFMem = 256

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-24

default value: No keyword specified – DBMaker automatically configures the buffer

valid range: 64 ~ (maximum allowed by operating system)

see also:

where to use: server side

DB_IDCap=<value>

This keyword specifies the case sensitivity of all identifiers in a database. Setting the
value to 0 indicates that all identifiers are case sensitive. Setting the value to 1,
indicates that all identifiers in a database are case insensitive; under this mode, all
identifiers are converted to uppercase when defined. This keyword can only be set
before database creation, which means changing this keyword value for an existing
database has no effect.

default value: 1

valid range: 0 (case sensitive)

 1 (case insensitive)

where to use: server side

DB_IOSvr=<value>

This keyword specifies if DBMaker should turn the I/O server and checkpoint
daemon on or off. Setting the value to 1 starts the I/O and checkpoint daemons after
starting the database server. The keyword is used when the database is started.

Â Example 1

To start the I/O server and checkpoint daemon:
DB_IOSvr = 1

Â Example 2

To start the checkpoint daemon and stop the I/O server:
DB_IOSvr = 1

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-25

Â Example 3

To start the I/O server and stop the checkpoint daemon:
DB_IOSvr = 1
DB_ChTim = 2020/12/30 00:00:00 ; assume now is 2000/1/1

default value: 1

valid range: 0, 1

see also: DB_ChTim, DB_NBufs

where to use: server side

DB_ITimO=<value>

This keyword specifies the idle timeout interval, specified in seconds. DBMaker will
automatically disconnect connections that have no database operations with a higher
value than the specified timeout interval. The feature forces idle connections to release
all database resources, including buffers, pages, locks, and memory. Set the value to 0
to disable the feature. DBMaker will automatically reset this value to DB_DtClt if the
value is less than DB_DtClt.

default value: 0 (disable)

valid range: 0 ~ 4294967 (seconds)

see also: DB_DtClt

where to use: server side

DB_JnFil=<string>

This keyword specifies the names of the system journal files. It also specifies the
amount of journal files allocated for the database. Up to eight journal files can be
specified.

default value: database name with the file extension .JNL. For example, DB.JNL.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-26

valid range: string with length < 256

see also: DB_JnlSz, DB_DbDir

where to use: server side

DB_JnlSz=<value>

This keyword specifies the journal file size using the number of pages (4 KB per page).

default value: 1000 (default journal size is 4 MB)

valid range: 100~524287 and greater than DB_NJnlB by at least three

see also: DB_JnFil, DB_DbDir

where to use: server side

DB_LbDir=<string>

This keyword specifies the directory where the user-defined functions (UDF), dll in
Windows, or so in Unix files should be loaded when the database starts.

default value: DBMaker working directory

valid range: string with length < 256

see also: DB_JnlSz, DB_DbDir

where to use: server side

DB_LCode=<value>

This keyword specifies the language code. The language code will affect the result of
LIKE operations in a query. A 0 indicates the language is ASCII compatible. A 1
indicates the language code is Chinese BIG5 code compatible. A 2 indicates the
language code is SHIFT JIS code compatible. A 3 indicates the language code is GB
code compatible. Please refer to the SQL Reference Manual for more information. This
value is required when the database is started.

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-27

default value: (set during setup)

valid range: 0 English (ASCII)

1 Traditional Chinese (BIG5)

2 Japanese (Shift JIS + Half Corner)

3 Simplified Chinese (GBK)

4 Latin1 code (ISO-8859-1)

5 Latin2 code (ISO-8859-2)

6 Cyrillic code (ISO-8859-5)

7 Greek code (ISO-8859-7)

where to use: server side

DB_LetPT=<value>

This keyword specifies the Lock Escalation Threshold for escalating a page lock to a
table lock. When the number of locks on pages in the same table exceeds the lock
escalation threshold, DBMaker will automatically escalate the lock to a table lock.

default value: 50

valid range: 3-32767

see also: DB_LetRP

where to use: server side

DB_LetRP=<value>

This keyword specifies the Lock Escalation Threshold for an escalating rowlock to a
page lock. When the number of locks on rows in the same table exceeds the lock
escalation threshold, DBMaker will automatically escalate the lock to a page lock.

default value: 15

valid range: 3-32767

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-28

see also: DB_LetPT

where to use: server side

DB_LTimO=<value>

This keyword is an integer that specifies the lock time-out value in seconds. When
you need to acquire a lock on a database object, such as a table or a tuple, and that
object has been already been allocated to another transaction, wait until the object is
released.

However, if you prefer not to wait, set this keyword to a desirable value. DBMaker
will wait for the object until the waiting time expires, which will return a “lock time-
out” error message, or until a lock is acquired on the object before the lock time-out.
To disable the time-out, set this keyword to -1. This will cause DBMaker to continue
waiting until the lock is released.

Alternatively, set the keyword to 0, indicating that you don’t want to wait at all. This
keyword is used at connection time rather than database startup time. Each
connection may have its own dmconfig.ini file, especially in client/server mode, so
each user can have a lock time-out value.

default value: 5

valid range: -1~ 65535

where to use: client side

DB_MaxCo=<value>

It denotes the hard connection number while creating database or starting database with
new journal operation, and denotes the soft connection number upon starting a
database normally. The soft connection number indicates the maximum number of
transactions that can be simultaneously active in the database system. It also indicates
the maximum number of simultaneous connections that can be established to the
database system, since a connection can own at most only one transaction.

The hard connection number determines the layout of the journal file regarding the
number of connections that it can keep a record of. The hard connection number

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-29

must be a value between 240 and 1200 and a multiple of 40, so DB_MaxCo is
rounded up to the closest multiple of 40 (or 240) to determine the hard connection
number. For more information regarding the hard and soft connection numbers and
their effect on database performance, refer to section 17.5, “Tuning Concurrent
Processes”.

default value: 32

valid range: 2~1200

see also: DB_UMode, DB_SMode

where to use: server side

DB_NBufs=<value>

This keyword specifies the number of data buffers. Each buffer in DBMaker is 4 KB.
DBMaker will run more efficiently with more buffers in most cases. This keyword is
used when the database is started.

Setting the value to 0 for platforms where DBMaker can detect the physical memory
usage allows DBMaker to configure the buffer size automatically. If DBMaker fails to
get physical memory information, DBMaker will set the buffer size to 500 pages for
Win95/98 or 2000 pages for WinNT/Unix/others.

Â Example

After starting the database, query the SYSINFO table to determine the number of
buffers that the database uses. The following command shows that the currently
running database uses 500 page buffers:
dmSQL> select * from SYSINFO where INFO = 'NUM_PAGE_BUF';

 ID INFO VALUE
==== ============== ==================
0107 NUM_PAGE_BUF 500

1 rows selected

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-30

For information on determining the optimal value, please refer to section “Tuning
Memory Allocation” in Chapter17, “Performance Tuning”.

default value: 0 (auto-configure)

valid range: 0, 15~depends on system

see also: DB_NJnlB, DB_ScaSz

where to use: server side

DB_NetEc=<value>

This keyword specifies if DBMaker should turn network encryption on or off. If
network encryption is turned on, all network data between DBMaker server and
clients will be encrypted. The encryption technique used by DBMaker is a mix of
DES and RSA.

default value: 0 (off)

valid range: 0 (off) , 1 (on)

where to use: server side

DB_NJnlB=<value>

This keyword specifies the number of Journal buffers, 4 KB per buffer, in shared
memory. This is not the size of the Journal file, but the number of 4KB Journal
buffers, which are stored in memory. The keyword is used when the database is
started.

default value: 64 (256 KB)

valid range: 16~depends on system

see also: DB_JnlSz, DB_NBufs, DB_ScaSz

where to use: server side

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-31

DB_Order=<string>

This keyword indicates the name of the order definition file that is put in the
shared/codeorder subdirectory of DBMaker’s installation directory. The order
definition file is a pure text file, which would affect the sorting result in DBMaker.
This keyword is used when the database is created and then it is rendered useless.
Without this keyword, the sorting sequence is in binary sequence.

default value: none

valid range: file name of the user-defined order definition file

see also: DB_LCode

where to use: server side (only for creating a database)

DB_PasWd=<string>

This keyword specifies the password for the default login user ID. If no default login
user ID is specified, the value is ignored. The keyword is used when the database starts
or at connection time.

default value: null string

valid range: string with length <= 8

see also: DB_UsrId

where to use: client side

DB_PtNum=<value>

This keyword is an integer specifying the TCP/IP port number that the database
server is using. It is used at connection time on the client side and at startup time on
the server side. The number must match on all client and server machines for a
database, or the connection will fail.

default value: none

valid range: 1024~65535

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-32

see also: DB_SvAdr

where to use: both client and server sides

DB_ResWd=<value>

Users may need to add (create or import) objects to the database that use DBMaker
reserved words as identifiers (see the SQL Command and Function Reference for a full
list of reserved words). Attempting to add an object that uses a reserved word as an
identifier will return an error if DB_ResWd is set equal to 1. If DB_ResWd is set
equal to 0, DBMaker will not return an error. The primary purpose of this keyword is
to allow objects to be imported that contain reserved words.

default value: 1

valid range: 0, 1

where to use: server side

DB_RmPad=<value>

This keyword specifies whether the space padding for CHAR type data is removed. A
value of 0 indicates the space padding for all CHAR type data in a result set is kept. A
value of 1 indicates the space padding for all CHAR type data to be removed before
copying to a user buffer. It allows a user application to retrieve fixed length CHAR
data, excluding the trailing space padding generated in the DBMS during a data
insert.

default value: 0

valid range: 0, 1

where to use: client side

DB_RTime=<string>

This keyword specifies the target time for a database to be restored from a backup.
When performing a database restoration, DBMaker will roll forward on the backup

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-33

files from the earliest time in the to the time specified by DB_RTime. If DB_RTime
is not given, DBMaker will restore the database to the latest time in the backup files,
which is the time the backup was performed.

If the DB_RTime is later than the backup time, the backup time will be used as the
value for DB_RTime.

The format for DB_RTime is yy/mm/dd hh:mm:ss.

default value: 0 (70/1/1 00:00:00)

where to use: server side

DB_ScaSz=<value>

This keyword specifies the size of the System Control Area (SCA) in kilobytes. If the
minimum memory required by DBMaker for the SCA is larger than the value of
DB_ScaSz, DBMaker will ignore the value and allocate the minimum memory
required for the SCA. This keyword is used when the database is started.

default value: 200 (KB) on UNIX, Windows 98, Windows NT

valid range: 1~(system dependent)

see also: DB_NBufs, DB_NJnlB

where to use: server side

DB_SMode=<value>

This keyword indicates the database startup mode. There are 6 startup modes:

 normal startup—Starts a system normally. If the database crashed, DBMaker
will perform crash recovery automatically to bring it to a consistent and stable
state.

 startup with new journal—Starts a system normally, but creates a new journal
file with a name given by the value for the DB_JNFIL keyword. If a file with
the same name already exists, it will be overwritten.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-34

 startup with rollover—Uses the backup database files, including the journal
file, to start the database. DBMaker will rollover the operations to the point in
time specified by DB_RTime. This mode is used for database restoration. See
the chapter on “Database Recovery, Backup, and Restoration” for more detailed
information about rollover.

 startup as a primary database—This mode is used for database replication.
Starting a system with this mode makes it a primary database, i.e. a source
database. Refer to the chapter on “Database Replication” for more information.

 startup as a slave database—This mode is used for database replication.
Starting a system with this mode makes it a slave database, i.e. a destination
database. For more detailed information refer to the chapter on “Database
Replication”.

 startup as a read-only database— Starts up a system normally, but the database
is Read-Only or only provides the read privilege. Starting a database with write
permissions in Read-Only mode prohibits users from modifying it.

default value: 1

valid range: 1 (normal startup)

 2 (startup with new journal)

 3 (startup with rollover)

 4 (startup as a primary database)

 5 (startup as a slave database)

 6 (startup as a read-only database)

see also: DB_ForcS

where to use: server side

DB_SQLSt=<value>

This keyword specifies the display mode of the SQL command monitor. It will affect
the display content of the SQL_CMD and TIME_OF_SQL_CMD columns in the

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-35

SYSUSER system table. The SQL command monitor can contain precise or rough
information for executing SQL commands. The precise information consumes more
CPU time than the rough information. You can also turn off SQL command monitor
to avoid CPU overhead.

default value: 1

valid range: 0 (turn off SQL command monitor)

 1 (display SQL command and rough SQL command executed time)

 2 (display SQL command and precise SQL command executed time)

where to use: server side

DB_SPDir=<string>

This keyword specifies the path for stored procedure files. The stored procedure files
include the generated dynamic link library files and the entire temp files generated
during stored procedure creation. A full path name must be specified for DB_SPDIR.

Â Example for DB_SPDir:
DB_SPDir = /usr/DBMaker/data/spdir ;in UNIX

Â Example for DB_SPDir:
DB_SPDir = c:\dbmaker\data\spdir ;in Windows

default value: (current directory which dmserver is running)

valid range: string with length < 256

see also: DB_SPInc

where to use: server side

DB_SPInc=<string>

This keyword specifies the path for stored procedure include files. It is used when
extra include files are required in a generated stored procedure. A full path name must
be specified for DB_SPInc.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-36

Â Example of DB_SPInc
DB_SPInc = /usr/DBMaker/data/sp\include ;in UNIX

Â Example of DB_SPInc:
DB_SPInc = c:\dbmaker\data\sp\include ;in Windows

default value: (current directory which dmserver is running)

valid range: string with length < 256

see also: DB_SPDir

where to use: server side

DB_SPLog=<string>

This keyword specifies the path for stored procedure log files. The stored procedure
log files include the error log files sent from the database server while creating a stored
procedure and the trace log file for the stored procedure execution. A full path name
must be specified for DB_SPLog.

Â Example 1, syntax for DB_SPLog:
DB_SPLog = /usr/joe/mydata/splog ;in UNIX

Â Example 2, syntax for DB_SPLog:
DB_SPLog = c:\user\joe\mydata\splog ;in Windows

default value: (current directory client application is running)

valid range: string with length < 256

where to use: client side

DB_StrOP=<value>

This keyword specifies whether space padding needs to be removed before applying
the string concatenation operator (||). A value of 0 indicates space padding for fixed
length CHAR type data to be kept before applying the string concatenation operator.
A value of 1 indicates the space padding to be removed before applying the string
concatenation operator.

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-37

The keyword can be set on the client or server. If this keyword value is not set in the
dmconfig.ini file on the client, the option value will rely on the dmconfig.ini file on
the server. The default value on the server is 0.

default value: 0

valid range: 0, 1

where to use: client and server side

DB_StrSz=<value>

This keyword indicates the length of returned data of STRING type, used only by
user-defined function (UDF). Since UDFs can only return data of fixed size, these
keywords can limit the size of STRING data for clients to avoid to receive too large
string.

default value: 255

valid range: 1 ~ 4096

where to use: client or server side (client has higher priority)

DB_StSvr=<value>

This keyword is used to activate the auto update statistics server. A value of 1 indicates
that the server is started. A value of 0 indicates that the server is not running. If the
auto update statistics server is activated, it will recalculate database statistics daily at
3:00 AM.

default value: 1

valid range: 0 ~ 1

where to use: server side

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-38

DB_SvAdr=<string>

This keyword can be a string that specifies the TCP/IP address of the server machine
or the host name of that machine. If DNS (Domain Name Service) has been set up
properly on the client machine, you can even specify the domain name in this
keyword. This keyword is required at connection time on all client and server
machines. If this address is not correct, the connection will fail. See a network
administrator or a manual on TCP/IP networking for further information.

default value: none

valid range: a.b.c.d or host (domain) name (1<=a,b,c,d <=254)

see also: DB_PtNum

where to use: both client and server sides.

DB_TmiFm=<string>

This keyword specifies the time input format for SQL statements. Please refer to the
ODBC Programmer’s Guide, Appendix B for more information.

default value: none (accept all input time formats)

valid range: hh:mm:ss.fff

 hh:mm:ss
 hh:mm
 hh
 hh:mm:ss.fff tt
 hh:mm tt
 hh tt
 tt hh:mm:ss.fff
 tt hh:mm:ss

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-39

 tt hh:mm
 tt hh
see also: DB_TmoFm

where to use: client or server side (client has higher priority)

DB_TmoFm=<string>

This keyword specifies the time output format for SQL statements. Refer to the
“ODBC Programmer’s Guide” for more information.

default value: hh:mm:ss

valid range: same as valid range of DB_TmiFm

see also: DB_TmiFm

where to use: client or server side (client has higher priority)

DB_TpFil=<string>

This keyword specifies the names of the system temp files. The file size limitation is
2GB. Users may specify up to eight system temporary files.

default value: database name with the file extension .TMP.

valid range: up to eight strings with length < 256, separated by one comma followed
by one space

see also: DB_DbFil, DB_BbFil

where to use: server side

DB_Turbo=<value>

This keyword indicates that DBMaker will run with normal catalog cache operation.
If your applications rarely modify the structure of a database, you can use

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-40

DB_TURBO mode to speed up data access. See “Performance Tuning” for more
information. This keyword is used when the database is started.

default value: 0

valid range: 0, 1

where to use: server side

DB_UMode=<value>

This keyword indicates the user mode. A value of 1 indicates multi-user mode and a
value of 0 indicates single-user mode. This keyword has no effect on DBMaker single-
user programs such as dmsqls, because such programs can only start a database in
single-user mode. For multi-user programs, you can set this keyword to start a
database in single-user or multi-user modes. This value is required when starting a
database.

default value: 1

valid range: 1 (multi-user mode)

 0 (single-user mode)

see also: DB_SMode, DB_MaxCo

where to use: server side

DB_UsrBb=<string>

This keyword, a special user-defined filename, specifies the physical name of the
default user BLOB file used by the operating system.

Â Example 1, to specify the default user BLOB file name with 20 frames:
[MY_DB] ;database name
DB_UsrBb = /disk1/usr/f1.bb 20 ;blob file

default value: database name with the extension .BB and a size of 2 frames.

valid range: string with length < 256

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-41

see also: DB_BbFil, DB_DbDir, DB_DbFil, DB_UsrDb, User-defined filename

where to use: server side

DB_UsrDb=<string>

This keyword, a special user-defined filename, specifies the physical name of the
default user data file used by the operating system.

Â Example 1, to specify the default user data file name with 200 pages:
[MY_DB] ;database name
DB_USRDB = /disk1/usr/f1.db 200 ;data file

default value: database name with the file extension .DB and 150 pages. For example,
db.DB.

valid range: string with length < 256

see also: DB_BbFil, DB_DbDir, DB_DbFil, DB_UsrBb, User-defined filename

where to use: server side

DB_UsrFo=<string>

This keyword indicates whether user file objects can be inserted in a database. Setting
this value to 1 enables the user file object function. Refer to the chapter on “Large
Object Management” for more information. This value is required when starting a
database.

default value: 0

valid range: 0, 1

see also: DB_FoDir

where to use: server side

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-42

DB_UsrId=<string>

This keyword specifies the default user ID used to login at database startup or
connection time.

default value: null string

valid range: string with length < 8

see also: DB_PasWd

where to use: client side

DD_CTimO=<value>

This keyword specifies the connect time-out value while connecting to a remote
database during a DDB operation. In the DDB environment, the coordinator
database server may need to establish distributed connections to remote databases.

default value: 5 (seconds)

valid range: 1 or higher

see also: DD_DDBMd, DD_LTimO, DB_CTimO

where to use: server side

DD_DDBMd=<value>

This keyword specifies whether the DDB (Distributed DataBase) function is enabled
on the database server. Turn the value on in order to use DDB operations or table
replication functions.

default value: 0

valid range: 0, 1

see also: DD_GTSvr

Where to use: server side

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-43

DD_GTItv=<string>

This keyword specifies the schedule of the GTRECO demon to solve pending global
transactions. It is used only when the GTRECO server is on.

The input format is 'D hh:mm:ss'.

default value: 00:10:00

valid range: 0 days ~ 24855 days

see also: DD_GTSvr

where to use: server side

DD_GTSVR=<value>

This keyword specifies whether to start up the GTRECO (Global Transaction
RECOvery) demon while DDB mode is on. The GTRECO demon will automatically
solve the pending global transactions that cross the DBMaker database servers.

default value: 1

valid range: 0, 1

see also: DD_DDBmd, DD_GTItv

where to use: server side

DD_LTimO=<value>

This keyword specifies the lock timeout value for the distributed data access during
the DDB operation. It takes effect on server-to-server data access only. Refer to
DB_LTimO for more information on the timeout value .

default value: 5 (seconds)

valid range: -1 or higher

see also: DD_DDBmd, DD_CTimO, DB_LTimO

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-44

where to use: server side

DM_DifEn=<value>

This keyword needs to be set under the global section in
DM_COMMON_OPTION, to denote whether or not to allocate a new
environment handle when requested. The global section in
DM_COMMON_OPTION, in the dmconfig.ini file, is for global settings across
databases. Keywords like the DM_DIFEN, apply to all databases in the dmconfig.ini
file when it is specified. Do not change it unless advice from DBMaker customer
support for a special case arises.

default value: 1

valid range: 0, 1

where to use: client side

LG_NPFun=<string>

This keyword is set only in the DM_COMMON_OPTION section and specifies the
unlogged functions. Its value is an empty string or some ODBC function names
separated by commas (,). This keyword is valid only if LG_PTFun is not defined in
the dmconfig.ini file. Once this keyword is specified, the functions listed in the string
will not be logged.

default value: “” (empty string, all functions will be logged)

valid range: function list string (eg. “SQLError, SQLGetDiagRec”)

see also: LG_Path, LG_PTFun, LG_Trace, LG_Time

where to use: client side

LG_Path=<string>

This keywordis only set in the DM_COMMON_OPTION section and specifies the
file path name of the output log file.

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-45

default value: c:\odbclog.log (for Win32), ./odbclog.log (for UNIX)

valid range: string with length < 256

see also: LG_NPFun, LG_PTFun, LG_Time, LG_Trace

where to use: client side

LG_PTFun=<string>

This keyword is set in the DM_COMMON_OPTION section and specifies the
logged functions. Its value is an empty string or some ODBC function names,
separated by commas (,). Once this keyword value is specified, only the functions
listed in the string will be logged. If LG_PTFun and LG_NPFun are set, only the
LG_PTFun will take effect.

default value: none (all functions will be logged)

valid range: function list string (eg. “SQLError, SQLGetDiagRec”)

see also: LG_NPFun, LG_Path, LG_Time, LG_Trace

where to use: client side

LG_Time=<value>

This keyword is set in the DM_COMMON_OPTION section and specifies whether
to log time spent on each function. Setting this value to 1 logs time spent for each
function in the output log file, setting it to 0 does not log time. This information can
help users find performance bottlenecks in an ODBC program.

default value: 0

valid range: 0, 1

see also: LG_NPFun, LG_Path, LG_PTFun, LG_Trace

where to use: client side

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-46

LG_Trace=<value>

This keyword is set in the DM_COMMON_OPTION section and specifies whether
the ODBC log is turned on or off. Setting this value to 1 will turn on the ODBC log
and setting it to 0 will turn it off. When the ODBC log is on, the called ODBC
function, input parameters, output parameters, and returned code or error
information will be logged to a specified file. See the following keywords for more
detailed information.

default value: 0

valid range: 0, 1

see also: LG_NPFun, LG_Path, LG_PTFun, LG_Time

where to use: client side

RP_BTime=<value>

This keyword is used for database replication and specifies the starting time of
database replication. The format is YYYY/MM/DD hh:mm:ss, e.g. 2000/1/1
01:30:00. You can use RP_Iterv to specify the schedule of the database replication.

default value: time of the primary database starting

Valid range: YYYY/MM/DD hh:mm:ss (e.g. 2000/1/1 00:00:00)

See also: DB_SMode, RP_Clear, RP_Iterv, RP_Primy, RP_PtNum, RP_ReTry,
RP_SlAdr.

Where to use: server side of the primary database.

RP_Clear=<value>

This keyword is used for database replication and specifies whether DBMaker should
clear the backup files after replicating them to remote databases. The value 1 clears the
files, 0 will keep them.

Default value: 0 (no).

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-47

Valid range: 0 (no), 1 (yes).

See also: DB_SMode, RP_BTime, RP_Iterv, RP_Primy, RP_PtNum, RP_ReTry,
RP_SlAdr.

Where to use: server side of the primary database.

RP_LgDir=<string>

This keyword, used for the asynchronous table replication, specifies the directory
where DBMaker puts replication log files for the asynchronous table replication. The
replication log files are binary and users should not manually remove them.

Default value: the subdirectory named TRPLOG under the database home directory

Valid range: string with length < 256

See also: DB_AtrMd, DB_EtrPt

Where to use: server side of the primary database

RP_Iterv=<value>

This keyword specifies the schedule for the database replication. The format is dd-
hh:mm:ss, e.g. 1-12:00:00; one day and 12 hours. You can use RP_BTime to specify
the starting time of database replication.

Default value: 1-00:00:00 (one day).

Valid range: 0 days ~ 24855 days.

See also: DB_SMode, RP_BTime, RP_Clear, RP_Primy, RP_PtNum, RP_ReTry,
RP_SlAdr.

where to use: server side of the primary database

RP_Primy=<string>

This keyword, used for the database replication, specifies the address of the primary
database.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-48

Default value: none

Valid range: a,b,c,d or host (domain) name (1<=a,b,c,d <=254)

See also: DB_SMode, RP_BTime, RP_Clear, RP_Iterv, RP_PtNum, RP_ReTry,
RP_SlAdr.

Where to use: server side of the slave database

RP_PtNum=<value>

This keyword, used for the database replication, specifies the port number of the
RP_RECV_SERVER daemon the slave database. It must be different from the
DB_PtNum used by the slave database and the same as the port number specified in
RP_SlAdr on the primary database.

Default value: 23001

Valid range: 1024~65535

See also: DB_SMode, RP_BTime, RP_Clear, RP_Iterv, RP_Primy, RP_ReTry,
RP_SlAdr

Where to use: server side of the slave database.

RP_Reset=<value>

RP_RESET is used to indicate to DBMaker to reset the asynchronous table
replication system while starting a database. If RP_RESET is set to 1, DBMaker will
clear all unsent asynchronous table replication logs, remove all .TRP files in the
RP_LgDir (default is DB_DBDIR/TRPLOG) directory, and reset the asynchronous
table replication status while starting the database. That is, DBMaker will ignore all
the unsent asynchronous table replication data. After starting database, DBMaker
server will reset the RP_RESET value to 0 to prevent duplicate resetting asynchronous
table replication in next time of starting database.

Default value: 0

Valid range: 0-1

1 Appendix A

©Copyright 1995-2003 CASEMaker Inc. A-49

See also: RP_LgDir.

Where to use: server side of primary database.

RP_ReTry=<value>

This keyword, used for the database replication, specifies how many times DBMaker
will try to connect to remote databases after a network failure.

default value: 0

valid range: 0 ~

see also: DB_SMode, RP_BTime, RP_Clear, RP_Iterv, RP_Primy, RP_PtNum,
RP_SlAdr

where to use: server side of the primary database

RP_SlAdr=<string>

This keyword is used for database replication and specifies the slave databases for the
primary database to send data. DBMaker supports 1 to 8 slave databases for each
primary.

Â Syntax for RP_SlAdr:
RP_SlAdr = address[:port number] {, address[:port number]}

The default port number is 23001. In slave databases, commas or blank spaces can
separate the information.

Â Example, RP_SlAdr port numbers:
RP_SlAdr = 192.168.9.222:5100, Server2:5101, Server3

There are three slave databases. One is 192.168.9.222 with port number 5100,
another is Server2 with port number 5101, and the other is Server3 with default port
number 23001.

default value: none.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. A-50

See also: DB_SMode, RP_BTime, RP_Clear, RP_Iterv, RP_Primy, RP_PtNum,
RP_ReTry

Where to use: server side of the primary database.

User-defined filename=<physical filename> <pages>

DBMaker allows users to create data or BLOB files and add them to a tablespace
when the original tablespace has been filled. Users generally specify a logical file name
without a full path when creating a file. Users can map the logical file name to a
physical file path name that is used by the operating system to access the file.

Â Mapping a file in the dmconfig.ini file:
FILE1 = /disk1/usr/datafile 100

Although you specify FILE1 in DBMaker, DBMaker will create a file
/disk1/usr/datafile with 100 pages (4KB per page). If this file has to be moved to
another directory, change the physical file name in the dmconfig.ini file. There is no
need for modification to your programs or SQL scripts. The rule for DB_DbDir also
applies to user-defined files.

valid range: file name — string with length < 256

 size — 2 ~ 524287

see also: DB_DbDir, DB_UsrBb, DB_UsrDb

where to use: server side

1 Appendix B

©Copyright 1995-2003 CASEMaker Inc. B-1

B System Catalog
Reference

Part of the definition for a relational database is that all database information must be
represented at the logical level in the same way as user data. This information is stored
in the system catalog, allowing authorized users to use SQL to access information on
the database in the same way they access data in SQL tables. This appendix contains
descriptions of the system catalog tables and views, organized alphabetically by name.
You can query these system catalog tables to view detailed status of a database.

B.1 The System Catalog

The system catalog is a set of tables that contains information on all objects in the
database. The system catalog is also known as the data dictionary.

All system catalogs are owned by SYSTEM, and can be read by any user that has at
least the Connect Authority. Since system catalogs belong to SYSTEM, you cannot
DROP a system table or a system-defined column, and you cannot INSERT or
DELETE rows in a system table.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. B-2

B.2 DBMaker System Catalog
Tables

The following table lists all of the system catalog tables in DBMaker, and a brief
description of what is contained in each table.

TABLE NAME CONTENTS

SYSAUTHCOL Column privilege information

SYSAUTHEXE Executable object privilege information

SYSAUTHGROUP Group information

SYSAUTHMEMBER Group member information

SYSAUTHTABLE Table privilege information

SYSAUTHUSER Security level information

SYSCMDINFO Stored command information

SYSCOLUMN Column information

SYSCONINFO Connection information

SYSDBLINK Database link information

SYSDOMAIN Domain information

SYSFILE File information

SYSFILEOBJ File object information

SYSFOREIGNKEY Foreign key information

SYSGLBTRANX DDB global transaction information

SYSINDEX Index information

SYSINFO Database system information

SYSIOINFO I/O Information

SYSLOCK Lock information.

SYSOPENLINK Open link information

SYSPENDTRANX Pending distributed transaction information

1 Appendix B

©Copyright 1995-2003 CASEMaker Inc. B-3

SYSPROCINFO Stored procedure information

SYSPROCPARAM Stored procedure parameter information

SYSPROJECT ESQL project information

SYSPUBLISH Table replication source information

SYSSUBSCRIBE Table replication destination information

SYSSYNONYM Synonym information

SYSTABLE Table information

SYSTABLESPACE Tablespace information

SYSTEXTINDEX Text index information

SYSTRIGGER Trigger information

SYSTRPDEST Table replication information

SYSTRPJOB Information for recording all jobs to be replicated

SYSTRPPOS Information for Distributor to prune transaction log
files

SYSUSER Information on users logged into the database

SYSUSERFUNC User-defined function information

SYSVIEWDATA View information

SYSWAIT Waiting connection information

SYSAUTHCOL

The SYSAUTHCOL table lists the columns in all tables on which a user has been
granted object privileges. If a user is allowed to perform some operations such as
INSERT, UPDATE or REFERENCE on the authorized table with all columns (i.e.
the return value of INS_ALL, UPD_ALL, or REF_ALL in SYSAUTHTABLE is 1),
then the return values of the columns, INS, UPD, REF in SYSAUTHCOL should be
ignored.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. B-4

COLUMN NAME DESCRIPTION

COLUMN_NAME Name of the column on which privileges have been
granted.

TABLE_NAME Name of the table the column belongs to.

GRANTEE Name of the user granted privileges on the column.
Must be a valid user or group name.

TABLE_OWNER Name of the user who created the table.

INS 1 — User has the privilege to insert data into the
specified column.

0 — User does not have the privilege to insert data
into the specified column.

UPD 1 — User has the privilege to update data in the
specified column.

0 — User does not have the privilege to update data
in the specified column.

REF 1 — User has the privilege to create a constraint that
refers to the specified column.

0 — User does not have the privilege to create a
constraint that refers to the specified column.

SYSAUTHEXE

The SYSAUTHEXE table contains executable object information.

COLUMN NAME DESCRIPTION

OBJNAME Name of the executable object.

OWNER User who created the executable object.

OBJTYPE Type of executable object, such as "Procedure",
"Command", "Project", etc.

GRANTEE Name of the user granted privileges on the executable
object.

1 Appendix B

©Copyright 1995-2003 CASEMaker Inc. B-5

SYSAUTHGROUP

The SYSAUTHGROUP table gives the names of all valid groups in the database.

COLUMN NAME DESCRIPTION

GROUP_NAME Name of the group

GROUP_OWNER User who created the group

NUM_MEMBERS Number of members in this group

SYSAUTHMEMBER

The SYSAUTHMEMBER table lists all members who belong to a group.

COLUMN NAME DESCRIPTION

MEMBER_NAME Name of the member who belongs to the group

GROUP_NAME Name of the group

SYSAUTHTABLE

The SYSAUTHTABLE table is a list of all privileges which have been granted on
tables, and who they were granted to.

COLUMN NAME DESCRIPTION

TABLE_NAME Name of the table or view on which privileges have
been granted.

GRANTEE Name of the user granted privileges on the table.

TABLE_OWNER User who created the table or view.

NUM_RPI_COLS Number of columns that have privileges granted on
them in the table or view.

 Database Administrator’s Guide1

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-6

SEL_ALL 1 — User has the privilege to select data from all
columns in the specified table or view.

0 — User does not have the privilege to select data
from columns in the specified table or view.

DEL_ALL 1 — User has the privilege to delete data in all
columns in the specified table or view;

0 — User does not have the privilege to delete data
from columns in the specified table or view.

INS 1 — User has the privilege to insert data into specific
columns in the specified table or view.

0 — User does not have the privilege to insert data
into any columns in the specified table or view.

INS_ALL 1 — User has the privilege to insert data into all
columns in the specified table or view.

0 — User does not have the privilege to insert data
into all columns in the specified table or view, but
may still have privileges on individual columns (see
INS).

UPD 1 — User has the privilege to update data in specific
columns in the specified table or view.

0 — User does not have the privilege to update data
in any columns in the specified table or view.

UPD_ALL 1 — User has the privilege to update data in all
columns in the specified table or view.

0 — User does not have the privilege to update data
in all columns in the specified table or view, but may
still have privileges on individual columns (see UPD).

ALT_ALL 1 — User has the privilege to alter the definition of
the specified table or view.

0 — User does not have permission to alter the
definition of the specified table or view.

1 Appendix B

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-7

IDX_ALL 1 — User has the privilege to create or drop indexes
on the specified table or view.

0 — User does not have the privilege to create or drop
indexes on the specified table or view.

REF 1 — User has the privilege to create a
CONSTRAINT, WHICH refers to specific columns
in the specified table or view.

0 — User does not have the privilege to create a
constraint on any columns in the specified table or
view.

REF_ALL 1 — User has the privilege to create a
CONSTRAINT, WHICH refers to columns in the
specified table or view.

0 — User does not have the privilege to create a
constraint which refers to columns in the specified
table or view, but may still have privileges on
individual columns (see REF).

SYSAUTHUSER

The SYSAUTHUSER table lists the names and authority levels of valid users in a
database.

COLUMN NAME DESCRIPTION

USER_NAME User ID of each valid user in the database; a user is
considered valid if they have been granted CONNECT
authority.

DBA 1 — User has DBA Authority.

0 — User does not have Dba authority.

RESOURCE 1 — User has resource authority.

0 — User does not have resource authority.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. B-8

SYSCMDINFO

The SYSCMDINFO table contains stored command information.

COLUMN NAME DESCRIPTION

MODULENAME Module name

CMDNAME Command name

CMDOWNER Command owner

STATEMENT Command statement

NUM_PARM Number of parameters

STATUS 1: valid; 0: invalid

SYSCOLUMN

This table lists every column for each table and view, including the columns in the
system catalog tables. In the SCALE and RADIX columns, a value of -1 is returned
where SCALE and RADIX are not applicable to the data type found in that column.

COLUMN NAME DESCRIPTION

COLUMN_NAME Name of the column

TABLE_NAME Name of the table that owns this column

TABLE_OWNER Name of the user who created the table

COLUMN_ORDER Order of the column in the table

NULLABLE 1 — Column allows null values

0 — Column does not allow null values

TYPE_NAME Type name of the column. Can be any of the
following: BINARY, CHAR, NCHAR, DATE,
DECIMAL, DOUBLE, FILE, FLOAT, INTEGER,
LONG VARCHAR, NCLOB, LONG VARBINARY,
SERIAL, SMALLINT, TIME, TIMESTAMP,
VARCHAR, or NVARCHAR

1 Appendix B

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-9

PRECISION Precision of the column

SCALE Scale of the column

RADIX Radix of the column

ASCII_DEF Default value of ASCII form for the column

CONSTRAINT Constraint for the column

REMARKS A description of the column

SYSCONINFO

The SYSCONINFO table contains information about the connection of the database.

COLUMN NAME DESCRIPTION

CONNECTION_ID Connection ID

LAST_SERIAL The last serial number working on the updated
column, that is of a SERIAL type

LAST_OID The object ID (OID) of the last inserted record.

INFO1 Reserved

INFO2 Reserved

INFO3 Reserved

INFO4 Reserved

SYSDBLINK

The SYSDBLINK table contains information on remote database links.

COLUMN NAME DESCRIPTION

OWNER Link Owner

DB_LINK Link Name

 Database Administrator’s Guide1

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-10

DBSVR A database section, which contains the remote
database information.

USER_NAME User Name in the remote database

SYSDOMAIN

The SYSDOMAIN table contains information on domains created in the database.

COLUMN NAME DESCRIPTION

DOMAIN_NAME The name of the domain

DOMAIN_OWNER The name of the user who created the domain

ASCII_DEF Default value of ASCII form for the domain

TYPE_NAME Type name of the column. Can be any of the
following: BINARY, CHAR, NCHAR, DATE,
DECIMAL, DOUBLE, FILE, FLOAT,
INTEGER, LONG VARCHAR, NCLOB,
LONG VARBINARY, SERIAL, SMALLINT,
TIME, TIMESTAMP, VARCHAR, or
NVARCHAR

DATA_LEN The size of the data type for the domain

PRECISION Precision of the domain

SCALE Scale of the domain

CONSTRAINT Constraint of the domain

SYSFILE

The SYSFILE table contains information on files in the database.

COLUMN NAME DESCRIPTION

FILE_NAME Logical file name

1 Appendix B

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-11

FILE_TYPE File type: 1 (data file) or 2 (BLOB file)

TS_NAME Name of the tablespace the file is in

FILE_NPAGES Number of pages in the file. If the tablespace is an
AUTOEXTEND tablespace, then FILE_NPAGES
may be less than the physical FILE_NPAGES in
the file.

RAWDEV_OFFSET Not supported in this version of DBMaker

SYSFILEOBJ

The SYSFILEOBJ table contains information on the file objects in the database. This
includes both system and user file objects.

COLUMN NAME DESCRIPTION

FILE_TYPE 00 — system file object

01 — user file object

SHARE The number of records that share the file object

FILE_NAME The full path with the filename to show where the file
object is located.

SYSFOREIGNKEY

The SYSFOREIGNKEY table contains information on all foreign keys in the
database.

COLUMN NAME DESCRIPTION

FK_TBL_NAME Name of the child table (the table the foreign key is
defined on)

PK_TBL_NAME Name of the parent table for the foreign key

FK_TBL_OWNER Owner of the child table

PK_TBL_OWNER Owner of the parent table

 Database Administrator’s Guide1

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-12

FK_NAME Name of the foreign key

UPD_ACT Update referential action

0 — No action

1 — Set NULL

2 — Cascade

3 — Set default value

DEL_ACT Delete referential action

0 — No action

1 — Set null

2 — Cascade

3 — Set default value

SYSGLBTRANX

The SYSGLBTRANX table contains information on global transactions.

1 Appendix B

©Copyright 1995-2003 CASEMaker Inc. B-13

COLUMN NAME DESCRIPTION

STATE Global transaction state:

0 (ISSUE) — A transaction branch is issued, but the
participant has not prepared all participants.

1 (PREPARE) — The participant is prepared, but
waits for it's father participant to decide whether to
commit or abort.

2 (COMMIT) — The participant has decided to
commit the global transaction.

3 (PEND_TO_COMMIT) — After crash recovery,
this transaction branch has been added to the commit
queue and is waiting to be committed.

4 (PEND_TO_ABORT) — After crash recovery, this
transaction branch has been added to the abort queue
and is pending an abort.

PARTICIPANT Global transaction participant

GLBTRANXID Global transaction ID

SYSINDEX

The SYSINDEX table contains information on indexes in the database. A -1 in the
NUM_PAGE, NUM_LEVEL, NUM_LEAF, DIST_KEY, NUM_PAGE_KEY, or
CLSTR_COUNT columns means those values are not applicable.

COLUMN NAME DESCRIPTION

INDEX_NAME Name of the index

TABLE_NAME Name of the table that the index is defined on

TABLE_OWNER Owner of the table that the index is defined on

TS_NAME Specifies the tablespace that the index is stored on

 Database Administrator’s Guide1

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-14

UNIQUE Status flag to indicate uniqueness of the index:

0 — non-unique

1 — unique

3 — primary key

NUM_COL Number of columns in the index.

NUM_PAGE Number of index pages.

NUM_LEVEL Number of levels.

NUM_LEAF Number of leaf pages.

DIST_KEY Number of distinct keys.

NUM_PAGE_KEY Number of pages per key.

CLSTR_COUNT Cluster count; the number of page I/O while we use
the index to access data page. It is related to the
number of buffers.

SYSINFO

The SYSINFO table gives information on the current state of a database.

The SYSINFO table’s schema is different from other system tables. The schema is
given below:
SYSTEM.SYSINFO (char(4) ID, varchar(32) INFO, varchar(32) VALUE);

The meaning of each column follows:

 ID: Item identifier. The system information is cataloged according to this ID.
The first two characters represent the category, and the following 2 characters
identify the item within the category. E.g. For the ID ‘0105’ representing
NUM_LOGICAL_READ, the ‘01’ means it belongs to the page and I/O
category, and the ‘05’ is its sequence in the page and I/O category. Users can
sort or filter the SYSINFO by ID.

 INFO: Item name of the system information. E.g. the name
‘NUM_LOGICAL_READ’ means the number of logical disk read.

1 Appendix B

©Copyright 1995-2003 CASEMaker Inc. B-15

 VALUE: All values of system information are returned as VARCHAR data.

Â Example

The statement below will show the number of logical disk read:
dmSQL> select INFO, VALUE from SYSTEM.SYSINFO where INFO = ‘NUM_LOGICAL_READ’;
ID INFO VALUE
==== ==================
 ===
0105 NUM_LOGICAL_READ 338

1 rows selected

Below lists all items in the SYSINFO catalog.

PAGE AND I/O INFORMATION:

SYSINFO.ID SYSINFO.INFO DESCRIPTION

0101 NUM_IDX_SPLIT Number of index page splits
occurring.

0102 NUM_PAGE_COMPRESS Number of data pages
compressed, i.e. page
reorganization.

0103 NUM_PHYSICAL_READ Number of physical disk
reads. I/O unit is Page.

0104 NUM_PHYSICAL_WRITE Number of physical disk
writes. I/O unit is Page.

0105 NUM_LOGICAL_READ Number of logical reads. I/O
unit is Page.

0106 NUM_LOGICAL_WRITE Number of logical writes. I/O
unit is Page.

0107 NUM_PAGE_BUF Number of page buffers.
Counting unit is Page.

NOTE 1 Page = 4096 bytes.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. B-16

JOURNAL INFORMATION:

SYSINFO.ID SYSINFO.INFO DESCRIPTION

0201 NUM_JNL_BLK_READ Number of journal blocks
read from journal files
expressed in blocks.

0202 NUM_JNL_BLK_WRITE Number of journal blocks
written to journal files
expressed in blocks.

0203 NUM_JNL_REC_WRITE Number of journal records
generated. The new journal
record is placed in the
journal buffer first.

0204 NUM_JNL_FRC_WRITE Number of journal forced
writes. This number is the
I/O number of flushing
dirty journal buffer to disk.

0205 NUM_JOURNAL_FILE Number of journal files.

0206 NUM_JOURNAL_BLOCKS Number of journal blocks in
a file. The total number of
journal blocks in a database
is:

NUM_JOURNAL_FILE*
NUM_JOURNAL_BLOC
KS

0207 NUM_JNR_BLOCK_FREE Number of free journal
blocks.

0208 CURRENT_JOURNAL_FN The file number of the
currently used journal file

0209 CURRENT_JOURNAL_BN The current block number
of the journal file. Each
journal block of journal files
has a unique address that is
formed by
CURRENT_JOURNAL_F

1 Appendix B

SYSINFO.ID SYSINFO.INFO DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-17

N and
CURRENT_JOURNAL_B
N.

The block number of a
journal file is counted from
0.

NOTE 1 Block = 512 bytes.

TRANSACTION INFORMATION:

SYSINFO.ID SYSINFO.INFO DESCRIPTION

0301 NUM_STARTED_TRANX Number of started
transactions.

0302 NUM_COMMITED_TRA
NX

Number of committed
transactions.

0303 NUM_ABORTED_TRANX Number of aborted
transactions.

0304 NUM_CHECKPOINT Number of checkpoints.

0305 NUM_COMMIT_WAITER Number of transactions
awaiting group commit.

LOCK INFORMATION:

SYSINFO.ID SYSINFO.INFO DESCRIPTION

0401 NUM_ROW_LOCK_UPG Number of page locks
escalated (i.e. row locks
escalated to a page lock).

0402 NUM_PAGE_LOCK_UPG Number of table locks
escalated (i.e. page locks
escalated to a table lock).

0403 NUM_LOCK_TIMEOUT Number of failed locks due to
timeout.

 Database Administrator’s Guide1

SYSINFO.ID SYSINFO.INFO DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-18

0404 NUM_LOCK_WAIT Number of locks waiting.

0405 NUM_LOCK_REQUEST Number of locks requested.

0406 NUM_DEADLOCK Number of deadlocks
detected.

CONNECTION INFORMATION:

SYSINFO.ID SYSINFO.INFO DESCRIPTION

0501 NUM_MAX_HARD_CO
NNECT

Maximum number of allowed
connections for a database
(hard limitation of connection,
i.e. DB_MaxCo when database
start with new journal or
creating a new database).

0502 NUM_MAX_SOFT_CON
NECT

Maximum number of allowed
connections at a time (soft
limitation of connection, i.e.
DB_MaxCo when database
started normally). The soft
limitation of connections is less
or equal to the hard limitation
of connections. (In previous
versions of DBMaker this was
called NUM_MAX_TRANX)

0503 NUM_CONNECT Number of currently active
connections. (In previous
versions of DBMaker this was
called NUM_ACT_TRANX)

0504 NUM_PEAK_CONNECT Maximum number of active
connections at a time (peak
number of active connections).

1 Appendix B

©Copyright 1995-2003 CASEMaker Inc. B-19

DATA OPERATION INFORMATION:

SYSINFO.ID SYSINFO.INFO DESCRIPTION

0601 NUM_SQL_SELECT Number of SELECT
operations.

0602 NUM_SQL_INSERT Number of INSERT
(including INSERT INTO)
operations.

0603 NUM_SQL_UPDATE Number of UPDATE
operations.

0604 NUM_SQL_DELETE Number of DELETE
operations.

0605 NUM_SQL_PREPARE Number of SQLPrepare() calls
to server.

0606 NUM_SQL_EXECUTE Number of SQLExecute() calls
to server.

0607 NUM_SQL_EXEDIRECT Number of SQLExecDirect()
calls to server.

0608 NUM_SQL_FETCH Number of fetched data
passing across the network.

DATABASE INFORMATION:

SYSINFO.ID SYSINFO.INFO DESCRIPTION

0701 SYSINFO_RESET_TIME Time the counter of
SYSINFO was restarted (new)

This is used for record the
time the SYSINFO is reset.
The setting happen when:

1. dmSQL> set SYSINFO
clear;

2. One counter is overflow,
and then reset all counters.
The checking is done when:

 Database Administrator’s Guide1

SYSINFO.ID SYSINFO.INFO DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-20

 2-1. Each time to select
SYSINFO table.

 2-2. Every about 5 seconds
by I/O Server.

0702 DCCA_SIZE Total size of DCCA. Byte
unit.

0703 FREE_DCCA_SIZE Available size of DCCA. Byte
unit.

0704 DDB_MODE Distributed database mode;
ON: Enable; OFF: Disable.

0705 BACKUP_MODE Backup mode;

. NON-BACKUP: non
backup mode (DB_BMode =
0)

. BACKUP-DATA: backup
data only mode (DB_BMode
= 1)

. BACKUP-DATA-AND-
BLOB: backup data and
BLOB mode (DB_BMode =
2)

0706 USER_FO_MODE User file object mode; ON:
Enable; OFF: Disable.

0707 READ_ONLY_MODE Read-only mode; ON:
Enable; OFF: Disable.

0708 FRAME_SIZE BLOB frame size. Byte unit.

0709 CREATE_DB_TIME Time the database was
created.

0710 START_DB_TIME Time the database was
started.

0711 VERSION DBMaker version.

0712 FILE_VERSION Database file version.

1 Appendix B

SYSINFO.ID SYSINFO.INFO DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-21

0713 FORCE_NEW_JNL_TIME Time the database startup
with force new journal.

0714 START_NO_JNL_TIME Time of turning the journal
off.

0715 END_NO_JNL_TIME Time of turning the journal
on.

SYSTEM INFORMATION:

SYSINFO.ID SYSINFO.INFO DESCRIPTION

0801 CPU_USAGE The average CPU load during a
short period (about 5 seconds)
(new). (0 ~ 100 %)

SUPPORTED PLATFORM:
Solaris, LINUX, Windows 2000
(only count the first CPU, and
need pdh.dll library).

 You must start I/O Server to
enable this item.

0802 TOTAL_MEMORY Total physical memory. Byte unit.

SUPPORTED PLATFORM:
Solaris, LINUX, Windows
NT/2000, UNIX that supports
POSIX standard.

0803 TOTAL_FREE_MEMO
RY

The current free physical memory
(new). Byte unit.

SUPPORTED PLATFORM:
Solaris, LINUX, Windows
NT/2000, UNIX that supports
POSIX standard.

0804 TOTAL_SWAP_SPACE Total swap space. Byte unit.

SUPPORTED PLATFORM:
Solaris, LINUX, Windows

 Database Administrator’s Guide1

SYSINFO.ID SYSINFO.INFO DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-22

NT/2000.

0805 TOTAL_FREE_SWAP_
SPACE

The current free swap space.
(new). Byte unit.

SUPPORTED PLATFORM:
Solaris, LINUX, Windows
NT/2000.

For unsupported versions the value is NULL. The SYSINFO catalog is the collection
of accumulated counters.. Users should know that there are two ways to reset
SYSINFO:

1. A user executes the “set SYSINFO clear” command.

2. When one counter overflows, all counters in the SYSINFO will be reset. DBMaker
checks for overflow:

a) Each time the SYSINFO table is selected.

b) Every 5 seconds by the I/O Server.

Users can get the reset time by executing the following statement:
dmSQL> select VALUE from SYSTEM.SYSINFO where INFO = ‘SYSINFO_RESET_TIME’;

SYSLOCK

The SYSLOCK table contains information on status for locks on objects in s database.

NOTE Lock granularity can be SYSTEM, TABLE, PAGE, or TUPLE, lock status can be

GRANTED, WAITING, or CONVERT, and lock mode can be NONE, IS, S,

IX, SIX, or X.

COLUMN NAME DESCRIPTION

LK_OBJECT_ID OID of locked object.

TABLE_ID OID of the table containing the locked
object.

LK_GRAN Lock granularity, SYSTEM, TABLE,
PAGE, or TUPLE.

1 Appendix B

©Copyright 1995-2003 CASEMaker Inc. B-23

HOLD_LK_CONNECTION Connection ID that is holding the lock
on the object.

LK_STATUS Lock status, GRANTED, WAITING, or
CONVERT.

LK_CURRENT_MODE Current lock mode of object.

LK_NEW_MODE New lock mode of object.

SYSOPENLINK

The SYSOPENLINK table contains information on open database links.

COLUMN NAME DESCRIPTION

DB_LINK Open link.

DBSVR Server.

USER_NAME User name.

TXN_STATUS Transaction status.

'R' — Read

'W' — Write

'N' — No transaction

SYSPENDTRANX

The SYSPENDTRANX table contains information on uncommitted transactions in a
distributed database environment.

COLUMN NAME DESCRIPTION

XIDFORMAT Format ID denoting the type of the global
coordinator, DBMaker is 22873.

PREPAREDTIME Time of the prepared commit transaction.

GLBTRANXID Global transaction ID.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. B-24

SYSPROCINFO

The SYSPROCINFO table contains information on stored procedures.

COLUMN NAME DESCRIPTION

QUALIFIER Qualifier.

PROC_OWNER Procedure owner.

NAME Procedure name.

NUM_INPUT_PARAMS Number of input parameters.

NUM_OUTPUT_PARAMS Number of output parameters.

NUM_RESULT_SETS Number of result sets.

REMARKS Remarks.

PROC_TYPE Procedure type.

1 (SQL_PT_PROCEDURE) — Procedure

2 (SQL_PT_FUNCTION) — Function

SYSPROCPARAM

The SYSPROCPARAM table contains information on stored procedure parameters.

COLUMN NAME DESCRIPTION

QUALIFIER Qualifier.

OWNER Procedure owner.

PROC_NAME Procedure name.

PARAM_NAME Parameter name.

PARAM_TYPE Parameter type.

1 (SQL_PARAM_INPUT) — Input.

3 (SQL_PARAM_OUTPUT) — Output.

4 (SQL_RETURN_VALUE) — Return value.

5 (SQL_RESULT_COL) — Result set.

1 Appendix B

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-25

DATA_TYPE Data type.

TYPE_NAME Type name.

PRECISION Precision.

LENGTH Length.

SCALE Scale.

RADIX Radix.

NULLABLE Nullable column.

1 — Allows null values.

0 — Does not allow null values.

REMARKS Remarks.

SYSPROJECT

The SYSPROJECT table contains information on ESQL projects.

COLUMN NAME DESCRIPTION

PROJECT_NAME Project name.

PROJECT_OWNER Project owner.

MODULE_NAME Module name.

MODULE_OWNER Module owner.

MODULE_SOURCE Module source.

REF_CMD Internal usage.

SYSPUBLISH

The SYSPUBLISH table contains information on table replication sources.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. B-26

COLUMN NAME DESCRIPTION

REPLICATION_NAME Name of replication.

TYPE S — Synchronous

A — Asynchronous.

TABLE_OWNER Owner of table being replicated.

TABLE_NAME Name of table being replicated.

NUM_PROJECT Number of projected columns.

FRAGMENT Fragment string.

NUM_SUBSCRIBER Number of subscribers.

SYSSUBSCRIBE

The SYSSUBSCRIBE table contains information on table replication targets.

COLUMN NAME DESCRIPTION

BASE_TABLE_OWNER Base table owner.

BASE_TABLE_NAME Base table name.

REPLICATION_NAME Replication name.

DB_LINK Database link.

TABLE_OWNER Table owner.

TABLE_NAME Table name.

SYSSYNONYM

The SYSSYNONYM table contains information on synonyms defined in a database.

COLUMN NAME DESCRIPTION

SNAME Synonym name.

OWNER Synonym owner.

1 Appendix B

©Copyright 1995-2003 CASEMaker Inc. B-27

TV_NAME The source table/view name of the synonym.

TV_OWNER Table/view owner.

TV_LINK Link name of a table or view in a remote database.

TV_SERVER Database name of a table or view in a remote database.

SYSTABLE

The SYSTABLE table contains information on tables in the database.

COLUMN NAME DESCRIPTION

TABLE_NAME Name of the table.

TABLE_OWNER Owner of the table.

TABLE_VIEW Table type: SYSTEM TABLE, SYSTEM
VIEW, TABLE, or VIEW.

LOCKMODE Lock mode applied to the table:

T — table lock

P — page lock

R — row lock

The default lock mode is page lock.

CACHEMODE Cache mode of the full table scan:

T — there is caching (true).

F — there is no caching (false).

TS_NAME Name of the tablespace the table is in.

TABLE_OID The OID of the table.

TABLE_VERSION

NUM_COL Number of columns in the table.

NUM_INDEX Number of indexes on the table.

 Database Administrator’s Guide1

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-28

NUM_PAGE Number of pages in the table. The default
value is -1. When the user updates statistics on
the table, the true value of NUM_PAGE will
be returned.

NUM_FRAME Number of BLOB frames in the table

NUM_ROW Number of rows in the table. The default
value is -1. When the user updates statistics on
the table, the true value of NUM_ROW will
be returned.

NUM_INDIRECT_ROW Number of indirect rows

AVERAGE_LENGTH Average length for data in the table. Default
value is -1. When the user updates statistics on
the table, the true value of
AVERAGE_LENGTH will be returned.

CREATE_TIME Time that the table was created.

UPD_STS_TIME Last time table’s statistics were updated.

UPD_STS_INTERVAL Update statistics time interval.

CONSTRAINT Constraint for the table.

FILLFACTOR The FILLFACTOR specifies the percentage of
the page that can be filled before it stops
allowing new data to be inserted (to allow
room for updates). The default value is 100
(%).

SERIAL_COL_ID Serial column is located in the nth column in
the table.

SERIAL_START_NO Serial column starting number. The default
value is 1.

REMARKS A description of the table.

NUM_TRIG Number of triggers on table.

NUM_TEXTINDEX Number of text indexes on table.

NUM_PUBLICATION Number of publications on table.

1 Appendix B

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-29

NUM_DEST Number of target databases for asynchronous
replication.

SYSTABLESPACE

The SYSTABLESPACE table contains information on all tablespaces in the database.

COLUMN NAME DESCRIPTION

TS_NAME Name of the tablespace.

TS_TYPE Type of tablespace:

1 — AUTOEXTEND.

0 — NORMAL.

NUM_FILES Number of files in the tablespace.

NUM_PAGES Number of pages in the tablespace. If the
tablespace is autoextend, then NUM_PAGES may
be less than the real NUM_PAGES in the
tablespace.

NUM_FREE_PAGES Number of free pages available in the tablespace.

NUM_FRAMES Number of BLOB frames in the tablespace.

NUM_FREE_FRAM
ES

Number of free BLOB frames available in the
tablespace.

SYSTEXTINDEX

The SYSTEXTINDEX table contains information on text indexes.

COLUMN NAME DESCRIPTION

TEXTINDEX_NAME Text index name.

TABLE_NAME Table name.

TABLE_OWNER Table owner.

 Database Administrator’s Guide1

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-30

COLUMN_ID Column ID.

TEXT_BLOCK_SIZE Text block size.

BASIC_BIT_LENGTH Basic bit length.

EXT_BIT_LENGTH Extended bit length.

CLUSTER_WIDTH Cluster width.

NUM_TEXT_BLOCK Number of text blocks.

AVG_TEXT_SIZE Average text size.

SYSTRIGGER

The SYSTRIGGER table contains information on triggers.

COLUMN NAME DESCRIPTION

TBNAME Table name.

TBOWNER Table owner.

TRIGNAME Trigger name.

TRIGEVENT Trigger event.

1 — Insert event

2 — Delete event

3 — Update event trigger

4 — Update column event

NUM_COL Number of columns.

SCOL_NUM The lowest column number updated for trigger.

TRIGTYPE Trigger type.

1 — BEFORE and FOR EACH STATEMENT

2 — BEFORE and FOR EACH ROW

4 — AFTER and FOR EACH STATEMENT

8 — AFTER and FOR EACH ROW

1 Appendix B

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-31

STATUS Status. (1: enable; 0: disable.)

OLD Old value.

NEW New value.

MODE 1: valid trigger; 0: invalid trigger.

TRIGDEF Trigger definition.

SYSTRPDEST

The SYSTRPDEST table contains information on schedules used by asynchronous
table replication.

COLUMN NAME DESCRIPTION

SVRNAME Remote database name.

USER_NAME User account in the remote database.

STATUS Status of the remote database.

 (0: normal; 1: suspend)

BEGTIME Beginning time of replication.

INTERVAL Interval between replicating.

SYSTRPJOB

The SYSTRPJOB table contains information on logs used by asynchronous table
replication.

COLUMN NAME DESCRIPTION

DESTINATION The database to which data is replicated.

FN The file numbers of a transaction log record.

OFFSET The Offset in the transaction log record.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. B-32

SYSTRPPOS

The SYSTRPPOS table contains information used by asynchronous table replication.

COLUMN NAME DESCRIPTION

POSARRAY Internal usage.

SYSTXNINFO

The SYSTXNINFO table, subset of SYSINFO table, contains information on
transactions for a database.

COLUMN NAME DESCRIPTION

NUM_MAX_TRANX Maximum number of transactions.

NUM_ACT_TRANX Number of currently active transactions.

NUM_STARTED_TRANX Number of started transactions.

NUM_COMMITED_TRANX Number of committed transactions.

NUM_ABORTED_TRANX Number of aborted transactions.

NUM_COMMIT_WAITER Number of transactions waiting commit.

SYSUSER

The SYSUSER table contains information on the status of all users currently
connected to a database. Before killing a connection, you should query the SYSUSER
table for the ID of the connection you want to kill. If your login host name is not
registered in the network, LOGIN_HOST is anonymous.

COLUMN NAME DESCRIPTION

CONNECTION_ID Connection ID.

USER_NAME Login user name.

1 Appendix B

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-33

LOGIN_TIME Login time.

LOGIN_IP_ADDR Login IP address.

LOGIN_HOST Login host name.

NUM_SCAN Number of SELECT operations.

NUM_INSERT Number of INSERT operations.

NUM_UPDATE Number of UPDATE operations.

NUM_DELETE Number of DELETE operations.

NUM_TRANX Number of processed transactions.

NUM_JBYTE_PER_TRAN Number of journal bytes per transaction.

FIRST_W_JNR_FN First journal file number of one active
transaction.

FIRST_W_JNR_BN First journal block number of one active
transaction

NUM_BYTE_JNR_DATA Total journal bytes used in the active
transaction

NUM_J_BLOCK_DURATN The span between first journal block
number used by the active transaction and
one used most recently.

SQL_CMD The most recently executed SQL command
and the command status. The command
status could be the following:

[PRE] - The SQL command is preparing.

[EXEC] - The SQL command is executing
from a SQLExecute call.

[EXDIR] - The SQL command is
executing from a SQLExecDirect call.

[FETCH] - The operation is in a fetch data
phase.

[EXIT] - The SQL command has finished
a prepare, execute or fetch operation.

 Database Administrator’s Guide1

COLUMN NAME DESCRIPTION

©Copyright 1995-2003 CASEMaker Inc. B-34

TIME_OF_SQL_CMD The time when the most recently used
SQL command was executed.

SYSUSERFUNC

The SYSUSERFUNC table contains information on user-defined and built-in
functions.

COLUMN NAME DESCRIPTION

MODE Type of function:

1 — built-in function

0 — not built-in function

FILE_NAME The name of the file that the built-in function
is in.

FUNC_NAME The name of the built-in function.

RETURN_TYPE Data type the built-in function returns.

NUM_OF_PARAMETER The number of parameters in the function

PARAMETER Data type of each parameter. The number of
parameters is given by the value of
NUM_OF_PARAMETER.

SYSVIEWDATA

The SYSVIEWDATA table gives information on the table views in the database.

COLUMN NAME DESCRIPTION

VIEW_NAME Table view name.

VIEW_OWNER Table view owner.

STATUS 0 — invalid view.

1 — valid view.

1 Appendix B

©Copyright 1995-2003 CASEMaker Inc. B-35

VIEW_DEFINITION View definition.

SYSWAIT

The SYSWAIT table gives the status for locks that are currently waiting for another
lock to release an object.

COLUMN NAME DESCRIPTION

WAITING_CONNECTION ID of connection which is waiting.

WAITED_CONNECTION ID of connection which is being waited
for.

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. B-36

1 Appendix C

©Copyright 1995-2003 CASEMaker Inc. C-1

C System Limitations

DBMaker has certain limitations to the length of names in the database, the size of
indices, tables, and memory buffers, the size of files and the number of concurrent
transactions. These limitations and others are summarized in the following sections.

C.1 Naming Limitations

The ANSI/ISO standard for the SQL language specifies that database objects should
be given unique names, and defines the database objects that require names. These
names are used in SQL statements to identify which objects the statements act on.

The database objects that require names are:

 Tables

 Columns

 Users

DBMaker conforms to the ANSI/ISO standard with the exception of user names and
passwords, which may only contain 1 to 32 characters. In the ANSI/ISO standard,
SQL database object names have a maximum length of 32 characters, and may
contain letters and numbers. They may not contain spaces or punctuation characters.

DBMaker also supports names for several database objects and extends the range of
characters that can be used:

 Indexes

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. C-2

 Cursors

 Tablespaces

 Primary/Foreign keys

In DBMaker, database names may contain 1 to 32 alphanumeric characters or the
underscore character, in any position including the first.

All other identifiers, with the exception of passwords, may include 1 to 32 alpha-
numeric characters, Chinese double-byte characters, spaces, underscores, and the
symbols $ and #, in any position including the first. If spaces are used, the name must
be enclosed in double quotes (“ ”), and any trailing spaces are ignored. Passwords also
follow these rules, but are limited to a maximum length of 16 characters.

The size limitations on all of the named database objects supported by DBMaker are
shown in the table below.

ITEM MINIMUM MAXIMUM

Database Name 1 32

Tablespace Name 1 32

Table Name 1 32

Column Name 1 32

Index Name 1 32

Cursor Name 1 32

User Name 1 32

User Password 11 16

Physical File Name with file
path

1 2562

Logical File Name 1 32

1
 If a user does not set the password, then the length of the password is NULL.

2
 Including null terminator.

1 Appendix C

ITEM MINIMUM MAXIMUM

©Copyright 1995-2003 CASEMaker Inc. C-3

SQL Statement N/A 32767

Table C-1: Minimum/maximum lengths of database object names (in characters).

C.2 Storage Limitations
The following table shows the storage limitations placed on database objects by
DBMaker. While the maximum value is shown as a specific number for most of these
limitations, you should keep in mind that physical system limitations, such as system
memory or disk space, and operating system limitations, such as system resources or
other limitations, may impose a restriction before the specified value is reached.
Unless otherwise noted, all limitations are the same for all platforms supported by
DBMaker.

ITEM MINIMUM MAXIMUM

Size of a database — 70,000 GB

Number of files in a database 1 32767

Number of tablespaces in a database 1 32767

Number of files in a tablespace 1 32767

Number of tables in a tablespace 0 no limit3

Number of pages in a data file 2 524287

Number of columns in a table 1 252

Size of a tuple (row) in a table 0 39964

Number of indices on a table 0 no limit3

Number of columns in an index 1 16

Length of the key in an index 0 10241

3 The number of tables and indexes is currently restricted only by operating system limitations.
4 Including header. Refer to section 6.9 for more information.

 Database Administrator’s Guide1

ITEM MINIMUM MAXIMUM

©Copyright 1995-2003 CASEMaker Inc. C-4

Column ID which can be used in an index 1 1275

Number of system temporary files 1 8

Number of journal files 1 8

Number of pages in the journal file 23 524287

Number of projection columns 1 252

Number of GROUP BY columns 1 128

Number of ORDER BY columns 1 128

Number of ODBC binding parameters 0 255

Number of SQL sources 1 316

Number of bytes in a BLOB file 0 231-1

Number of pages in a data buffer 15 depends on
OS

Number of pages in a journal buffer 16 depends on
OS

Number of operators in predicate for a scan 1 100

Table C-2: Minimum and maximum size of database objects (in bytes)

C.3 Processing Limitations
The following table shows the processing limitations placed on a database by
DBMaker.

ITEM MINIMUM MAXIMUM

Number of concurrent transactions (connections) in 0 240

5 Must be one of the first 127 columns.
6 A source is defined as a database object that physically contains data. If an SQL statement lists an object

(such as a view) that is a combination of data from other objects that actually contain the data, it should
be counted as the number of objects combined to create it when calculating the number of sources.

1 Appendix C

©Copyright 1995-2003 CASEMaker Inc. C-5

a running database

Length of CHAR or BINARY data items 0 3992 bytes

Length of VARCHAR data items 0 3992 bytes

Length of LONG VARCHAR or LONG
VARBINARY data items

0 231 - 1
bytes

Number of items in the projection list of a selected
command

1 252

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. C-6

1Index

©Copyright 1995-2003 CASEMaker Inc. Index - 1

Index

A

Architecture
Client Library, 3-7–3-8
Client Program, 3-6–3-7
Client/Server Model, 3-4–3-5
Database, 5-1–5-2
DCCA, 3-2–3-3
Diagrams, 5-1–5-2
Figure, 5-1–5-2
Process, 3-1–3-2
Server Program, 3-6
Single-User Model, 3-3–3-4
Tablespace, 5-1–5-2

B

Backup
Automatic, 14-18–14-37
Backup-Data Mode, 14-10–14-11
BACKUP-DATA-AND-BLOB Mode, 14-

11
Combinations, 14-9
Compact, 14-30–14-32
File Format, 14-20–14-23, 14-18–14-37

Format, 14-18–14-37
Full, 14-6–14-7
History File, 14-37–14-39
Incremental, 14-7–14-8
Journal Trigger Settings, 14-28–14-30
NONBACKUP Mode, 14-10
Offline, 14-8
Offline Full, 14-17–14-18
Online, 14-8–14-9
Recovery Options, 14-39–14-40
Server Starting, 14-19–14-20
Server Stopping, 14-36–14-37
Setting, 14-14–14-15
Setting dmconfig.ini, 14-15–14-16
Starting Server, 14-19–14-20
Stopping Server, 14-36–14-37
Tablespace and BLOB Mode, 14-11–14-12
Using dmSQL, 14-16–14-17

Backup Automatic
Using dmconfig.ini, 14-22
Using JServer Manager, 14-23

Backup Full
Schedule, 14-32–14-33

Backup Journal Trigger
Settings, 14-28–14-30

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. Index - 2

Backup Offline Full
Using dmSQL, 14-17–14-18
Using JServer Manager, 14-17–14-18

Backup Server
Starting, 14-19–14-20
Stopping, 14-36–14-37

BLOB
Columns, 7-8–7-9
Custom, 7-3–7-7
Generating, 7-7
Predicate, 7-8–7-9
Space, 7-3–7-7
Updating, 7-8

Boolean
Search, 6-29–6-30

C

Catalog
Cache, 17-23
Checking, 6-56
Reference, B-1–B-36

Catalog Tables
Link System, 15-16
SYSAUTHCOL, B-3–B-4
SYSAUTHEXE, B-4
SYSAUTHGROUP, B-4–B-5
SYSAUTHMEMBER, B-5
SYSAUTHTABLE, B-5–B-7
SYSAUTHUSER, B-7
SYSCMDINFO, B-7–B-8
SYSCOLUMN, B-8–B-9
SYSCONINFO, B-9
SYSDBLINK, B-9
SYSDOMAIN, B-10

SYSFILE, B-10–B-11
SYSFILEOBJ, B-11
SYSFOREIGNKEY, B-11–B-12
SYSGLBTRANX, B-12–B-13
SYSINDEX, B-13
SYSLOCK, B-21–B-22
SYSOPENLINK, B-22
SYSPENDTRANX, B-23
SYSPROCINFO, B-23
SYSPROCPARAM, B-23–B-24
SYSPROJECT, B-24–B-25
SYSPUBLISH, B-25
SYSSUBSCRIBE, B-25–B-26
SYSSYNONYM, B-26
SYSTABLE, B-26–B-28
SYSTABLESPACE, B-28–B-29
SYSTEXTINDEX, B-29
SYSTRIGGER, B-29–B-30
SYSTRPDEST, B-30–B-31
SYSTRPJOB, B-31
SYSTRPPOS, B-31
SYSTXNINFO, B-31–B-32
SYSUSER, B-32–B-33
SYSUSERFUNC, B-33–B-34
SYSVIEWDATA, B-34
SYSWAIT, B-34–B-35

Checkpoint
Events, 14-2–14-5

Checkpoint Daemon
Frequent, 17-19
Setting, 17-7

Client/Server
DatabaseConnections, 4-26
Starting, 4-22–4-23

1Index

©Copyright 1995-2003 CASEMaker Inc. Index - 3

Column
Constraints, 6-34
Definitions, 6-10–6-11

Columns
Adding, 6-9–6-10
BLOB, 7-8–7-9
Creating Serial Columns, 6-39
Default Values, 6-3–6-4
Dropping, 6-9–6-10
Values, 6-3–6-4

Command
REFERENCING Clause, 10-3
SET DFO, 7-23
SET DFO COPY, 7-24
SET DFO DUPMODE, 7-23
SET DFO DUPMODE COPY, 7-24
SET DFO DUPMODE Limitations, 7-24–

7-26
SET DFO DUPMODE NULL, 7-23–7-24
SET DUPMODE, 7-23
Update Statistics, 17-14

Commands
Stored Commands, 11-1–11-2

Concurrency Control
Incorrect Summary, 9-7
Lost Update, 9-6
Necessity, 9-5
Temporary Update, 9-6–9-7

Configuration
Auto Update, 6-7–6-8
DCCA, 4-20–4-21
Default User, 4-17
Default User Password, 4-17
File Location, 4-4–4-5

Files, 5-10–5-11
Fillfactor, 6-5–6-6
I/O Daemon, 17-6
Password, 4-17
Raw Devices, 4-16
Replication, 16-36–16-38
System Files, 5-10–5-11
Tablespace, 5-11

Connection
Lock Time-Out, 4-27
Time-Out, 4-26–4-27

Connections
Disconnecting, 17-3–17-4
Killing, 17-3–17-4
Lock Time-Out, 4-27
Time-Out, 4-26–4-27

D

Daemon
Frequent Checkpoint, 17-19

Data
Integrity, 2-4
Partitions, 17-4
Reliability, 2-4–2-5

Database
Authority, 8-1–8-3
Checking, 6-57
Checkpoint Daemon, 17-7
Client/Server, 4-22–4-23
Client/Server Connections, 4-26
Connection Lock Time-Out, 4-27
Connection Time-Out, 4-26–4-27
Connections, 4-26
Consistency, 6-55–6-57

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. Index - 4

Data Partitions, 17-4
Distributed Environment, 15-5–15-9
Distributed Introduction, 15-1–15-3
Distributed Objects, 15-9–15-16
Distributed Structure, 15-3–15-4
Failures, 14-1–14-2
Forced Startup, 4-25
Global Transaction, 15-18–15-19
I/O Daemon, 17-6
Journal Partitions, 17-5
Killing Connections, 17-3–17-4
Lock Time-Out, 4-27
Monitor Link, 17-2–17-3
Object Mapping, 15-13–15-15
Performance Tuning, 17-1–17-2
Recovery, 14-2–14-5
Remote Connection Names, 15-10
Replication, 16-24
Replication Basics, 16-24–16-25
Replication Setup, 16-25–16-35
Separating Journal and Data Files, 17-5
Sessions, 9-5
Shutting Down, 4-27–4-28
Sort Order, 4-18
Start Mode, 4-24–4-25
Transaction Recovery, 15-17–15-18

Database Links
Creating, 15-11
Deleting, 15-13

Database Mode
Client/Server, 2-7–2-8
Multiple Connection, 2-7
Single-User, 2-7

Database Performance Tuning

I/O, 17-7
Database Replication

Slave Database Setup, 16-36
Start Database Mode

Source Database, 4-24
Target Database, 4-24

DCCA
Buffers, 17-18–17-19
Memory Tuning, 17-8–17-11
Page Buffers, 17-18–17-19

Default
Tablespace, 5-8

Disks
Poor Clustering, 17-16–17-18

Distributed Database
Environment, 15-5–15-9
Introduction, 15-1–15-3
Objects, 15-9–15-16
Structure, 15-3–15-4

DLL's
Building, 13-6–13-8

dmapixx.lib, 3-7
dmconfig.ini

Comments, A-3
Connections, 17-24–17-26
Creating, A-5
Default Values, 4-6, A-4
Example, 4-6–4-7
File Format, A-2–A-3
Format, 4-3
Keyword Basics, A-1
Keyword Reference, A-5–A-50
Keywords, 4-5–4-6, A-2
Location, 4-2–4-3

1Index

©Copyright 1995-2003 CASEMaker Inc. Index - 5

Search Path, A-4
Section Names, A-2

dmconfig.ini Keywords
DB_AtCmt=<value>, A-5
DB_AtrMd=<value>, A-5–A-6
DB_BbFil=<string>, A-6
DB_BfrSz=<value>, A-6
DB_BkCmp=<value>, A-9
DB_BkDir=<string>, A-6–A-7
DB_BkFrm=<value>, A-7–A-8
DB_BkFul=<value>, A-8
DB_BkItv=<string>, A-9
DB_BkOdr=<string>, A-9
DB_BkSvr=<value>, A-10
DB_BkTim=<string>, A-10
DB_BMode=<value>, A-10–A-11
DB_Brows=<value>, A-11
DB_CBMod=<value>, A-11
DB_ChTim=<value>, A-12
DB_CmChe=<value>, A-12
DB_CTimO=<value>, A-12–A-13
DB_DaiFm=<value>, A-13
DB_DaoFm=<value>, A-14
DB_DbDir=<string>, A-14–A-15
DB_DbFil=<string>, A-16
DB_DifCo=<value>, A-16
DB_DtClt=<value>, A-16
DB_EtrPt=<value>, A-17
DB_ExtNp=<value>, A-17–A-18
DB_FBkTm=<string>, A-18
DB_FBkTv=<string>, A-18
DB_FoDir=<value>, A-19
DB_ForcS=<value>, A-19
DB_ForUX=<value>, A-20

DB_FoTyp=<value>, A-21
DB_IDCap=<value>, A-23–A-24
DB_IFMem=<value>, A-23
DB_IOSvr=<value>, A-24
DB_ITimO=<value>, A-25
DB_JnFil=<string>, A-25
DB_JnlSz=<value>, A-25–A-26
DB_LbDir=<string>, A-26
DB_LCode=<value>, A-26–A-27
DB_LetPT=<value>, A-27
DB_LetRP=<value>, A-27
DB_LTimO=<value>, A-27–A-28
DB_MaxCo=<value>, A-28
DB_NBufs=<value>, A-29
DB_NetEc=<value>, A-30
DB_NJnlB=<value>, A-30
DB_Order=<string>, A-30–A-31
DB_PasWd=<string>, A-31
DB_PtNum=<value>, A-31
DB_RmPad=<value>, A-32
DB_RTime=<string>, A-32
DB_ScaSz=<value>, A-33
DB_SMode=<value>, A-33–A-34
DB_SPDir=<string>, A-35
DB_SPInc=<string>, A-35–A-36
DB_SPLog=<string>, A-36
DB_SQLSt=<value>, A-34–A-35
DB_StrOP=<value>, A-36–A-37
DB_StrSz=<value>, A-37
DB_SvAdr=<string>, A-37–A-38
DB_TmiFm=<string>, A-38
DB_TmoFm=<string>, A-38–A-39
DB_TpFil=<string>, A-39
DB_Turbo=<value>, A-39

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. Index - 6

DB_UMode=<value>, A-39–A-40
DB_UsrBb=<string>, A-40
DB_UsrDb=<string>, A-40–A-41
DB_UsrFo=<string>, A-41
DB_UsrId=<string>, A-41
DD_CTimO=<value>, A-41–A-42
DD_DDBMd=<value>, A-42
DD_GTItv=<string>, A-42
DD_GTSVR=<value>, A-42–A-43
DD_LTimO=<value>, A-43
Default Values, A-4
DM_DifEn=<value>, A-43
LG_NPFun=<string>, A-44
LG_Path=<string> \r, A-44
LG_PTFun=<string>, A-44–A-45
LG_Time=<value>, A-45
LG_Trace=<value>, A-45
RP_BTime=<value>, A-46
RP_Clear=<value>, A-46
RP_Iterv=<value>, A-47
RP_LgDir=<string>, A-46–A-47
RP_Primy=<string>, A-47
RP_PtNum=<value>, A-47–A-48
RP_ReTry=<value>, A-48–A-49
RP_SlAdr=<string>, A-49
User-defined filename=<physical filename>

<pages>, A-49–A-50
dmserver.exe, 3-5, 3-6
dmsqlc, 3-6
Domains

Creating, 6-41
Dropping, 6-42
Managing, 6-40–6-41

Dump Plan

Equal Join, 18-24–18-27
Index Scan, 18-22–18-24
Read, 18-20–18-21
Table Scan, 18-21–18-22

E

Extended
Regular Tablespace, 5-13–5-14

F

Features
Advanced Language, 2-6

File
BLOB, 5-5
Checking, 5-22–5-23
Fields, 5-6
Journal, 5-5–5-6
Journal Fields, 5-6

File Object
Application, 7-18
Generating, 7-12–7-13
Managing, 7-9–7-10, 7-9–7-10
Path, 7-10–7-12
Predicate, 7-16
Renaming, 7-15–7-16
Setting, 7-18
Support, 7-18
System File Extension Names, 7-13–7-14
UNC Names, 7-16–7-17

File Objects
Updating, 7-14–7-15

File Types
BLOB, 5-5

1Index

©Copyright 1995-2003 CASEMaker Inc. Index - 7

Data, 5-3–5-4
Journal, 5-5–5-6
Journal Fields, 5-6

Files
Configuration, 5-10–5-11
Raw Device, 5-13

FO
Setting, 7-18

Forced Startup, 14-5–14-6
Foreign Keys

Creating, 6-37–6-38
Dropping, 6-38

Forked Process, 3-5
Functions

Building DLLs, 13-6–13-8
Codes, 13-1–13-18
Creating UDFs, 13-9–13-11
DLLs, 13-6–13-8
Example, 13-2
UDF Interface, 13-1–13-6
UDF Related Keyword, 13-17
User Defined, 13-1–13-18

Fuzzy
Search, 6-30–6-32

I

I/O Daemon
Setting, 17-6

Index
Checking, 6-56
Creating, 6-17
Dropping, 6-18
Managing, 6-15–6-17
Scan, 18-7

Unique, 6-33

J

Join
Merge, 18-7
Nested, 18-7
Sequence, 18-6

journal
Partitions, 17-5

Journal
BLOB Logging, 7-19–7-22
Buffers, 17-20–17-21
File Object Logging, 7-22–7-23
FO Logging, 7-22–7-23
Recovery, 14-3
Resizing, 5-7
Two-Phase-Commit, 15-17

Journal File
Recovery, 14-3

Journal Files
Start Database Mode, 4-24

JServer Manager
Replication, 16-35–16-36

K

Key
Size, 6-53

Keys
Creating, 6-35–6-36
Dropping, 6-36
Foreign Keys, 6-37
Primary Key, 6-35
Size, 6-53

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. Index - 8

Keywords. See dmconfig.ini Keywords
Reference, A-5–A-50

L

Large Objects
Journal, 7-18–7-19
LO's, 7-1–7-2

libdmapic.a, 3-7
Limitations

Names, C-1–C-3
Processing, C-4–C-5
Storage, C-3–C-4

Links
Closing, 15-15–15-16
Creating, 15-11
Database, 15-10–15-11
Deleting, 15-13
Remote Database, 15-10–15-11
Transaction Control, 15-16–15-17

LO
Journal, 7-18–7-19

Lock
Contention, 17-23–17-24
Table, 6-5

Locks
Altering, 6-11
Deadlock, 9-9
Dealing Deadlock, 9-12
Granularity, 9-9–9-10
Lock Concept, 9-8
Shared and Exclusive locks, 9-8
Table, 6-5
Tables, 6-12
Two Phase Locking, 9-8–9-9

Types, 9-10–9-11

M

Managing
BLOBs, 7-3
File Objects, 7-9–7-10, 7-9–7-10
Groups, 8-7–8-9
Indexes, 6-15–6-17
Objects, 7-9–7-10, 7-9–7-10
Text Indexes, 6-18–6-19
Users, 8-3–8-7

Media
Failures, 14-2

Memory
Buffer Cache, 17-19–17-20
NOCACHE, 17-14–17-16
Page Buffer Cache, 17-11–17-14
Swap Out Cache, 17-14–17-16

Mode
Starting Database, 4-24–4-25

MTS
Support, 2-3

Multimedia
Support, 2-2

Multithreading, 3-5

N

Naming
Conventions, C-1–C-3

O

Object
Distributed Database, 15-9–15-16

1Index

©Copyright 1995-2003 CASEMaker Inc. Index - 9

Managing, 7-9–7-10, 7-9–7-10
Mapping, 15-13–15-15
Path, 7-10–7-12
Predicate, 7-16
Privileges, 8-9–8-14
Remote Database, 15-11–15-13
Renaming, 7-15–7-16
UNC Names, 7-16–7-17

Open Interface
Support, 2-3–2-4

Operating System
Performance, 17-8
Tuning, 17-8

Optimizer
Factors, 18-5–18-6
Input, 18-4–18-5

P

Password
Default User, 4-17

Predicate
File Object, 7-16

Primary Keys
Creating, 6-35–6-36
Dropping, 6-36

Processing
Limitations, C-4–C-5

Q

Query
Cost, 18-8–18-11
Optimization, 18-1–18-3
Results, 18-17

Sort, 18-7–18-8
Temporary Tables, 18-18
Tips, 18-15–18-17

Query Optimizer
Syntax, 18-18–18-20

R

Raw Devices
Using, 17-5

Records
Clustering, 17-16–17-18
Poor Clustering, 17-16–17-18

Recovery
Options, 14-39–14-40

Reference
Catalog, B-1–B-36
dmconfig.ini Keywords, A-5–A-50
System Catalog, B-1–B-36

Regular
Tablespace, 5-8

Remote Connections
Using Names, 15-10

Remote Database
Links, 15-11–15-13
Objects, 15-11–15-13

Replication
Basics, 16-24–16-25
Database Configuration, 16-36–16-38
JServer Manager, 16-35–16-36
Limitations, 16-1
Primary Database Setup, 16-35–16-36
Setup, 16-25–16-35
Slave Database Setup, 16-36

Restore Database

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. Index - 10

Start Database Mode, 4-24
Row

Size, 6-50–6-53

S

SCA
Tuning, 17-22

Scan
Index, 18-7
Table, 18-7

Search
Boolean, 6-29–6-30
Fuzzy, 6-30–6-32

Security
Database Authority, 8-1–8-3
Management, 2-5–2-6
Managing Groups, 8-7–8-9
Managing Users, 8-3–8-7
Object Privileges, 8-9–8-14
Policies, 8-1
System Catalog, 8-14

Serial Numbers, 6-38–6-39
Columns, 6-39
Creating Columns, 6-39
Generating, 6-39–6-40
Resetting, 6-40

Server
Connections, 17-24–17-26

Settings
Auto Update, 6-7–6-8
Fillfactor, 6-5–6-6

Start Database Mode
Database Replication Source, 4-24
New Journal, 4-24

Normal Start, 4-24
Read Only, 4-25
Restore Database, 4-24
Target Database, 4-24

Start Mode
Database, 4-24–4-25

Starting
Client/Server, 4-22–4-23

Startup Modes
Forced Startup, 14-5–14-6

Statistics
Auto Update, 6-7–6-8
Load, 18-14–18-15
Types, 18-11–18-12
Unload, 18-14–18-15
Update, 18-12–18-14

Storage
Limitations, C-3–C-4
Management, 2-5
Space, C-3–C-4

Stored Commands
Creating, 11-1–11-2
Dropping, 11-3
Executing, 11-2–11-3
Lifecycle, 11-5
Security, 11-3–11-5

Stored Procedure
Creating, 12-1–12-7
Dropping, 12-11
Executing, 12-7–12-11
Information, 12-12
Security, 12-12–12-13
Settings, 12-12

Support

1Index

©Copyright 1995-2003 CASEMaker Inc. Index - 11

API, 2-8
Synonyms

Creating, 6-15
Dropping, 6-15

System
Catalog, 8-14
Failures, 14-1–14-2
Limitations, C-1–C-5
Tablespace, 5-8

System Catalog
Browsing, 6-49
Reference, B-1–B-36
Tables, B-2–B-3

System Files
Configuration, 5-10–5-11

T

Table
Auto Update, 6-7–6-8
Checking, 6-56
Column Definitions, 6-10–6-11
Constraints, 6-34–6-35
Dropping, 6-12
Fillfactor, 6-5–6-6
Locking, 6-12
Locks, 6-5
Monitoring, 17-2–17-3
Replication Basics, 16-3–16-9
Scan, 18-7
Size, 6-50, 6-54–6-55
Temp, 6-7

Table Replication
Alter, 16-7–16-9
Asynchronous, 16-10–16-38

Asynchronous Basics, 16-10–16-11
Asynchronous Schedule, 16-13–16-14
Asynchronous Settings, 16-17–16-20
Creating Asynchronous, 16-14–16-16
Drop, 16-7
Enabling Asynchronous, 16-11–16-13
Error Handling, 16-16–16-17
Express Setup, 16-21–16-38
Heterogeneous, 16-20–16-21
Rules, 16-6–16-7
Synchronous, 16-9–16-10
Synchronous Setup, 16-9–16-10

Tables
Adding Columns, 6-9–6-10
Auto Update, 6-7–6-8
Columns, 6-3–6-4
Creating, 6-2–6-3
Dropping, 6-12
Dropping Columns, 6-9–6-10
Managing, 6-2
NoCache, 6-6–6-7
NotNull, 6-4
SYSAUTHCOL, B-3–B-4
SYSAUTHEXE, B-4
SYSAUTHGROUP, B-4–B-5
SYSAUTHMEMBER, B-5
SYSAUTHTABLE, B-5–B-7
SYSAUTHUSER, B-7
SYSCMDINFO, B-7–B-8
SYSCOLUMN, B-8–B-9
SYSCONINFO, B-9
SYSDBLINK, B-9
SYSDOMAIN, B-10
SYSFILE, B-10–B-11

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. Index - 12

SYSFILEOBJ, B-11
SYSFOREIGNKEY, B-11–B-12
SYSGLBTRANX, B-12–B-13
SYSINDEX, B-13
SYSLOCK, B-21–B-22
SYSOPENLINK, B-22
SYSPENDTRANX, B-23
SYSPROCINFO, B-23
SYSPROCPARAM, B-23–B-24
SYSPROJECT, B-24–B-25
SYSPUBLISH, B-25
SYSSUBSCRIBE, B-25–B-26
SYSSYNONYM, B-26
SYSTABLE, B-26–B-28
SYSTABLESPACE, B-28–B-29
SYSTEXTINDEX, B-29
SYSTRIGGER, B-29–B-30
SYSTRPDEST, B-30–B-31
SYSTRPJOB, B-31
SYSTRPPOS, B-31
SYSTXNINFO, B-31–B-32
SYSUSER, B-32–B-33
SYSUSERFUNC, B-33–B-34
SYSVIEWDATA, B-34
SYSWAIT, B-34–B-35
Triggers, 10-3

Tablespace
Adding, 5-14–5-15
Allocating Space, 17-6
Autoextend to Regular, 5-16–5-17
Checking, 5-23
CompressOnly, 5-19–5-20
Configuration, 5-11
Creating, 5-11–5-12

Dropping, 5-21
Information, 5-22
Limitations, 5-20–5-21
Pre-Allocating Space, 17-6
Regular, 5-8
Regular Extended, 5-13–5-14
Regular to Autoextend, 5-15–5-16, 5-15–5-

16
Settings, 5-11, 5-22
Shrinking, 5-17
Size, 6-54–6-55
Space, 5-8
System, 5-8
TruncateOnly, 5-17–5-19
Types, 5-8

Technical Support, 1-4
Text Indexes

Creating, 6-19
Dropping, 6-20–6-27
Full Rebuild, 6-29
Incremental Rebuilding, 6-28–6-29
Managing, 6-18–6-19
Parameters, 6-19–6-20
Rebuilding, 6-27–6-28

Tools
dmSQL, 2-8
ESQL/C, 2-9
JConfiguration Tool, 2-9
JDBATool, 2-8–2-9
JServer Manager, 2-9

Transactions
Managing, 9-2–9-3
Savepoint, 9-3–9-4
Transaction States, 9-1–9-2

1Index

©Copyright 1995-2003 CASEMaker Inc. Index - 13

Triggers
Action, 10-3
Action Time, 10-2
Cascading, 10-19–10-20
Components, 10-2
Creating, 10-4–10-7
Cursors, 10-19
Disable, 10-20–10-21
Dropping, 10-17
Enable, 10-20–10-21
Event, 10-3
Execution, 10-18
Modifying, 10-14–10-15
Name, 10-2
Operation, 10-4
Priveleges, 10-21
REFERENCING Clause, 10-3
Replacing, 10-16
Security, 10-19
Stored Procedures, 10-17–10-18

Table, 10-3
Types, 10-3

U

UDF
BLOBs, 13-11–13-17
Common Interface, 13-11–13-17
Creating, 13-11
Dropping, 13-11
Interface, 13-1–13-6
Using, 13-11

UNC Names
File Object, 7-16–7-17

V

Views
Creating, 6-13
Dropping, 6-14

 Database Administrator’s Guide1

©Copyright 1995-2003 CASEMaker Inc. Index - 14

	Introduction
	Other Sources of Information
	Technical Support
	Document Conventions

	Overview
	Features
	Multimedia Support
	JDBC Support
	Microsoft Transaction Server (MTS) Support
	Open Interface
	Data Integrity
	Data Reliability
	Storage Management
	Security Management
	Advanced Language Features

	Database Modes
	Single-User Mode
	Multiple-Connection Mode
	Client/Server Mode

	DBMaker Interface and Tools
	Application Program Interface
	dmSQL Interactive Query Tool
	JDBA Tool
	JServer Manager
	JConfiguration Tool
	ESQL for C language

	Syntax Diagrams

	System Architecture
	The DBMaker Process
	Database Communication and Control Area (DCCA)
	Architecture of the Single-User Model
	Architecture of the Client/Server Model
	Server Program
	Client Program
	Client Library

	Basic Database Administration
	Configuration File - dmconfig.ini
	dmconfig.ini Location
	dmconfig.ini Format
	Some Important dmconfig.ini Keywords
	Default Values
	Sample dmconfig.ini file

	Creating a Database
	Naming the Database
	Schema Object Name Case Sensitivity
	Setting Storage Parameters
	Raw Devices
	Enabling Client/Server Database
	Default User and Password
	Changing the Language Code Order
	The Data Communications and Control Area

	Starting a Database
	Single-User
	Client/Server
	Start Mode
	Forced Startup
	E-mail Error Report System

	Connecting to a Database
	Client/Server Database
	Connection Time-Out
	Lock Time-Out

	Shutting down a Database

	Storage Architecture
	Architecture
	File Types
	User Data Files
	User BLOB Files
	Journal Files
	Tablespaces

	Managing Tablespaces and Files
	Initial Setting of System Files and Tablespace
	Initial Setting of Default User Files and Tablespace
	Creating Tablespaces
	Expanding a Regular Tablespace
	Adding Files to Tablespaces
	Adding Pages to Files in Tablespaces
	Changing Regular to Autoextend Tablespaces
	Changing Autoextend Tablespaces to Regular Tablespaces
	Shrinking Tablespaces and Files
	Dropping Tablespaces
	Getting Information about Tablespaces and Files
	Checking File and Tablespace Consistency

	Managing Schema Objects
	Managing Tables
	Creating Tables
	Browsing Table Schema
	Altering Tables
	Locking Tables
	Dropping Tables

	Managing Views
	Creating Views
	Browsing View Schema
	Dropping Views

	Managing Synonyms
	Creating Synonyms
	Dropping Synonyms

	Managing Indexes
	Creating Indexes
	Dropping Indexes
	Rebuilding Indexes

	Managing Text Indexes
	Creating Signature Text Indexes
	Creating Inverted-File (IVF) Text Indexes
	Creating Text Indexes on Multiple Columns
	Creating Text Indexes on Media Types
	Dropping Text Indexes
	Rebuilding Text Indexes
	Boolean Text Search
	Fuzzy Search
	Near logic full-text search
	Fuzzy/Near Logic Matching Rules

	Managing Data Integrity
	Not Null
	Unique Indexes
	Unique Constraints
	Check Constraints
	Primary Keys
	Foreign Keys (Referential Integrity)

	Managing Serial Numbers
	Creating Serial Columns
	Generating Serial Numbers
	Retrieving Serial Numbers
	Resetting Serial Numbers

	Managing Domains
	Creating Domains
	Dropping Domains

	Unloading / Loading Objects
	Unloading Objects
	Loading Objects

	Browsing System Catalogs
	Calculating the Space Required
	How to Estimate the Size of a Table

	Checking Database Consistency
	Checking Indexes
	Checking Tables
	Checking Catalogs
	Checking Databases

	Updating Statistics for Schema Objects

	Large Object Management
	Managing BLOBs
	Customizing BLOB Space
	Generating BLOBs
	Updating BLOBs
	Predicate Operations on BLOB Columns

	Managing File Objects
	Customizing the System File Object Path
	Generating File Objects
	System File Object Extension Names
	Updating File Objects
	Renaming File Objects
	Predicate Operations on File Objects
	File Object UNC Names
	File Object Path Default Aliases
	FO and Applications

	Journal of Large Objects
	BLOB Journal Logging
	File Object Journal Logging

	Large Objects and SELECT INTO Command
	SET DFO DUPMODE
	Limitations

	Security Management
	Security Policies
	Database Authority
	Managing Users
	Managing Groups

	Object Privileges
	Granting Object Privileges
	Revoking Object Privileges

	Security System Catalog

	Concurrency Control
	Transactions
	Transaction States
	Managing a Transaction
	Using a Savepoint

	Multi-User Environment
	Sessions
	The Necessity of Concurrency Control

	Locks
	Lock Concept
	Lock Granularity
	Lock Types
	Dealing with Deadlock

	Triggers
	Trigger Components
	Trigger Name
	Trigger Action Time
	Trigger Event
	Trigger Table
	Trigger Action
	Trigger Type
	REFERENCING Clause

	Trigger Operation
	Creating Triggers
	Basic Requirements
	Security Privileges
	CREATE TRIGGER Syntax
	Specifying the Trigger Action Time
	FOR EACH ROW / FOR EACH STATEMENT Clause
	Using the Referencing Clause
	Using the WHEN Condition
	Specifying the Trigger Action

	Modifying a Trigger
	Replacing a Trigger Action

	Dropping a Trigger
	Dropping the Trigger

	Using Triggers
	Stored Procedures in Action Body
	Trigger Execution Order
	Security and Triggers
	Cursors and Triggers
	Cascading Triggers

	Enabling and Disabling Triggers
	Create Trigger Privileges

	Stored Commands
	Creating Stored Commands
	Executing a Stored Command
	Dropping a Stored Command
	Stored Command Security
	Granting Execute Privilege
	Revoking Execute Privileges

	Lifecycle of a Stored Command
	Getting Information for Stored Commands

	Stored Procedures
	Creating Stored Procedures
	Create Procedure Syntax
	Using Parameters
	Return Select Statement
	Module Names
	Variable Declaration
	Code Section
	Configuration Settings for Stored Procedures
	Creating a New Stored Procedure from File

	Executing Stored Procedures
	dmSQL
	ESQL
	Executing Nested Stored Procedures
	Executing Stored Procedures in ODBC programs
	Tracing Stored Procedure Execution

	Dropping A Stored Procedure
	Getting Procedure Information
	Security

	Coding User-Defined Functions
	UDF Interface
	Example
	Including libudf.h
	Passing Parameters
	Allocating Memory Space
	Returning Results

	Building UDF Dynamic-Link Library
	DLL in Microsoft Windows Environment
	UDF so File in UNIX

	Creating, Using, and Dropping UDF
	Creating a UDF
	Querying a UDF
	Dropping a UDF
	Example

	UDF BLOB Common Interface
	BLOB Common Interface Functions
	Example
	Troubleshooting Errors

	UDF related dmconfig.ini keywords
	DB_StrSz

	Database Recovery, Backup, and Restoration
	Types of Database Failures
	System Failures
	Media Failures

	Recovery from Database Failures
	Journal Files
	Checkpoint Events
	Recovery Steps
	Forcing Database Startup

	Types of Backups
	Full Backups
	Incremental Backups
	Offline Backups
	Online Backups
	Online Incremental to Current Backups

	Backup Modes
	NONBACKUP Mode
	BACKUP-DATA Mode
	BACKUP-DATA-AND-BLOB Mode
	Tablespace BLOB Backup Mode
	Backup File Object Mode
	Setting the Backup Mode

	Offline Full Backups
	Offline Full Backup Using dmSQL

	Backup Server
	Starting Backup Server
	Incremental Backup Filename Format
	Backup Directory
	Setting the Old Directory
	Incremental Backup Settings
	Journal Trigger Value Settings
	Compact Backup Mode Settings
	Full Backup Schedule
	Backup Mode of File Objects
	Stopping Backup Server

	Backup History Files
	Locating the Backup History File
	Understanding the Backup History File
	Using the Backup History File
	Understanding the File Object Backup History File

	Recovery Options
	Analyzing Recovery Options
	Preparing for Restoration
	Performing a Restoration

	Distributed Databases
	Introduction to Distributed Databases
	Distributed Database Structure
	Distributed Database Environment
	Distributed Database Objects
	Remote Database Connections-Using Names
	Remote Database Connections-Using Links
	Database Object Mapping
	Closing Links
	Link System Catalog Tables

	Distributed Transaction Control
	Two-Phase Commit
	Distributed Transaction Recovery
	Heuristic End Global Transaction

	Data Replication
	Table Replication
	What is Table Replication?
	Differences Between Database and Table Replication
	Two Types of Table Replication
	Term Definitions
	Creating Table Replication
	Table Replication Rules
	Drop Replication
	Alter Replication

	Synchronous Table Replication
	Synchronous Table Replication Setup

	Asynchronous Table Replication
	Enabling Asynchronous Table Replication
	Schedule (Creating and Dropping)
	Creating Asynchronous Table Replication
	Error Handling
	Schedule (Suspending and Resuming)
	Synchronizing a Replication
	Altering Schedule
	Heterogeneous Asynchronous Table Replication
	Express Asynchronous Table Replication
	Express Replication Setup

	Database Replication
	Database Replication Basics
	Database Replication Setup
	JServer Manager Environment Settings
	Database Configuration File
	Database Replication Limitations

	Performance Tuning
	The Tuning Process
	Monitoring a Database
	The Monitor Tables
	Killing Connections

	Tuning I/O
	Determining Data Partitions
	Determining Journal File Partitions
	Separating Journal Files and Data Files
	Using Raw Devices
	Pre-Allocating Autoextend Tablespaces
	I/O and Checkpoint Daemons

	Tuning Memory Allocation
	Tuning an Operating System
	Tuning DCCA Memory
	Tuning Page Buffer Cache
	Tuning Journal Buffers
	Tuning the System Control Area (SCA)
	Tuning the Catalog Cache

	Tuning Concurrent Processing
	Reducing Lock Contention
	Limiting the Number of Processes

	Query Optimization
	What is Query Optimization?
	How Does the Optimizer Operate?
	Input of Optimizer
	Factors
	Join Sequence
	Nested Join and Merge Join
	Table Scan and Index scan
	Sort

	Time Cost of a Query
	CPU Cost
	I/O Cost
	Cost of Table Scan
	Cost of Index Scan
	Cost of Sort
	Cost of Nested Join
	Cost of Merge Join

	Statistics
	Types of Statistics
	UPDATE STATISTICS Syntax
	Auto Update Statistics Daemon
	Load and Unload Statistics

	Accelerating Execution of Query
	Data Model
	Query Plan
	Index Check
	Filter Columns
	Query Results
	Temporary Tables

	Syntax-Based Query Optimizer
	Forced Index Scans
	Forced Index Scan and “Alias”
	Forced Index Scan and “Synonym”
	Forced Index Scan and “View”
	Forced Text Index Scans

	How to Read a Dump Plan
	Table Scan
	Index Scan
	Equal Join

	Keywords in dmconfig.ini
	General Concept
	dmconfig.ini File Format
	Section Names
	Keywords
	Comments

	Search Path for dmconfig.ini
	Default Values for Keywords
	Creating dmconfig.ini
	Keyword Reference
	DB_AtCmt=<value>
	DB_AtrMd=<value>
	DB_BbFil=<string>
	DB_BfrSz=<value>
	DB_BkDir=<string>
	DB_BkFoM=<value>
	DB_BkFrm=<value>
	DB_BkFul=<value>
	DB_BkItv=<string>
	DB_BkCmp=<value>
	DB_BkOdr=<string>
	DB_BkSvr=<value>
	DB_BkTim=<string>
	DB_BMode=<value>
	DB_Brows=<value>
	DB_CBMod=<value>
	DB_ChTim=<value>
	DB_CmChe=<value>
	DB_CTimO=<value>
	DB_DaiFm=<value>
	DB_DaoFm=<value>
	DB_DbDir=<string>
	DB_DbFil=<string>
	DB_DifCo=<value>
	DB_DtClt=<value>
	DB_ERMRv=<string>
	DB_ERMSv=<string>
	DB_EtrPt=<value>
	DB_ExtNp=<value>
	DB_FBkTm=<string>
	DB_FBkTv=<string>
	DB_FoDir=<string>
	DB_ForcS=<value>
	DB_ForUX=<value>
	DB_FoSub=<value>
	DB_FoTyp=<value>
	DB_GcChk=<value>
	DB_GcMxw=<value>
	DB_GcWtm=<value>
	DB_IFMem=<value>
	DB_IDCap=<value>
	DB_IOSvr=<value>
	DB_ITimO=<value>
	DB_JnFil=<string>
	DB_JnlSz=<value>
	DB_LbDir=<string>
	DB_LCode=<value>
	DB_LetPT=<value>
	DB_LetRP=<value>
	DB_LTimO=<value>
	DB_MaxCo=<value>
	DB_NBufs=<value>
	DB_NetEc=<value>
	DB_NJnlB=<value>
	DB_Order=<string>
	DB_PasWd=<string>
	DB_PtNum=<value>
	DB_ResWd=<value>
	DB_RmPad=<value>
	DB_RTime=<string>
	DB_ScaSz=<value>
	DB_SMode=<value>
	DB_SQLSt=<value>
	DB_SPDir=<string>
	DB_SPInc=<string>
	DB_SPLog=<string>
	DB_StrOP=<value>
	DB_StrSz=<value>
	DB_StSvr=<value>
	DB_SvAdr=<string>
	DB_TmiFm=<string>
	DB_TmoFm=<string>
	DB_TpFil=<string>
	DB_Turbo=<value>
	DB_UMode=<value>
	DB_UsrBb=<string>
	DB_UsrDb=<string>
	DB_UsrFo=<string>
	DB_UsrId=<string>
	DD_CTimO=<value>
	DD_DDBMd=<value>
	DD_GTItv=<string>
	DD_GTSVR=<value>
	DD_LTimO=<value>
	DM_DifEn=<value>
	LG_NPFun=<string>
	LG_Path=<string>
	LG_PTFun=<string>
	LG_Time=<value>
	LG_Trace=<value>
	RP_BTime=<value>
	RP_Clear=<value>
	RP_LgDir=<string>
	RP_Iterv=<value>
	RP_Primy=<string>
	RP_PtNum=<value>
	RP_Reset=<value>
	RP_ReTry=<value>
	RP_SlAdr=<string>
	User-defined filename=<physical filename> <pages>

	System Catalog Reference
	The System Catalog
	DBMaker System Catalog Tables
	SYSAUTHCOL
	SYSAUTHEXE
	SYSAUTHGROUP
	SYSAUTHMEMBER
	SYSAUTHTABLE
	SYSAUTHUSER
	SYSCMDINFO
	SYSCOLUMN
	SYSCONINFO
	SYSDBLINK
	SYSDOMAIN
	SYSFILE
	SYSFILEOBJ
	SYSFOREIGNKEY
	SYSGLBTRANX
	SYSINDEX
	SYSINFO
	SYSLOCK
	SYSOPENLINK
	SYSPENDTRANX
	SYSPROCINFO
	SYSPROCPARAM
	SYSPROJECT
	SYSPUBLISH
	SYSSUBSCRIBE
	SYSSYNONYM
	SYSTABLE
	SYSTABLESPACE
	SYSTEXTINDEX
	SYSTRIGGER
	SYSTRPDEST
	SYSTRPJOB
	SYSTRPPOS
	SYSTXNINFO
	SYSUSER
	SYSUSERFUNC
	SYSVIEWDATA
	SYSWAIT

	System Limitations
	Naming Limitations
	Storage Limitations
	Processing Limitations

	Index

